Restricted edge-connectivity and minimum edge-degree

Nicola Ueffing and Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

Let G be a connected graph and $S \subset E(G)$. If G-S is disconnected without isolated vertices, then S is called a restricted edge-cut of G. The restricted edge-connectivity $\lambda' = \lambda'(G)$ of G is the minimum cardinality over all restricted edge-cuts of G. A connected graph G is called λ' -connected, if $\lambda'(G)$ exists. For a λ' -connected graph G, Esfahanian and Hakimi have shown, in 1988, that $\lambda'(G) \leq \xi(G)$, where $\xi(G)$ is the minimum edge-degree. A λ' -connected graph G is called λ' -optimal, if $\lambda'(G) = \xi(G)$.

Let G_1 and G_2 be two disjoint λ' -optimal graphs. In this paper we investigate the cartesian product $G_1 \times G_2$ to be λ' -optimal. In addition, we discuss the same question for another operation on G_1 and G_2 , and we generalize a recent theorem of J.-M. Xu on non λ' -optimal graphs.

Keywords: Edge-connectivity; Restricted edge-connectivity; λ' -optimal graphs; Products of graphs; Atoms

1. Terminology and introduction

We consider finite, undirected, and simple graphs G with the vertex set V(G) and the edge set E(G). For $X \subseteq V(G)$ let G[X] be the subgraph induced by X, $\bar{X} = V(G) - X$, and $(X, \bar{X}) = (X, \bar{X})_G$ the set of edges in G with one end in X and the other in \bar{X} . If x is a vertex of a graph G, then $N(x) = N_G(x)$ denotes the set of vertices adjacent to x and $N[x] = N_G[x] = N(x) \cup \{x\}$. More generally, we define $N(X) = N_G(X) = \bigcup_{x \in X} N(x)$ and $N[X] = N_G[X] = N(X) \cup X$ for a subset X of V(G). The vertex v is an end vertex if $d_G(v) = 1$, and an isolated vertex if $d_G(v) = 0$, where $d(x) = d_G(x) = |N(x)|$ is the degree of $x \in V(G)$. We denote by $\delta = \delta(G)$ the minimum degree, by $\Delta = \Delta(G)$ the maximum degree, and by n = n(G) = |V(G)| the order of G. We write C_n for a cycle of length n, K_n for the complete graph of order n, and $K_{n,m}$ for the complete bipartite graph. A star is a complete bipartite graph $K_{1,m}$ with $m \geq 2$, and the unique vertex of degree m is its center.

Let G be a connected graph and $S \subset E(G)$. If G - S is disconnected without isolated vertices, then S is called a restricted edge-cut of G. The restricted edge-connectivity $\lambda' = \lambda'(G)$ of G is defined as the minimum of |S| over all restricted edge-cuts S of G. A connected graph G is called λ' -connected, if $\lambda' = \lambda'(G)$ exists. A restricted edge-cut S of G is a λ' -cut, if $|S| = \lambda'$. Obviously, for any λ' -cut S, the graph G - S consists of exactly two components. The concept of restricted edge-connectivity was introduced by Esfahanian and Hakimi [2] in 1988.

For $e = xy \in E(G)$, let $\xi_G(e) = d_G(x) + d_G(y) - 2$ be the edge-degree of e, and let $\xi(G) = \min\{\xi_G(e) : e \in E(G)\}$ be the minimum edge-degree of G. In 1988, Esfahanian and Hakimi [2] have shown that for every connected graph G of order $n \geq 4$, except a star, $\lambda'(G)$ exists and satisfies the inequality

$$\lambda'(G) \le \xi(G). \tag{1}$$

A λ' -connected graph G is called λ' -optimal, if $\lambda'(G) = \xi(G)$. If (X, \bar{X}) is a λ' -cut, then $X \subset V(G)$ is called a λ' -fragment. Clearly, if X is a λ' -fragment, then \bar{X} is also a λ' -fragment. Let

$$r(G) = \min\{|X| : X \text{ is a } \lambda' - \text{fragment of } G\}.$$

A λ' -fragment X of G is called a λ' -atom of G, if |X| = r(G). Obviously, $2 \le r(G) \le \frac{1}{2}|V(G)|$ and G[X] as well as $G[\bar{X}]$ are connected, when X is a λ' -atom. Recently, J.-M. Xu [5] has proved

Theorem 1.1 (Xu [5] 2000) A λ' -connected graph G is λ' -optimal if and only if r(G) = 2.

Observation 1.2 If G is a λ' -optimal graph, then

$$\lambda'(G) \leq \Delta(G) + \delta(G) - 2 \tag{2}$$

$$\lambda'(G) \geq 2\delta(G) - 2 \tag{3}$$

$$\lambda'(G) \geq \delta(G) \tag{4}$$

Proof. Let $e = xy \in E(G)$ such that $d_G(x) = \delta(G)$.

$$\lambda'(G) = \xi(G) \le \xi_G(e) = d_G(x) + d_G(y) - 2 \le \delta(G) + \Delta(G) - 2,$$

and (2) proved. Because of $\lambda'(G) = \xi(G) \geq \delta(G) + \delta(G) - 2$, also (3) is true. Since G is connected, the last inequality is valid for $\delta(G) = 1$. For $\delta(G) \geq 2$, (4) follows from (3). \square

Lemma 1.3 Let G be a λ' -connected graph. If A is a subset of V(G) such that G[A] as well as $G[\bar{A}]$ contain a component with at least two vertices, then $|(A, \bar{A})| > \lambda'(G)$.

Proof. Firstly, assume that G[A] is connected. If H is a component of $G[\bar{A}]$ with at least two vertices, then let B = V(H). Since G is connected, we see that $G - V(H) = G[\bar{B}]$ is also connected with $A \subseteq \bar{B}$. Hence (B, \bar{B}) is a restricted edge-cut of G, and we conclude that $\lambda'(G) \leq |(B, \bar{B})| \leq |(A, \bar{A})|$.

If G[A] is not connected, then let $A' \subset A$ be a maximal subset such that G[A'] is connected. Since there is no edge from A' to A - A', it follows from the first case that $|(A, \bar{A})| \geq |(A', \bar{A}')| \geq \lambda'(G)$. \square

Corollary 1.4 Let G be a λ' -connected graph and $A \neq \emptyset$ a proper subset of V(G). Then $|(A, \bar{A})| \geq \min\{\lambda'(G), \delta(G)\}$. In addition, if G[A] consists of only isolated vertices, then $|(A, \bar{A})| \geq |A|\delta(G)$.

Let G_1 and G_2 be two disjoint graphs of order n with the vertex sets $V(G_1) = \{x_1, x_2, \ldots, x_n\}$ and $V(G_2) = \{y_1, y_2, \ldots, y_n\}$. The graph G consisting of the disjoint union of G_1 and G_2 together with the edges $x_i y_i$ for $i = 1, 2, \ldots, n$, is denoted by $G_1 \odot G_2$. The edges $x_i y_i$ are referred to as cross edges.

In this paper we prove that $r(G) \ge \max\{3, \delta(G)\}$ for a non λ' -optimal graph G. This generalizes a corresponding result of J.-M. Xu [5] on regular graphs. If G_1 and G_2 are two disjoint λ' -optimal graphs of order n such that $2 \le \xi(G_i) \le n-2$ for i=1,2, then we show that $G_1 \odot G_2$ is also λ' -optimal. Furthermore, we investigate the cartesian product $H_1 \times H_2$ to

be λ' -optimal, when H_1 and H_2 are disjoint λ' -optimal graphs. Different examples will show that the presented results are best possible.

2. Non λ' -optimal graphs

Theorem 2.1 Let G be a λ' -connected graph. If G is not λ' -optimal, then

$$r(G) \geq \max\{3, \delta(G)\}.$$

Proof. Let X be a λ' -atom of G. In view of the hypothesis that G is not λ' -optimal, it follows from Theorem 1.1, that $r = r(G) = |X| \ge 3$. Therefore, it remains to show that $r \ge \delta(G)$.

Let $u \in X$ such that $s = d_G(u) = \min_{x \in X} d_G(x)$. Clearly, G[X] is connected, and hence there exists a vertex $v \in X$ which is adjacent to u. Because of $d_G(v) > \xi(G) - s + 2$ and since G is not λ' -optimal, we obtain

$$\xi(G) > \lambda'(G) = |(X, \bar{X})| \ge \sum_{x \in X} d_G(x) - r(r-1)$$

$$\ge d_G(v) + (r-1)d_G(u) - r(r-1)$$

$$\ge \xi(G) - s + 2 + (r-1)s - r(r-1)$$

This inequality implies

$$(r-(s-1))(r-2)>0$$

and consequently, because of r-2>0, we deduce that $r\geq s=d_G(u)\geq \delta(G)$. \square

Corollary 1.4 (J.-M. Xu [5] 2000) Let G be a λ' -connected and k-regular graph. If G is not λ' -optimal, then $r(G) \geq k \geq 3$.

Example 2.3 Let $n \geq 3$ be an integer and let $G = K_n \odot K_n$. Then $\xi(G) = 2n - 2$, $\lambda'(G) = r(G) = \delta(G) = n$. Therefore, G is not λ' -optimal and $r(G) = \delta(G)$. This example shows that Theorem 2.1 is best possible.

Using Turán's [4] bound $|E(G)| \leq \frac{1}{4}|V(G)|^2$ for triangle-free graphs G, one can prove the next result, analogously to Theorem 2.1.

Theorem 2.4 Let G be a λ' -connected and triangle-free graph. If G is not λ' -optimal, then

$$r(G) \ge \max\{3, 2\delta(G) - 1\}.$$

Example 2.5 Let $n \geq 3$ be an integer and let $K_{n,n-1}^i$ be a complete bipartite graph with the partite sets A_i and B_i such that $|A_i| = n-1$ and $B_i = \{b_1^i, b_2^i, \ldots, b_n^i\}$ for i = 1, 2. Define G as the disjoint union of $K_{n,n-1}^1$ and $K_{n,n-1}^2$ together with the edges $b_j^1 b_j^2$ for $j = 1, 2, \ldots, n$. Then $\xi(G) = 2n - 2$, $\lambda'(G) = \delta(G) = n$, and r(G) = 2n - 1. Therefore, G is not λ' -optimal and $r(G) = 2\delta(G) - 1$. This example shows that Theorem 2.4 is best possible.

3. Sufficient conditions for $G_1 \odot G_2$ to be λ' -optimal

If G_1 and G_2 are two disjoint graphs of order n, $G = G_1 \odot G_2$, and $c(G) = \min\{d_{G_1}(u) + d_{G_2}(v) : uv \in E(G) \text{ a cross edge}\}$, then

$$\xi(G) = \min\{\xi(G_1) + 2, \xi(G_2) + 2, c(G)\}. \tag{5}$$

Theorem 3.1 Let G_1 and G_2 be two disjoint λ' -optimal graphs of order $n \geq 4$. If $2 \leq \xi(G_i) \leq n-2$ for i=1,2, then $G_1 \odot G_2$ is also λ' -optimal.

Proof. Assume that $G = G_1 \odot G_2$ is not λ' -optimal and let X be a λ' -atom of G. Then, $|(X, \bar{X})_G| = \lambda'(G) < \xi(G)$ and, according to Theorem 1.1, we have $r(G) = |X| \geq 3$. Now we investigate different cases.

Case 1. Let $X \subseteq V(\overline{G_1})$ or $X \subseteq V(G_2)$, say $X \subseteq V(G_1)$. Since X is a λ' -atom of G, we observe that $G_1[X]$ is connected.

Subcase 1.1. The subgraph $G_1 - X$ contains a component with at least two vertices. Since G_1 is λ' -optimal, Lemma 1.3 and (5) lead to the contradiction

$$\xi(G) > |(X, \bar{X})_G| \ge |(X, \bar{X})_G| + |X| \ge \lambda'(G_1) + 3 = \xi(G_1) + 3 > \xi(G).$$

Subcase 1.2. The subgraph $G_1 - X$ consists of only isolated vertices or $X = V(G_1)$. Then, in view of the hypothesis $n \ge \xi(G_1) + 2$, we obtain the contradiction

$$\xi(G) > |(X, \bar{X})_G| \ge |(X, \bar{X})_{G_1}| + |X| \ge (n - |X|)\delta(G_1) + |X| > n > \xi(G).$$

Case 2. Let $X_i = X \cap V(G_i) \neq \emptyset$ for i = 1, 2, and, assume without loss of generality, that $|X_1| \geq |X_2| \geq 1$. Consequently, $|X_1| \geq 2$. Since $X = X_1 \cup X_2$ is a λ' -atom of G, we observe that $|X_1| + |X_2| \leq n$ and thus, $|X_2| \leq \frac{n}{2}$.

Subcase 2.1. The subgraphs $G[X_i]$ and $G_i - X_i$ contain a component with at least two vertices for i = 1, 2. Then, because of $\xi(G_2) \geq 2$, Lemma 1.3 yields the contradiction

$$\begin{aligned} \xi(G) &> |(X,\bar{X})_G| \geq |(X_1,\bar{X}_1)_{G_1}| + |(X_2,\bar{X}_2)_{G_2}| \\ &\geq \lambda'(G_1) + \lambda'(G_2) = \xi(G_1) + \xi(G_2) \geq \xi(G_1) + 2 \geq \xi(G). \end{aligned}$$

Subcase 2.2. The subgraphs $G[X_1]$ and $G_1 - X_1$ contain a component with at least two vertices. If $G_2 - X_2$ consists of isolated vertices, then, Lemma 1.3 yields the contradiction

$$\xi(G) > |(X, \bar{X})_G| \ge |(X_1, \bar{X}_1)_{G_1}| + |(X_2, \bar{X}_2)_{G_2}|$$

$$\ge \lambda'(G_1) + (n - |X_2|)\delta(G_2) \ge \xi(G_1) + 2 > \xi(G).$$

If $G[X_2]$ consists of isolated vertices, then, Lemma 1.3 yields the contradiction

$$\xi(G) > |(X,\bar{X})_G| \ge |(X_1,\bar{X}_1)_{G_1}| + |(X_2,\bar{X}_2)_{G_2}| + |X_1| - |X_2|$$

$$\ge \lambda'(G_1) + |X_2|\delta(G_2) + |X_1| - |X_2| \ge \xi(G_1) + 2 > \xi(G).$$

Subcase 2.3. The subgraphs $G[X_2]$ and $G_2 - X_2$ contain a component with at least two vertices. If $G_1 - X_1$ consists of isolated vertices, then, Lemma 1.3 implies the contradiction

$$\begin{aligned} \xi(G) &> |(X,\bar{X})_G| \geq |(X_2,\bar{X}_2)_{G_2}| + |(X_1,\bar{X}_1)_{G_1}| + |X_1| - |X_2| \\ &\geq \lambda'(G_2) + (n - |X_1|)\delta(G_1) + |X_1| - |X_2| \geq \xi(G_2) + 2 > \xi(G). \end{aligned}$$

If $G[X_1]$ consists of isolated vertices, then, Lemma 1.3 implies the contradiction

$$\xi(G) > |(X, \bar{X})_G| \ge |(X_2, \bar{X}_2)_{G_2}| + |(X_1, \bar{X}_1)_{G_1}|$$

$$\ge \lambda'(G_2) + |X_1|\delta(G_1) \ge \xi(G_2) + 2 \ge \xi(G).$$

Subcase 2.4. The subgraphs $G[X_1]$ or $G_1 - X_1$ consist of isolated vertices, and the subgraphs $G[X_2]$ or $G_2 - X_2$ consist of isolated vertices.

If $G[X_1]$ contains only isolated vertices, then, with respect to the hypothesis that X is a λ' -atom of G, we conclude that $|X_2| = |X_1|$ and that $G[X_2]$ is connected. Hence, all the vertices of $G_2 - X_2$ are isolated. Consequently, we obtain the contradiction

$$\begin{aligned} \xi(G) &> |(X, \bar{X})_G| \geq |(X_1, \bar{X}_1)_{G_1}| + |(X_2, \bar{X}_2)_{G_2}| \\ &\geq |X_1|\delta(G_1) + (n - |X_2|)\delta(G_2) \geq |X_1| + n - |X_2| = n > \xi(G). \end{aligned}$$

If all the vertices of $G_1 - X_1$ and $G_2 - X_2$ are isolated, then

$$\xi(G) > |(X, \bar{X})_G| \ge |(X_1, \bar{X}_1)_{G_1}| + |(X_2, \bar{X}_2)_{G_2}|$$

$$\ge (n - |X_1|)\delta(G_1) + (n - |X_2|)\delta(G_2)$$

$$\ge 2n - |X_1| - |X_2| \ge n > \xi(G),$$

a contradiction.

Finally, we assume that $G_1 - X_1$ as well as $G[X_2]$ consist of isolated vertices. Then

$$\begin{split} \xi(G) &> |(X,\bar{X})_G| \geq |(X_1,\bar{X}_1)_{G_1}| + |(X_2,\bar{X}_2)_{G_2}| + |X_1| - |X_2| \\ &\geq (n - |X_1|)\delta(G_1) + |X_2|\delta(G_2) + |X_1| - |X_2| \\ &\geq n - |X_1| + |X_2| + |X_1| - |X_2| = n \geq \xi(G), \end{split}$$

a contradiction. Since we have discussed all possible cases, the proof is complete. \Box

Example 3.2 Let H be a connected vertex-transitive graph of order 4k-1 and degree 2k for $k \geq 2$. In view of Xu [5] (Theorem 6), H is λ' -optimal with $\lambda'(H) = \xi(H) = 4k - 2 = n(H) - 1$. If we define G by $H \odot H$, then $\xi(G) = 4k = n(H) + 1$, however $\lambda'(G) \leq n(H) < \xi(G)$. Thus, G is not λ' -optimal. These examples show that Theorem 3.1 is best possible.

The k-cube Q_k is defined as $Q_0 = K_1$ and $Q_k = Q_{k-1} \odot Q_{k-1}$ for $k \ge 1$.

Corollary 3.3 (Esfahanian [1] 1989) The k-cube Q_k is λ' -optimal for k > 2.

Proof. Obviously, Q_2 is λ' -optimal. Because of $\xi(Q_p) = 2(p-1) \leq 2^p - 2 = n(Q_p) - 2$, it follows recursively from Theorem 3.1 that the (p+1)-cube is λ' -optimal. \square

Theorem 3.4 Let G_1 and G_2 be two disjoint λ' -optimal graphs of order $n \geq 4$. If $\xi(G_i) \geq n-1$ for i=1,2, then every λ' -atom of $G=G_1 \odot G_2$ consists of the endpoints of a cross edge (that means that G is λ' -optimal) or of $V(G_1)$ or $V(G_2)$.

Proof. Firstly, we observe that $\delta(G_i) + \Delta(G_i) - 2 \ge \xi(G_i) \ge n - 1$ and thus, $\delta(G_i) \ge n - \Delta(G_i) + 1 \ge 2$ for i = 1, 2.

If we assume that there exists a λ' -atom X of G with 2 < |X| < n, then by the definition of G, we see that $n \ge |(X, \bar{X})_G|$. Now we distinguish the same cases as in the proof of Theorem 3.1.

Case 1. Let $X \subset V(G_1)$ or $X \subset V(G_2)$, say $X \subset V(G_1)$. Since X is a λ' -atom of G, it follows that $G_1[X]$ is connected.

Subcase 1.1. The subgraph $G_1 - X$ contains a component with at least two vertices. Since G_1 is λ' -optimal, Lemma 1.3 and (5) lead to the contradiction

$$n \geq |(X, \bar{X})_G| \geq |(X, \bar{X})_{G_1}| + |X|$$

> $\lambda'(G_1) + 3 = \xi(G_1) + 3 > n$.

Subcase 1.2. The subgraph $G_1 - X$ consists of only isolated vertices. Then, because of $\delta(G_1) \geq 2$, we obtain the contradiction

$$n \ge |(X, \bar{X})_G| \ge |(X, \bar{X})_{G_1}| + |X| \ge (n - |X|)\delta(G_1) + |X| > n.$$

Case 2. Let $X_i = X \cap V(G_i) \neq \emptyset$ for i = 1, 2, and, assume without loss of generality, that $|X_1| \geq |X_2| \geq 1$. Similarly to Case 1 in this proof and Case 2 in the proof of Theorem 3.1, one can show that this is impossible.

Therefore, every λ' -atom X of G consists of two vertices or of $V(G_1)$ or $V(G_2)$. Analogously to Case 1, one can prove that |X| = 2 and $X \subset V(G_1)$ or $X \subset V(G_2)$ as well as |X| = n with $X_i \neq \emptyset$ for i = 1, 2 is not possible. Consequently, $X = V(G_1)$, or $X = V(G_2)$, or X consists of two endpoints of a cross edge. \square

4. The cartesian product

The cartesian product $G = G_1 \times G_2$ of two disjoint graphs G_1 and G_2 consists of the vertices of the cartesian product $V(G_1) \times V(G_2)$, and two vertices (a, u) and (b, v) are adjacent in $G = G_1 \times G_2$, whenever a = b and u adjacent to v in G_2 or u = v and a adjacent to b in G_1 . Therefore,

$$d_G((a,u)) = d_{G_1}(a) + d_{G_2}(u),$$

and if $ab \in E(G_1)$ or $uv \in E(G_2)$, then

$$\xi_G((a,u),(b,u)) = \xi_{G_1}(ab) + 2d_{G_2}(u),$$

$$\xi_G((a,u),(a,v)) = \xi_{G_2}(uv) + 2d_{G_1}(a),$$

respectively, and consequently

$$\xi(G) = \min\{\xi(G_1) + 2\delta(G_2), \xi(G_2) + 2\delta(G_1)\}. \tag{6}$$

Theorem 4.1 Let G_1 and G_2 be two disjoint λ' -optimal graphs and $G = G_1 \times G_2$. Then G is λ' -optimal or the λ' -atoms of G have the form $\{y\} \times V(G_2)$ for a vertex $y \in V(G_1)$ with $d_{G_1}(y) = \delta(G_1)$ or $V(G_1) \times \{v\}$ for a vertex $v \in V(G_2)$ with $d_{G_2}(v) = \delta(G_2)$.

Proof. Let $n_1 = |V(G_1)|$, $n_2 = |V(G_2)|$, $\delta(G_1) = \delta_1$, and $\delta(G_2) = \delta_2$. Since G_1 and G_2 are λ' -connected, we note that $n_i \geq 4$ and $\delta_i \geq 1$ for i = 1, 2. Assume that G is not λ' -optimal, and let X be a λ' -atom of G. Then, $|(X, \bar{X})_G| = \lambda'(G) < \xi(G)$ and, according to Theorem 1.1, we have $r(G) = |X| \geq 3$. Furthermore, let A be the projection of X on $V(G_1)$, and let B be the projection of X on $V(G_2)$.

In the first two cases we assume that $A \neq V(G_1)$ and $B \neq V(G_2)$.

Case 1. Let $X = \{x\} \times B$ or $X = A \times \{u\}$, say $X = \{x\} \times B$. Since X is a λ' -atom of G, we observe that $G_2[B]$ is connected.

Subcase 1.1. The subgraph $G_2 - B$ contains a component with at least two vertices. Since G_2 is λ' -optimal, Lemma 1.3 and (6) lead to the contradiction

$$\xi(G) > |(X, \bar{X})_G| \ge |(B, \bar{B})_{G_2}| + |X|d_{G_1}(x)$$

$$\ge \lambda'(G_2) + |X|\delta_1 \ge \xi(G_2) + 3\delta_1 > \xi(G).$$

Subcase 1.2. The subgraph $G_2 - B$ contains only isolated vertices. Since $3 \le |B| = |X| \le n_2 - 1$, the inequality (2) yields the contradiction

$$\begin{aligned} \xi(G) &> |(X, \bar{X})_G| \geq (n_2 - |B|)\delta_2 + |B|\delta_1 \\ &\geq (n_2 - |B|)\delta_2 + |B| - 2 + 2\delta_1 \\ &= \delta_2 + (n_2 - |B| - 1)\delta_2 + |B| - 2 + 2\delta_1 \\ &\geq \delta_2 + n_2 - 3 + 2\delta_1 \geq \delta_2 + \Delta(G_2) - 2 + 2\delta_1 \\ &\geq \xi(G_2) + 2\delta_1 \geq \xi(G). \end{aligned}$$

Now define a = |A| and b = |B| and let, without loss of generality, $X = A_1 \cup A_2 \cup \ldots \cup A_b$ with $A_k = \{(x_i, u_k) \in X\}$ for $1 \le k \le b$ and $X = B_1 \cup B_2 \cup \ldots \cup B_a$ with $B_j = \{(x_j, u_i) \in X\}$ for $1 \le j \le a$. Clearly, $A_k \ne \emptyset$ for $1 \le k \le b$ and $B_j \ne \emptyset$ for $1 \le j \le a$. Since X is connected, there ist at least one edge (x, u)(x, v) and at least one edge (x, u)(y, u) in G[X].

Case 2. Let $2 \le a \le n_1 - 1$ and $2 \le b \le n_2 - 1$.

Subcase 2.1. There exists an index r such that, without loss of generality, $G_1[A_r]$ and $G_1[\bar{A}_r]$ contain an edge. Applying Corollary 1.4 and (4), we see that $|(B_j, \bar{B}_j)| \geq \delta_2$ for $1 \leq j \leq a$ and thus, Lemma 1.3 implies the contradiction

$$|\xi(G)| > |(X, \bar{X})_G| \ge \lambda'(G_1) + a\delta_2 \ge \xi(G_1) + 2\delta_2 \ge \xi(G).$$

Subcase 2.2. The subgraphs $G_1[A_k]$ or $G_1[\bar{A}_k]$ consist of isolated vertices for $1 \leq k \leq b$ and the subgraphs $G_2[B_j]$ or $G_2[\bar{B}_j]$ consist of isolated vertices for $1 \leq j \leq a$. In this case, in particular, all vertices of the subgraphs $G_1 - A$ and $G_2 - B$ are isolated. Then, with respect to Corollary 1.4 and (2), we obtain the contradiction

$$\begin{split} \xi(G) &> |(X,\bar{X})_G| \geq (n_1 - a)\delta_1 + a\delta_2 \\ &\geq (n_1 - a)\delta_1 + a - 2 + 2\delta_2 = \delta_1 + (n_1 - a - 1)\delta_1 + a - 2 + 2\delta_2 \\ &\geq \delta_1 + n_1 - 3 + 2\delta_2 \geq \delta_1 + \Delta(G_1) - 2 + 2\delta_2 \\ &\geq \xi(G_1) + 2\delta_2 > \xi(G). \end{split}$$

Consequently, we deduce that $|A| = n_1$ or $|B| = n_2$, say $|A| = n_1$. Firstly, we investigate the case $|B| \le n_2 - 1$. According to (4), $\lambda'(G_2) \ge \delta_2$, and hence, on the one hand, Corollary 1.4 implies

$$|(X,\bar{X})_G| \geq n_1 \delta_2.$$

On the other hand, if we choose $Y = V(G_1) \times \{v\}$ with $d_{G_2}(v) = \delta_2$, then $|Y| \leq |X|$ and $|(Y, \bar{Y})_G| = n_1 \delta_2$. Hence, X is only a λ' -atom, if X has the form $X = V(G_1) \times \{u\}$ with $d_{G_2}(u) = \delta_2$.

Finally, we discuss the case $|A| = n_1$ and $|B| = n_2$. We assume, without loss of generality, that $n_2 \ge n_1$. Because of $2|X| \le n_1 n_2$, we observe that $A_k = V(G_1) \times u_k$ for only $\lfloor \frac{n_2}{2} \rfloor$ such sets and $B_j = x_j \times V(G_2)$ for only $\lfloor \frac{n_1}{2} \rfloor$ such sets. According to (4), $\lambda'(G_i) \ge \delta_i$ for i = 1, 2. Therefore, Corollary 1.4 and (2) yield in the case $\delta_1 \ge 2$ the contradiction

$$\begin{split} \xi(G) &> |(X,\bar{X})_G| \ge \frac{n_1}{2}\delta_2 + \frac{n_2}{2}\delta_1 \\ &= \frac{n_1}{2}\delta_2 + (\frac{n_2}{2} - 1)\delta_1 + \delta_1 \ge \frac{n_1}{2}\delta_2 + n_2 - 2 + \delta_1 \\ &\ge \delta_1 + n_1 - 2 + 2\delta_2 \ge \xi(G_1) + 2\delta_2 \ge \xi(G). \end{split}$$

In the case $\delta_1 = 1$ and $\delta_2 \geq 3$, we obtain

$$\begin{split} \xi(G) &> |(X,\bar{X})_G| \geq \frac{n_1}{2} \delta_2 + \frac{n_2}{2} \delta_1 \\ &= (\frac{n_1}{2} - 2) \delta_2 + 2\delta_2 + \frac{n_2}{2} \geq \frac{3n_1}{2} - 6 + 2\delta_2 + \frac{n_2}{2} \\ &= \delta_1 + n_1 - 7 + 2\delta_2 + \frac{n_1}{2} + \frac{n_2}{2} \geq \delta_1 + \Delta(G_1) - 2 + 2\delta_2 \\ &\geq \xi(G_1) + 2\delta_2 \geq \xi(G), \end{split}$$

a contradiction. If $\delta_1 = 1$ and $\delta_2 = 2$, we conclude

$$\begin{split} \xi(G) &> |(X,\bar{X})_G| \geq \frac{n_1}{2} \delta_2 + \frac{n_2}{2} \delta_1 \\ &= (\frac{n_1}{2} - 1) \delta_2 + \delta_2 + \frac{n_2}{2} \geq n_1 - 2 + \delta_2 + 2 \\ &= \delta_1 + n_1 - 3 + 2\delta_2 \geq \delta_1 + \Delta(G_1) - 2 + 2\delta_2 \\ &\geq \xi(G_1) + 2\delta_2 \geq \xi(G), \end{split}$$

a contradiction. In the remaining case $\delta_1 = \delta_2 = 1$, we see that

$$|(X,\bar{X})_G| \geq \frac{n_1}{2}\delta_2 + \frac{n_2}{2}\delta_1 \geq n_1 = n_1\delta_2.$$

However, if we choose, as above, $Y = V(G_1) \times \{v\}$ with $d_{G_2}(v) = \delta_2$, then $|(Y, \bar{Y})_G| = n_1 \delta_2$. Consequently, because of |Y| < |X|, the set X is not a λ' -atom. \square

The k-dimensional toroidal mesh $C(d_1, d_2, \ldots, d_k)$, studied by Ishigami [3], can be represented as the cartesian product $C_{d_1} \times C_{d_2} \times \ldots \times C_{d_k}$, where C_{d_i} are cycles of length d_i for $i = 1, 2, \ldots, k$.

Corollary 4.2 (Xu [5] 2000) Let $C(d_1, d_2, \ldots, d_k)$ be the k-dimensional toroidal mesh. Then, $C(d_1, d_2, \ldots, d_k)$ is λ' -optimal if $d_i \geq 4$ for each $i = 1, 2, \ldots, k$.

Proof. Obviously, the cycle C_{d_1} is λ' -optimal. Now assume that $H_r = C(d_1, d_2, \ldots, d_r)$ is λ' -optimal for $1 \leq r < k$. Then, by Theorem 4.1, $G = C(d_1, d_2, \ldots, d_{r+1}) = H_r \times C_{d_{r+1}}$ is λ' -optimal, or the λ' -atoms X of G have the form $V(H_r) \times \{u\}$ or $\{x\} \times V(C_{d_{r+1}})$. In both of the last two cases, we find that $|(X, \bar{X})_G| \geq 8r$. However, $\lambda'(G) \leq \xi(G) \leq 4(r+1) - 2 = 4r + 2$, and consequently, the graph G is λ' -optimal. Inductively, we obtain the desired result. \square

Remark 4.3 With help of Theorem 4.1 it is possible to give a further short proof of Corollary 3.3.

References

- A.-H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans. Comput. 38 (1989), 1586-1591.
- [2] A.-H. Esfahanian and S.L. Hakimi, On computing a conditional edgeconnectivity of a graph, J. Inform. Processing Lett. 27 (1988), 195-199.
- [3] Y. Ishigami, The wide-diameter of the *n*-dimensional toroidal mesh, Networks 27 (1996), 257-266.
- [4] P. Turán, An extremal problem in graph theory, Mat.-Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
- [5] J.-M. Xu, On restricted edge-connectivity of graphs, Discrete Math., to appear.