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Abstract

We enumerate the bases of the bicircular matroid on Km,». The
structure of bases of the bicircular matroid in relation to the bases
of the cycle matroid is explored. The techniques herein may enable
the enumeration of the bases of bicircular matroids on larger classes
of graphs; indeed one of the motivations for this work is to show the
extendibility of the techniques recently used to enumerate the bases
of the bicircular matroid on K.

1 Introduction

A matroid M is an ordered pair (E,Z) of a finite set E and a collection 7
of subsets of E satisfying the following three conditions:
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eIfIcTandI'CI,then I' € T.

o If I; and I, are in T and |I;| < |I2|, then there is an element e of
I, — I such that (I; Ue) € T.

M is called a matroid on E if it is the matroid! (E,Z). The elements of
E are called edges, with the set of edges of a matroid M denoted by E(M).
The order of E, denoted by |E|, is the number of edges in the matroid.
The members of Z are subsets of E(M) called the independent sets of M,
and the number of independent sets of the matroid is denoted by |Z|. A
subset of E that is not in Z is called dependent. A maximal independent
set of M is called a basis of M, denoted by B, with the set of bases of M
written B(M). The number of bases is denoted by |B(M)|. All bases of
M are equicardinal, with their cardinality, or rank, denoted by r(M). A
circuit C(M) is a minimal dependent set in a matroid M; removal of any
edge from C yields an independent set in the matroid.

Let G be a connected graph? (loops and parallel edges allowed) with
vertex set V = {1,2,...,n} and edge set E. The cycle matroid of a graph
G, denoted by M(G), is the matroid where E is the set of edges of the
graph and Z is the set of sets of edges with no cycle. A basis of M(G) is a
spanning tree of G; in particular the bases have cardinality equal to n — 1.
We denote the set of bases of the cycle matroid by Bas(G).

The bicircular matroid of G is the matroid B(G) defined on E whose
circuits are the subgraphs which are subdivisions of one of the graphs: (i)
two loops on the same vertex, (ii) two loops joined by an edge, (iii) three
edges joining the same pair of vertices. Here and elsewhere we identify a
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Figure 1: Bicycles of G

subgraph and its collection of edges. The circuits of B(G) are called the
bicycles of G. They are the connected subgraphs of G containing exactly

1 A general reference for matroid theory is [5].
2A general reference for graph theory is [7] or [8].
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two independent cycles [3]. A set of edges is independent in B(G) provided
that each connected component contains at most one cycle of G. The rank
of a set X of edges is p(X) = n(X) — t(X) where n(X) is the number
of vertices incident with the edges of X and #(X) is the number of (non-
trivial) tree components of X. If G is a tree, then E is an independent set
and hence a basis of B(G). If G is a connected graph that is not a tree,
then the bases of B(G) are the spanning subgraphs of G each of whose
connected components is a unicyclic subgraph of G; in particular the bases
have cardinality equal to n. We denote the set of bases of the bicircular
matroid by Bg(G).

A graph is bipartite if its vertex set can be partitioned into two disjoint
sets A and B so that each edge of G joins a vertex of A and a vertex of B.
A complete bipartite graph is a bipartite graph in which each vertex of A is
joined to each vertex of B by just one edge.

The simple bipartite graph G with m vertices in the first set and n
vertices in the second set with the maximal number of bases of B(G) is
Knn. B(Km,n) gives the greatest number of bases, but the actual number
of bases of B(K, ) requires a bit of calculation. Since K3 is a 4-cycle,
B(K3,2) has only one basis. The bases of B(Kj33) that are Hamiltonian
cycles are given in Figure 2. All other bases have a 4-cycle. There are
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Figure 2: Bases of the bicircular matroid on K33 that are Hamiltonian
cycles.

(3) (%) ways of picking a 4-cycle from K33. Once the 4-cycle has been
chosen there are eight ways to complete the cycle into a basis of B(K33).
For one 4-cycle, these eight completions are shown in Figure 3. Thus there
are 6 + 9 - 8 = 78 bases of B(K33).

A basis of a bicircular matroid on G can be composed of many com-
ponents, each of which is a unicyclic subgraph of G. Neudauer, Meyers
and Stevens addressed the enumeration of the single-component bases of
a bicircular matroid on a general graph G in [4]. In that same article the
number of single-component bases and then the total number of bases of
the bicircular matroid on the complete graph were found. Here we extend
these results to the complete bipartite graph K, . First we find the pre-
cise number of connected bases of the bicircular matroid on Ko n and then
in the final section we calculate the total number of bases of the bicircu-
lar matroid on K, ,. This number includes the connected bases and the
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Figure 3: Eight completions to Bases of the bicircular matroid on K3 3 that
contain a fixed 4-cycle.

bases with more than one component. Tables with these explicit values for
K, » with m,n < 10 are provided. In our calculations we use results from
the theory of partitions and compositions, and include the proofs of more
relevant results.’

2 Bases of the bicircular matroid on the graph
G

For a graph G, a unicyclic spanning subgraph is a unicyclic subgraph which
includes every vertex of G and is a basis of the bicircular matroid B(G).
In fact it is a basis with exactly one connected component. The set of
unicyclic spanning subgraph is denoted by 7(G). Neudauer, Meyers and
Stevens [4] prove a number of results about 7(G), which we restate here,
and develop a technique for constructing bases of the bicircular matroid
from independent sets of the cycle matroid on G.

Lemma 1 ([4]). Given an independent set of the cycle matroid on G, to
each connected component of the independent set add an edge (not already
in the independent set) either joining two vertices of that component or
Joining it to another component. The resulting set of edges is a basis of the
bicircular matroid on G.

Adding a single edge to a basis of the cycle matroid on G will produce
a basis of the bicircular matroid on G. In particular, adding an edge to
a spanning tree of G will construct a unicyclic spanning subgraph of G, a
basis of the bicircular matroid with exactly one component.

Theorem 2 ([4]). If G is a simple, connected graph, the following equa-
tions relate |7;(G)|, the number of unicyclic spanning subgraphs of G with

3A general reference on the theory of partitions is [1].
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cycles of length i, and the number of spanning trees of G:

Ir(@) = Y InG) 1)
=3
Yo im@) = (B@G) - r(M(G)))(1BuG)). (2)

i=3
In particular the number of unicyclic spanning subgraphs is
I7(G)| = (IE@G)| = r(M(G))(IBMG]) - Y G- DRG] (3)
=3

A Hamiltonian cycle of a graph G is a cycle on G which contains each
vertex of G exactly once. The number of Hamiltonian cycles (7] of K, , is

(n})?/(2n).

Theorem 3 ([2]). The number of spanning trees of K 5 is m™~1n™"1.

3 Enumerating the connected bases of the bi-
circular matroid on Ky, ,

We approach the problem of enumerating the single component bases of the
bicircular matroid on K, ,, Instead of starting with a spanning tree and
adding an edge to obtain a unicyclic spanning subgraph, we begin with a
cycle of length 2i and add edges, expanding this to a spanning subgraph. In
this section we calculate the exact number of connected bases of B(Kp, »).

Consider a cycle of length 2 in Ky, ». The induced subgraph on these
2i vertices is K;;. There are (i!)2/(2i) ways that such a cycle can be
constructed. Denote the vertices in this cycle by C. Of the 2¢ vertices
in this cycle, we choose k vertices to which we will connect the remaining
m + n — 2i vertices.

Figure 4: Choose k vertices on the cycle to which we will connect the
remaining m + n — 2i vertices.

We associate one vertex from the opposite set, and not on the cycle, to each
of these vertices chosen on the cycle

169



) A\ e

o o (@ o ° °
Figure 5: Associate one vertex from the opposite set to each vertex chosen
on the cycle.

We then partition the m +n — 2i — k remaining vertices into k parts.

M e e
A B ® [ £ [

Figure 6: Partition the remaining vertices not on the cycle.

For each part, we construct a spanning tree on the vertices of that part
together with the vertex of the cycle to which that set will connect.

Figure 7: Construct a spanning tree on each partition

We need to partition this set of m + n — 2i — k vertices.

Let D(t,k,m) be the array with k¥ columns whose rows are each an
ordered partition, or composition, of ¢ consisting of integers at least m.
That is each row of D(t, k,m) contains k integers at least m which sum to
t. Let us establish some facts about D(t, k, m).

Lemma 4. D(t,k,m) has ezactly (*~m~D*=1) rous

Proof. Consider the array A(t, k) which is defined in [4] as the matrix with
k columns whose rows are each of the ordered partitions, or compositions,
of ¢ consisting of positive integers. This is identical to D(t,k,1). In [4]
it was established that this array has (;~]) rows. If we subtract exactly
m — 1 from all entries of D(t, k,m) the result will be A(t — (m — 1)k, k) =
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D(t — (m — 1)k,k,1). This establishes the the number of rows of D(t —
(m — 1)k, k,m). m]

We will also need to know what the entries of D(t, k,m) are. We shall
denote the entry in the i** row and j** column by d;;(t,k,m). Simple
adaptation of Lemma 5 from [4] in the same manner as in the proof of
Lemma 4 establishes:

Lemma 5. Let i' = i — f;',‘,ft’k’m)_l (¢t Om o E=0=1) 45 simplify the
expression. Then we have

([t
ifk=1
dijlt,kym) = { ™0 {z 10<z<t, Tty ™™ (TR > i}
’ ifi=1
di’,j—l (t —dia (t, k, m), k- l)
\ i>1
4)

We now choose k vertices of the cycle, C, to be adjacent to vertices not
contained in the cycle. We choose k; from AN C and k; = k — k; from
BNC. Clearly k1, k; < i. For each of the k; vertices in A N C we choose
a vertex of B\ C that will be part of the spanning tree connected to this
vertex. Since this will require k; vertices from B \ C, we also require that
k1 £ n —1 and similarly ks < m — 1.

We now use the rows of the appropriate D(t,k;,m) to partition the
remaining ¢t = m — i — kp vertices in A and the remainingt =n-i -k
vertices in B into parts, each associated with one of the k vertices chosen on
the cycle. Each such vertex on the cycle now has a vertex in the opposing
set associated with it, and possibly additional vertices as determined by the
compositions given by D(¢, k;j,m). The set associated with a vertex in the
cycle is counted ! times where ! is the cardinality of this set’s intersection
with the opposing set, A or B, as appropriate. We need to compensate for
this overcounting. The number of possible ways of minimally connecting
these sets together is the number of spanning trees on the corresponding
complete bipartite graph.

Recapping, to enumerate every unicyclic spanning subgraph of K, ., we

1. Choose 2i vertices to form a cycle in K, n;

2. Choose k = k; + ko vertices in the cycle to connect to the remaining
vertices;
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3. Associate one vertex from the opposite set to each of these;
4. Partition the remaining vertices into & parts using D(t, k;,m); and

5. Construct a spanning tree on the complete bipartite graph induced
on each of these k sets.

This gives us the following theorem.

Theorem 6. The number of unicyclic spanning subgraphs of K, , is given

by
= 3 M) e "y () )we

=2 k1=0
min(m—i,i) . R
S () (" )
k2=0 2 2
Tikn) Chikta!
> > m-i-k)l(m-i-k)!
H=1 Jz2=1
k1+k2

(djy,1,(n — i = k1, k1 + kg, 0) + 1)%iz.5s (Mm—i=kzik1+k2,0)
};Il (i g (n =1 = k1, by + K2, 0) + 67, <k,)! '
(djg,0,(m — i — ko, k1 + k2,0) + l)dfl-’l (n—i—k1,k1+k2,0)
(dj2:f1 ('m' —i—ko,ky + k270) + 6f1>k1)!

()

We include the special cases where either n —i = 0 or m —¢ = 0 by
including them in the summation subject to the convention that k; +k2 > 0
unless m = n = i. We give specific values of |7(K,, )| in Table 1

We establish that there are more bases of the bicircular matroid on
K, » than the cycle matroid. For K, ,,, assuming m < n, Theorem 2 gives

|Bam (Emn) (| E(Em,n| — (M (Em,n)))

2m

Since |By (Km )| = m™1n™"1, this becomes '(M(Km,n)))~

< r(Km,n)l < 1Bat (K o)/ (IE(Km,n|—7

m* In™ Y mn - (m+n-1)
2m

<|T(Kmpn)l £ m™ 1n™" (mn—(m+n-1)).

When m > 4 or n > 6 the left hand side is larger than the number of
spanning trees. In this case there are more unicyclic spanning subgraphs

172



and more bases of the bicircular matroid than spanning trees on K, ». This
leaves only a finite number of cases to calculate. For m + n < 6 there are
more spanning trees than bases. For m = 2, n = 5 the two sets have equal
cardinality. In all other cases there are more bases than spanning trees.
The sequence 7(K2 ) can be found in Neil Sloane’s On-line Encyclope-
dia of Integer Sequences as sequence A001788 [6]. It is listed there as the
number of faces in an (n+1)-dimensional hypercube and is also equal to

2?:1 iz (’:) *

4 Enumerating the bases of the bicircular ma-
troid on K,

Unlike the bases of the cycle matroid on a graph, the bases of the bicircular
matroid need not be connected. A basis of the bicircular matroid may
have more than one unicyclic component [3]. We have enumerated the
connected bases of the bicircular matroid on Ky, ,. In this section we will
find an enumeration of all of the bases of the bicircular matroid on K, 5.

We first note that since a cycle in a bipartite graph has at least four
vertices, two in each part, a graph with multi-component bases must have a
minimum of 8 vertices. Thus |Bg(Km,n)| = |7(Kmn)| form <3 orn < 3.

When we have more than one component, each of the p components is
a unicyclic spanning subgraph on the induced complete bipartite graph on
the vertices of that part. Therefore, we need only partition the vertices
and find the number of unicyclic spanning graphs on each set of vertices to
determine the number of multi-component bases of the bicircular matroid.

Since each component must contain a minimum of 2 vertices in each
part, the maximum number of components is min (|m /2], [n/2]). To facil-
itate manipulating these components we use the array H(n,p,m), defined
in [4], as the s(n,p,m) x p matrix in which each row consists of a parti-
tion of n, each of whose parts is not less than m (we will be interested in
m = 2). We denote the element found on the i*# row and the j** column
by hi,j(n’px m)

Lemma 7 ([4]).

};‘{:J s(n-lLp-1,1) ifmp<n

s(n,p,m) = { (6)

0 otherwise

where o — ok
s(n,2,m) = ["*T‘J .
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Lemma 8 ([4]). Leti' =i— :’;',‘,f"""m)_l s(n —1,p — 1,m) to simplify
the ezpression. Then we get

min {z |m < z < |n/p), Liep s(n = 1,p—1,m) >4}

ifj=1
h,-,j(n, k,m) =
hi j—1 (n = hiy(n,p,m),p—1,m)
i>1
(7)

To find the number of multi-component bases of the bicircular matroid
on Ky, n, we partition the vertices into p components. For each component
we use the rows of H(v,p,2) to enumerate the different sizes of each part.
If there are multiple parts of the same size we need to correct for the over-
counting caused by the fact that g parts with the same number of vertices
can be chosen ¢! ways indistinguishably. We adopt the same notation as
in [4): For row r of H(v,p,2) we denote the number of times an entry k
appears by zx(r) and define

n—2(p-1)

p(r) = H z(r)l

k=2
Theorem 9. The number of bases of the bicircular matroid on Ky, n,, for
m > 4 and n > 4 is given by
|Be(Km,n)l =

min((m/2),1n/2)) s(mp2) "211) )

olry)

d T(thl-v(mvpnz):drg.q("nptz))
1 hrhq(m7p) 2)! drz,q(n’pz 2)! )

=1 r=1 re=1

(8)

q=

We give specific values of [Bg(Km,»)| in Table 2

5 Conclusion

We have enumerated the bases of the bicircular matroid on K,, » and shown
that in all but a small number of cases this set is larger than the set of span-
ning trees. This extends the method of the enumeration of the bases of the
bicircular matroid on K, in [4]. This work grew out of the undergraduate
senior thesis project of A.M. Meyers. We suggest that enumerating further

174



families is a possibly publishable project of ideal scope and range for an
undergraduate.

We hope that the techniques herein may enable the enumeration of the
bases of bicircular matroids on other classes of graphs; indeed one of the
motivations for this work was to show the extendibility of the techniques
developed in [4]. Families of graphs that could be investigated next are
complete multipartite graphs and regular graphs. Strongly regular graphs,
in particular, may be sufficiently structured as to make this analysis readily
feasible.

Our current focus is to investigate the asymptotic behaviour of |Bg(Km »)|-
We finally conjecture that for a fixed number of vertices B(Km,») has the
largest number of bases when the parts of Ky, » are as equal as possible.
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|T(K22)] = 1

|T(K23)] =

Ir(K24)| = 24
[7(K33)] = 78
|T(K25)] = 80
|T(K34)] = 612
IT(Kz,e)I = 240
I7(Kss) = 3780
[T(Ka4)] = 8424
|T(K2,7)| = 672
|T(K36)] = 20250
|7(Kas)] = 85920
|7(K28)] = 1792
|7(Ks,7)] = 98658
|7(Ka6)| = 731520
[7(Kss)] = 1359640
|T(Ka9)| = 4608
|T(K3.8)] = 449064
|T(Ka7)| = 5515776
|7(Ks6)| = 17269200
|T(K2,00)] = 11520
|T(K39)| = 1942056
|7(K4g)] = 38105088
|7(Ks7)| = 189073500
|7(Ksg)| = 314452800

Table 1: The number of unicyclic spanning subgraphs of K, , for 4 <
m+n<l2and2<m<n.
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|B(K2,2)]
|Be(K2,3)|
|Bs(K2,4)|
|Bp(K3,3)|
|Be(K2,s5)|
|Bs(K3,4)|
IBa(K2,6)|
|B(K3,s)|
|Be(K4,4)|
|Be(K2,7)|
|Ba(K3,6)|
|Be(K4,5)l
|Be(K2,s)
|Bs(K3,7)|
|Be(K4,6)l
|Bs(Ks,5)|
|Bs(K2,9)l
|Bs(K3,s)|
|Ba(Ka,7)l
|Bs(Ks,6)
|Bp(K2,10)|
|B(K3,9)l
|Bs(K4,s8)l
[Be(Ks,7)]
|Be(Ks,s)l

1

6

24

78

80

612

240
3780
8442

672
20250
86280
1792
98658
735840
1371040
4608
449064
5556096
17476200
11520
1942056
38427648
191908500
319899150

Table 2: The number of bases of the bicircular matroid on Ky, » for 4 <

m+n<l2and2<m<n.
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