THE NICHE CATEGORY OF SPARSE GRAPHS

STEVE BOWSER AND CHARLES CABLE

ABSTRACT. The niche graph of a digraph D is the undirected graph
defined on the same vertex set in which two vertices are adjacent if
they share either a common in-neighbor or a common out-neighbor
in D. A hierarchy of graphs exists, depending on the condition of
being the niche graph of a digraph having, respectively, no cycles,
no cycles of length two, no loops, or loops. Our goal is to classify in
this hierarchy all graphs of order n > 3 having a generated subgraph
isomorphic to the discrete graph on n — 2 vertices.

1. INTRODUCTION AND PRELIMINARIES

A survey of the beginnings of the study of niche graphs can be found in
[8]. Some more recent work has distinguished categories of niche graphs and
attempted to identify the niche graph categories of the graphs belonging to
various classes. (See, for example, [1),[3],[10]). The categories we employ
in this paper are the ones found in the literature, with the addition of one
suggested by the complete description of the niche graphs of all tournaments
in [5]. They are, moreover, the same ones used in [4], in which the niche
category of each graph in a class, called the dense graphs, is given. The
purpose of the present work is to give the niche graph category of each
sparse graph.

Notation.

o Ifz and y are vertices, the undirected edge between x and y will be
denoted [z,y] and the arc from x to y will be denoted T — y.

e The set of in-neighbors of a vertez = in a digraph D will be de-
noted inp(z). Similarly, the set of out-neighbors will be denoted
outp(z). In case there is no danger of ambiguity, the subscript will
be suppressed. ‘

o The discrete graph of order n will be denoted I,.

o The set of non-negative integers will be denoted N.

o The cardinality of a finite set A will be denoted |A|.
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Definition 1. Given a digraph D = (V, A), the niche graph of D is an
(undirected) graph G = (V, E) such that [z,y] € E if and only if either
in(z) N in(y) or out(z) N out(y) is nonempty. We will also say that D
is a niche digraph of G. A niche digraph for a given graph will be called
minimal if its arc set cannot be reduced without changing the niche graph.

Definition 2. Among niche graphs, we identify the categories listed below.
(It is shown in [4] that these categories are nested and distinct.) A graph
G is:
e an acyclic niche graph if it has an acyclic niche digraph.
¢ an asymmetric niche graph if it has an asymmetric niche digraph
(i.e., one without loops or cycles of length 2).
e a cyclic niche graph if it has a niche digraph without loops.
e a loop niche graph if it has an arbitrary niche digraph (possibly
containing loops).

Definition 3. We will call a graph of order n > 3 sparse if it contains a
generated subgraph isomorphic to In_ and dense if it contains a generated
subgraph isomorphic to Ky_2.

Example. For j € N, any subgraph of Ko ; with at least § vertices is
sparse. Indeed, if {r,s)} is the two element set in the partition of the vertices
defining K ;, then another characterization of sparse graphs is those which
are subgraphs with at least 8 vertices of K ; + [r,s], for some j € N.

The goal is to determine the niche graph categories to which each sparse
graph belongs. We begin by observing that with the exception of I3 and Iy,
all sparse graphs of order less than 5 are also dense, so their niche categories
are given in [4]. For the record, all are acyclic niche graphs except K3,
which is a loop niche graph but not a cyclic niche graph, and K3 and Cy,
both of which are cyclic niche graphs but not asymmetric niche graphs.

Thus, our attention turns to sparse graphs of order at least 5. To make
reference to these graphs easier, we single out the following representation.

We say that a graph G of order n satisfies condition ¥ if:

(1) n 25,
(2) V(G) = W U {r,s}, where (W) = I,_s and deg(r) = mazdeg(G).

The symbols 7 and s will be reserved throughout the rest of the paper
for the two vertices of G outside of W and r is reserved for a (distinguished)
vertex of G of maximum degree. Our determination of niche category of
graphs satisfying condition Y will be split into the case in which r is not
adjacent to s in G, undertaken in Section 2, and the case in which 7 is
adjacent to s, covered in Section 3. We close this introductory section with
a result that holds in either case.

Lemma 1. Let i = |W N nbrg(r)|. Ifi > 4, then G is not a cyclic niche
graph and if i > 3, then G is not an asymmetric niche graph.
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Proof. Let D be an cyclic niche digraph for a graph G satisfying %. The
subdigraph induced by the set of arcs incident to either r or s must be a
subdigraph of the one shown in Figure 1 (where we do not assume that the
vertices a, b, ¢, and d are distinct). Since nbrg(r) C {d,c} U in{a) U out(b)
and since neither in(a) nor out(b) can contain more than one vertex of W,
the first result follows. If D is asymmetric, then there is no loss of generality
in assuming that D does not contain the arc s — r. With this change to
Figure 1, the vertex c is no longer a potential member of nbrg(r), so the
second result follows.

FIGURE 1

2. VERTICES r AND s NOT ADJACENT IN THE NICHE GRAPH

Throughout this section we assume that G is a graph satisfying % and
that vertices r and s are not adjacent.

Lemma 2. If dege(r) > 4, then G is not a loop niche graph.

Proof. Suppose that D is a minimal loop niche digraph for a graph G
satisfying % in which r and s are not adjacent. Since r can have at most
one in-neighbor in W and at most one out-neighbor in W and since the
same is true of s, D must be a subdigraph of the digraph in Figure 2. Here
the vertices in the set {a,b,c,d, w,z,y, 2} are not assumed to be distinct
and vertices which are isolated in D are not depicted.

FIGURE 2

If D contains a loop at either r or s, then it can contain neither r — s
nor s — r, since either would produce the forbidden edge [r, s] in G. On the
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other hand, if D contains neither r — s or s — r, then clearly degg(r) < 4,
so we may assume that neither r nor s has a loop. In this case, nbrg(r) C
{¢e,d, w,z}. O

The following short-hand will simplify reference to the sparse graphs
under consideration in this section.

Definition 4. Fach graph G satisfying condition % in which r and s are
not adjacent can be represented by a 4-tuple (1,7, k,m) where i = degg(r),
J = degg(s), k = |nbrg(r) N nbrg(s)|, and m = the number of isolated
vertices in W. (Although we will not require the fact, we note that this
representation is unique for graphs satisfying the above conditions.)

Using Lemma 2 and the assumptions of this section, we need consider
only graphs represented by (Z, j, k,m) for which 0 < k < j <1 < 4. More-
over, Lemma 1 says that none of these graphs with i = 4 are asymmetric
niche graphs.

Remark 1. If G is niche graph which is respectively acyclic, asymmetric,
cyclic, or loop, then so is G U I, (for any positive integer m). Indeed, if
D is a niche digraph for G, then D U I, is a niche digraph for GU I,.

Lemma 3. If dege(r) = 4, then G is a cyclic niche graph unless G is
(4,1,1,m) or (4,0,0,m), for some non-negative integer m. The latter two
forms of sparse graphs are loop niche graphs but not cyclic niche graphs.

Proof. For the first sentence of the lemma statement, it suffices, by Remark
1, to consider the case in which the number of isolated vertices in W is zero.
Of the graphs under consideration, there are a total of 15 sparse graphs
of the form (4,7, k&,0), since 0 < k < j < 4. Table 1 provides cyclic niche
graphs for each of these graphs except (4, 1,1,0) and (4,0, 0, 0), for which it
provides loop niche graphs. The 4 — tuple (4,0,0,m) represents the graph
Ky,4U I, and in [3] it is proved that K; 4 cannot be made into a cyclic
niche graph by the addition of any finite number of isolated vertices. Thus,
graphs of the form (4, 0,0, m) are not cyclic niche graphs. We will use this
result to show that the same is true of graphs of the form (4,1,1,m).

Let m > 0 and let G be the graph (4,1,1,m) with nbrg(r) = {a, b, ¢, d}
and nbrg(s) = {a}. Suppose that G is the niche graph of the minimal cyclic
digraph D. We may assume, without loss of generality that a and s have
a common in-neighbor, z, in D. Now a must have another in-neighbor, y,
since otherwise D — {z — a} would be a cyclic niche digraph for (4, 0,0, m).
Similarly, s must have another in-neighbor, z. If y = z, then, since z can
have no additional out-neighbors and a can have no additional in-neighbors,
removing z — a from D would not alter its niche graph, contradicting the
assumption that D is minimal. So y and z are distinct. It follows that
[z,y] and [z, 2] are edges in G and, since D has no loops, z must be r, y is
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a neighbor in G other than a, say b, and z is either a or ¢. Thus, we may
assume that one of the two digraphs depicted in Figure 3 is a subdigraph
of D.

a b a b c
FIGURE 3

Since r may have no additional out-neighbors and neither a nor s may
have additional in-neighbors, the two additional edges in G at r must arise
from distinct common in-neighbors, which are therefore adjacent in G.
Since neither of the latter may be r, the only candidates are s and a. It
is routine to check that this is impossible without introducing either loops
in D or unwanted edges in G. Thus the supposed cyclic digraph D cannot
exist. O

Lemma 4. If degg(r) < 3, then G is an acyclic niche graph with the
following exceptions: (2,2,2,1) and (3,1,0,0) are cyclic but not asymmetric
niche graphs; for each m € N, (3,0,0,m) is a loop niche graph but not a
cyclic niche graph and (3,3, 3, m) is an asymmetric niche graph but not an
acyclic one.

Proof. It is shown in [6] that the graphs (2,2, 2, m) are acyclic niche graphs
for m > 1, and in [4] that (2,2,2,0) is cyclic, so Remark 1 implies that
(2,2,2,1) is also cyclic. The graphs (3,1,0,m) are acyclic for m > 0 as is
seen by considering the digraph depicted below for (3,1, 0,1) and referring
to Remark 1.

a b c d
FIGURE 4. Niche digraph for (3,1,0,1)

For the remainder of the positive statements in the lemma, it suffices,
again by Remark 1, to let mm = 0. There are three such graphs (satisfying
%) with ¢ = 2. Again one may refer to [6] to see that (2,2,1,0) and
(2,2,0,0) are acyclic niche graphs. Table 1 provides the required digraphs
for (2,1,0,0) and for the remaining cases with i > 2.
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We address the negative statements regarding each of the four excep-
tions one at a time. The graph (2,2,2,0) is Cy, which is, as already
mentioned, not asymmetric. A short argument now extends this conclu-
sion to (2,2,2,1). Suppose that D is an asymmetric niche digraph for
G = (2,2,2,1), that a and b are the (shared) neighbors of r and s in G,
and that z is the isolated vertex. There is no loss in assuming that z is a
common in-neighbor of vertices of an edge of G, since otherwise the removal
of z would provide an asymmetric niche digraph for C4. So, assume that
D contains the arcs £ — r and £ — a. Neither r nor a can have another
in-neighbor, so a and s must have a common out-neighbor, which must be
b, since D is asymmetric. Now it is impossible to produce the edge (r,b]
in the niche graph of D without contradicting the assumption that D is
asymmetric.

It is shown in [3] that (3,0,0,m) is not a cyclic niche graph for any
natural number m, and this fact can be used to demonstrate that (3,1,0,0)
is not asymmetric. Suppose, on the contrary, that the neighbors of r in
(3,1,0,0) are a,b,c, that the neighbor of s is d, and that D is a minimal
asymmetric niche digraph. Without loss of generality, assume that vertex z
is a common in-neighbor of s and d. Both s and d must have an additional
in-neighbor in D, since otherwise the removal of one of the arcs ¢ — s
or £ — d would produce a cyclic niche digraph for (3,0,0,m) for some
m. These additional in-neighbors, which must be distinct by the same
argument used in Lemma 3, are both adjacent to z in the niche graph, so
x must be r and the additional in-neighbors may be taken to be a and b.
Thus the arcs depicted in Figure 5 are forced.

O >
b
FIGURE 5

No additional out-neighbors of r are allowed and neither s nor d can
have additional in-neighbors, so r and ¢ must have a common in-neighbor
in D, yet none can exist without either introducing unwanted edges in the
niche graph or violating the asymmetric condition on D.

Finally, suppose that m > 0 and that D is a minimal acyclic niche
digraph for G = K3 U I, = (3,3,3,m). Ignoring vertices isolated in D,
it must be a subdigraph of that depicted in Figure 6 with the arc s — 7
removed (where we do not assume that the vertices other than r and s are
distinct). It follows that nbrg(r) C {d,w,z} and nbrg(s) C {a,y, 2}, but
for G, these four sets must be equal and each contain 3 distinct vertices. To
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complete the proof, it suffices to show that a ¢ nbrg(r). There are three
cases to consider.

(1) a = d. In this case, y must be z and 2 must be w, but this produces
a cycle a — w — a, contradicting the assumption that D is acyclic.

(2) @ =w. This produces a forbidden loop at a.

(3) a = z. In this case, b = w. If y = w, then a and c are either equal
or adjacent, but neither is allowed, so y =d and z = w. Now d is
a common in-neighbor of b and ¢, so b and ¢ must be equal. This
too is impossible since D now contains the cycler — s — b — r.

O

Remark 2. Table 1 gives digraphs for each of the sparse niche graphs
satisfying condition % in which r and s are not adjacent and m = 0. In
the interest of saving space, we have selected between two formats for these
descriptions. In most cases, the last column lists alterations to the digraph
depicted in Figure 6. In each such digraph, the vertices are distinct unless
an alteration states otherwise. The arc s — r is denoted by the more
compact form (s,r) in the Table. For ezample, one obtains a niche digraph
for (3,2,0,0) by identifying the vertices b and z in Figure 6 and removing
the arc s — r and the vertices ¢ and y. The result is the digraph below.

w a T b d

In three cases the required digraph cannot be described in the above man-
ner, so a “correspondence” of the digraph is provided. For example “r:r,a;
b:r,z” is the correspondence of the digraph with arc set {r — r,r - a,b —
b— z}.

FIGURE 6

We close this section with a summary.
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Theorem 1. If G is a sparse graph satisfying % and r is not adjacent to
s, then:

(1) G is not a (loop) niche graph for deg(r) > 4.

(2) G is a cyclic niche graph but not an asymmetric niche graph if
deg(r) = 4, with the exception of those represented by (4,0,0,m)
or (4,1,1,m) (m € N), which are loop niche graphs but not cyclic
niche graphs.

(3) G is an acyclic niche graph if deg(r) < 3 with the exception of:
(a) (3,3,3,m), which is asymmetric
(b) (2,2,2,1) and (3,1,0,0), both of which are cyclic niche graphs

but not asymmetric niche graphs.
(c¢) (3,0,0,m), which is a loop niche graph but not a cyclic niche

graph.
itjl|k|D iljlk|[D
444} a=d, b=c, x=y, w=z 3131 3] -(sr), a=x, b=c, d=y,
4143 ]| a=d, b=c, x=y -w, -2
4|42 a=d, b=c 313] 2] -(sr), a=x, c=2, -w, -y
4(4}1]|a=d 313]|1]-(sr), a=d, y=b, -x
4|40 | (no change) 313|0]-(s,r), b=2, c=w
4(3]3]|a=d, c=b, x=y, -2 3({2]2]-(s,r), a=x, b=z, -c,
4131 2]a=d, b=c, -z -w, -y
4131 ]|a=d,-z 3(2]1]-(s,r), a=d, c=x,
413|0}-z -y, -2
4(12]2]a=d, b=c, -y, -z 3[2]0]-(s,xr), b=2, -c, -y
4121 a=d,-y, -z 3(1]1]-(srx), a=x, -c, -w,
412(0]-y, -2 Y, -z
4111 rr,a; sic; biryx;ca; xic || 3] 1] 0] a=b, -y, -d, -2
411]|0]a=b,-y, -z 3|10|0]{rr,; birrx
410]|0]|rr,a; brr,x; wia 2|10 r:b;ar,b; bis,c

TABLE 1. Niche digraphs for r not adjacent to s

3. VERTICES 7 AND s ARE ADJACENT IN THE NICHE GRAPH

Throughout this section we assume that G is a graph satisfying % and
that vertices 7 and s are adjacent.

Notation. The following abbreviations will be useful:
nbr(r) = nbrg(r) — {s} nbr(s) = nbrg(s) — {r}
deg(r) = [nbr(r)| deg(s) = |nbr(s)|
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(3,7, k,m) describes G where

i = deg(r) j = deg(s)
k = |nbrg(r) Nnbrg(s)| m = the number of isolated
vertices in W.

It is clear again that each G under consideration in this section is de-
scribed by a unique barred 4 — tuple. The next lemma gives the main
reduction result in this case.

Lemma 5. If G satisfies the assumptions of this section and deg(r) > 6,
then G is not a (loop) niche graph.

Proof. Let G satisfy the assumptions of this section and suppose D is a
minimal digraph with niche graph G. If isolated vertices are ignored,
then D must be a subdigraph of the digraph in Figure 2, where it is
not assumed that the vertices a,b,¢,d,w,z,y, z are distinct. It follows
nbrg(r) C {s,a,b,c,d, w,z} and that deg(r) < 6. ]

Lemma 6. Ifi > 3, then (3, 5,0,m) lies in the same niche graph categories
as (1, 5,0,0).

Proof. Suppose i > 3 and that D is a minimal niche digraph of G =
(,7,0,m). Suppose that {a,b,c} C nbre(r) and that z is an isolated
vertex of G. Since D is minimal, £ cannot have exactly one out-neighbor
{the removal of that arc would not change the niche graph). The proof will
be completed by showing that if z has more than one out-neighbor, then
i = 3 and j = 1, and that, in this case, it is possible to replace D by a
new niche digraph D’ for G of the same category as D and in which every
vertex which is isolated in G is also isolated in D’. Of course, multiple out-
neighbors of z are adjacent in the niche graph, so we consider possibilities:

(1) z - r and z — s. Since z is isolated in G, r can have no addi-
tional in-neighbors, the edges [r,a] and [r,b] must arise from dis-
tinct common out-neighbors. These out-neighbors are adjacent in
G and neither is equal to r, so one must be s, which means that r
and z are adjacent, a contradiction.

(2) z — r and z — a. Again, r can have no additional in-neighbors, so
[r,b] and [r,c] must arise from distinct common out-neighbors. As
before, one must be s and the other, say d, is adjacent to s. In this
case, the edge [r, s] must also arise from a common out-neighbor.
This vertex cannot be s but is adjacent to d, an impossibility.

(3) z — s and z — d (where d is a neighbor of s in G). The edge [r, 5]
must arise from a common out-neighbor. By the first case above
(with all arrows reversed), this out-neighbor cannot be an isolated
vertex from W, so it must be adjacent in G to either r or s. In the
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second case, D has the arcs r — e and s — e, where e is a second
neighbor of s in G. Since s can have no additional in-neighbors
and no additional out-neighbors, it is impossible to form the edge
[s,e]. Therefore, we are left with the first case and may assume
that D has the arcs s — a and r — a. If both [r,b] and [r,]
arise from (necessarily distinct) common in-neighbors, then these
in-neighbors are adjacent in G, so one must be s, which in turn
produces a forbidden edge between a and another vertex of W. So,
without loss of generality, the edge {r, b] must arise from a common
out-neighbor and the only candidate is r. These observations force
the arcs shown in figure 7.

S x
r
o]
c b a d
FIGURE 7

The vertex r can have no additional in-neighbors and no additional out-
neighbors, so the only way to achieve the edge [r, ¢] is by the addition of the
arc b — ¢. Now the in-neighbors of r can have no additional out-neighbors
and the out-neighbors of 7 can have no additional in-neighbors. The same
statement holds for s, which itself can have no additional neighbors in the
minimal digraph D. It follows that G must be (3,1,0,m) for some m >1
and that D is a loop digraph which is not a cyclic digraph and in which
z is the only vertex isolated in G and not isolated in D. If one removes
the arcs £ — s and z — d and adds d — s and d — d, one arrives at the
(minimal) digraph D’ whose existence was predicted earlier.

Thus, if 7 > 3, we may assume that the vertices which are isolated in
(¢,5,0,m) are isolated in a minimal niche digraph (of whatever category).
These isolated vertices may be removed to produce a niche digraph of the
same category for (3, 4,0,0).

O
Lemma 7. Ifi > 4, then (3,7, k,m) is not a cyclic niche graphs unless
i =4 and k is either 4 or 2.
Proof. Let G be represented by (,4,k,m) with ¢ > 4 and suppose that
D is a minimal cyclic niche digraph for G. If vertices isolated in D are
ignored, then D must be a subdigraph of the digraph depicted in Figure 6,

where, as usual, _we do not assume that the vertices other than r and s are
distinct. Since |nbr(r)| > 4, it follows that

nbr(r) = {w, z,c¢,d} and nbr(s) C {a,b,y, 2},
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that the vertices w, z, ¢, and d are distinct, and that D must contain both
of the arcs r — s and s — r. We may assume, without loss of generality,
that the edge [r, s] in G arises from the identification a = ¢, which implies
w =y, so k > 2. It remains to note that, since D has no loops, z # b and
z #d, and that (b=d) <= (z =2z), thusif k > 2, then k = 4. O

The last three results of this section refer to Table 2 which provides in
the rightmost column the niche graph category of the graph described by
(2,4, k,m). (This will be addressed in Lemma 9.) Note that as a result of
our notational conventions, 0 < k< j <.

il j k G

11656 ]|<4

2]6|<5(|<2

315145 1 not loop

415 0

5[4 0

6 [3] 3 0.

713l<3| 0 loop, not cyclic

8 (4] 4 4

9 |4 2 | cyclic, not asymmetric

10(3[13] j
TABLE 2. Niche graph categories for exceptions, r adja-
cent to s

Lemma 8. If G is one of the graphs on line 10 in Table 2 , then any
vertex which is isolated in G is also isolated in any minimal asymmetric
niche digraph for G.

Proof. Let D be a minimal asymmetric niche digraph for such a graph G,
let a,b,c be neighbors of r, and let z be an isolated vertex of G. Since
D is minimal, z cannot have exactly one out-neighbor. It suffices, then to
show that z cannot have two out-neighbors. There are three cases to be
eliminated.
(1) £ —» r and z — s. The argument in this case is the same as that
given in the corresponding case in the proof of Lemma 6
(2) = — r and £ — a. The edges [r,b] and [r, ¢] require distinct out-
neighbors in D which are adjacent in G, so one must be s. WLOG,
D has the arcs r — s and b — s. The edge [r, s] requires a common
out-neighbor which is adjacent to s and therefore also adjacent
to r in G. This out-neighbor can be neither a nor b, since D is
asymmetric, so D must contain the arcs r — ¢ and s — ¢. This
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leaves no vertex to serve as a common out-neighbor for the edge
[r, ).

(3) z — s and z — a. Since s can have no additional in-neighbors, the
edge [r, s] arises from a common out-neighbor, say u, which cannot
be a. Similarly, [r,a] must arise from a common out-neighbor, say
v. If v # u, then v and u are adjacent in G and so one of them must
be either r or s, but this is impossible in the asymmetric digraph
D. So D has the arcs, r — u,a — u, and s — u, which means that
the arcs z — s and z — a could be removed without affecting the
niche graph, contradicting minimality.

O

Lemma 9. Let G be the graph represented by (i,7,k,m). Table 2 gives
the niche category of those graphs G satisfying the stated conditions on the
parameters.

Proof. The positive statements in Table 2 are demonstrated by digraphs
given in Table 3, so the rest of the proof is devoted to the negative state-
ments in Table 2. Lines 8 and 9 follow from Lemma 1. Lemma 6 reduces
lines 4-7 to the case m=0, i.e. no isolated vertices. These graphs are inves-
tigated in [10] where the listed conclusions are proved. Lemma 8 reduces
line 10 to the case m=0. These two graphs are both dense (as well as
sparse) and it is proved in [4] that these graphs are not asymmetric.
Lines 1-3 follow by counting in Figure 2. Suppose D has a niche graph
of the form (6, 7, k,m). Referring to Figure 2, nbrg(r) = {s,qa,b,¢,d,w, r}
(and these must all be distinct) and nbrg(s) C {r,a,b,¢,d,y,2}. In order
to achieve k < 4, it will be necessary to eliminate at least one of the vertices
a, b, ¢, d from nbrg(s). Since the arcs 7 — s and 7 — a are required for the
neighbors of r, a cannot be eliminated from nbrg(s). Similarly, it is not
possible to eliminate b. To eliminate ¢ (or d) from nbrg(s), it is necessary
to remove the loop s — s from Figure 2, but this would eliminate both
¢ and d from nbrg(s). Thus, if j > 4 in G, then k& > 4, this proves
line 1. On the other hand, if k¥ < 2, then at least one of a,b must be
eliminated from nbrg(s), and, as already pointed out, this is impossible
without affecting nbrg(r). Thus line 2 is proved. Suppose now that G is
of the form (5,7,1,m). Then, the cardinality of {a,b,c,d} is either 3 or
4. In the first case, two of these three must be eliminated from the five
vertices in {a,b,¢,d,y, z} (to achieve k = 1). Similarly, in the second case,
three vertices must be eliminated from {a, b, ¢, d, y, 2}. Thus, in either case,
7 £ 3 and line 3 is proved. 0O

Remark 3. Table 3 is analogous to Table 1. Fori > 4, it describes digraphs
by alterations to the one depicted in Figure 2. For i < 4, it provides the
correspondence for the suitable digraph.
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Theorem 2. Let G be a sparse graph satisfying % in which r and s are
adjacent. Unless G is one of the graphs covered in Lemma 9, its niche
category is determined by i = degg(r) as follows: G is an acyclic niche
graph if i < 3, G is a loop niche graph but not a cyclic niche graph if
4<1i <6, and G is not a loop niche graph for i > 6.

Proof. For i < 3, the graphs (i, j, k,0) are, with two exceptions, dense and
it is shown in [4] that these are acyclic niche graphs. The exceptions are
(2,1,0,0) and (2,2,0,0), both of which are shown in [9] to be acyclic niche
graphs. By Remark 1, the result for ¢ < 3 and arbitrary m follows. In
light of Lemmas 5, 7, and 9, it remains to provide acyclic niche digraphs
for the graphs with i = 3 which are not covered in lines 6 or 7 in Table
2, cyclic niche digraphs for those described in lines 8, 9, and 10, and loop
niche digraphs for those described in line 7 and for those with 4 < 7 <
6 not covered in Table 2. Table 3 does this for the case m = 0. As
already mentioned, this is sufficient. Finally, the statement for ¢ > 6 is a
restatement of Lemma 5. O
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6[6|6|w=zx=y 5(2[1]-(ss),a=b,-y
6[6([5|w=z 5(1]1]-(sss),a=b,-y,-z
6(6|4 41414|rs,a; sir,a; bir,s,x; w:a
6|5|5|w=z,-y 414 3| rir,s,3; sir,c; bir; did,s; yic
6[5]|4]|-2 414 2|r1s,a; sir,a; bir,x; w:a; dis,z
6144 |-y, -2 4141 | rr,a;sr,s,b; bir,x;
6|4]3]-(ss), x=y d:s,z; w:a; y:b
6[4]2]-(s8) 4 (3] 3| rir,s,a; siryc; bery did,s
6(3]3]-(s8), x=y, -2 4|3 2| rs,a; s:r,a; bir,x; wia; dis
6[(3]2]-(s8), -y 413 ]|1|rmr,a;sir,c; ais,z; bir,x; yic
6(2(2]-(s8),-y,-2 41212 s,a; srya; ar,x; dis; wia
5(5({5|w=z,-x,-y 4121 |rmr,a;sir,c; as,z; bir,x
51514 -x,-2 4|1} 1|rr,a;sir,c; bir,x

51513 | b=c 313]3|rs,a; sir,a; bir,s; wa
5[5[2]-(rs) 3|3]|2]|ra;sr,a; bir,s,x; wia
5|1414{-x,-y, -2 3 (3] 1]r:s,a; s:a; bir,x; dis,b; wia
5(4]3] -(ss), b=c, x=y 32| 2|r:s,a; s:a; bir,a; dis
5|4(2]-(s,s), b=c 312|1(|r:a,;sr,a; bir,x; wa
5|/3|3|a=b,-y,-2z 3|20 r,a; sir,c; ais,z; w:a; y:c
5(3]2]-(ss), -x, -z 3]1{1|nrs,a;sr,a;arx;ds
513|1]-(ss), a=b 3]|1]|0|rmr,a;sr,c; as,z; w:a
5[2]2]-(ss), a=bw=z,-y |[3]| 0| 0| rir,a; sir,c; w:a

TABLE 3. Niche digraphs for r adjacent to s
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