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Abstract

Let G be a connected graph and S C E(G). If G - S is dis-
connected without isolated vertices, then S is called a restricted
edge-cut of G. The restricted edge-connectivity A’ = A'(G) of G
is the minimum cardinality over all restricted edge-cuts of G. A
connected graph G is called A’-connected, if A'(G) exists. For a X'-
connected graph G, Esfahanian and Hakimi have shown, in 1988,
that A'(G) < &(G), where £(G) is the minimum edge-degree. A
M'-connected graph G is called A'-optimal, if M'(G) = &(G).

Let G; and G2 be two disjoint A’-optimal graphs. In this paper
we investigate the cartesian product Gy x G2 to be A’-optimal. In
addition, we discuss the same question for another operation on G
and G2, and we generalize a recent theorem of J.-M. Xu on non M-
optimal graphs.
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1. Terminology and introduction

We consider finite, undirected, and simple graphs G with the vertex set
V(G) and the edge set E(G). For X C V(G) let G[X] be the subgraph
induced by X, X = V(G) — X, and (X,X) = (X, X)¢ the set of edges in
G with one end in X and the other in X. If z is a vertex of a graph G, then
N (z) = Ng(z) denotes the set of vertices adjacent to z and N[z] = Ng[z] =
N(z) U {z}. More generally, we define N(X) = Ng(X) = Uzex N(z)
and N[X] = Ng[X] = N(X)U X for a subset X of V(G). The vertex
v is an end vertex if dg(v) = 1, and an isolated vertex if dg(v) = 0,
where d(z) = dg(z) = |N(z)| is the degree of z € V(G). We denote by
0 = 0(G) the minimum degree, by A = A(G) the maximum degree, and
by n = n(G) = |V(G)| the order of G. We write C,, for a cycle of length =,
K, for the complete graph of order n, and Kj, ,, for the complete bipartite
graph. A star is a complete bipartite graph Kjm,m with m > 2, and the
unique vertex of degree m is its center.

Let G be a connected graph and S C E(G). If G — S is disconnected
without isolated vertices, then S is called a restricted edge-cut of G. The
restricted edge-connectivity \' = X' (G) of G is defined as the minimum of
|S| over all restricted edge-cuts S of G. A connected graph G is called
X-connected, if X' = X (G) exists. A restricted edge-cut S of G is a X-
cut, if |S| = N. Obviously, for any A'-cut S, the graph G — S consists of
exactly two components. The concept of restricted edge-connectivity was
introduced by Esfahanian and Hakimi [2] in 1988.

For e = zy € E(G), let £g(e) = dg(z) + da(y) — 2 be the edge-degree
of e, and let £(G) = min{ég(e) : e € E(G)} be the minimum edge-degree
of G. In 1988, Esfahanian and Hakimi [2] have shown that for every con-
nected graph G of order n > 4, except a star, A’(G) exists and satisfies the
inequality

X(G) £4(G). (1)

A XN-connected graph G is called XN-optimal, if N'(G) = £(G). If (X, X)
is a M-cut, then X C V(G) is called a X-fragment. Clearly, if X is a
X-fragment, then X is also a X'-fragment. Let

r(G) = min{|X] : X is a A'—fragment of G}.

A XN-fragment X of G is called a X'-atom of G, if | X| = r(G). Obviously,
2 < r(G) < $|V(G)| and G[X] as well as G[X] are connected, when X is a
X-atom. Recently, J.-M. Xu [5] has proved

Theorem 1.1 (Xu [5] 2000) A X-connected graph G is A'-optimal if
and only if r(G) = 2.
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Observation 1.2 If G is a X'-optimal graph, then

N(G) < A(G)+4(G)-2 (2)
N(G) > 2(G)-2 (3)
NG > 4G) 4)

Proof. Let e = zy € E(G) such that dg(z) = 6(G).
XN(G) =&(G) < &cle) = dg(z) +da(y) —2 < 6(G) + A(G) - 2,

and (2) proved. Because of X'(G) = £(G) > §(G) + §(G) — 2, also (3) is
true. Since G is connected, the last inequality is valid for §(G) = 1. For
4(G) > 2, (4) follows from (3). O

Lemma 1.3 Let G be a X-connected graph. I A is a subset of V(G)
such that G[A] as well as G[A] contain a component with at least two ver-
tices, then |[(4, A)| > N(G).

Proof. Firstly, assume that G[A] is connected. If H is a component of
G[A] with at least two vert.xces, then let B = V(H). Since G is connected,
we see that G — V(H) = G[B] is also connected with A C B. Hence (B, B)
is a restricted edge-cut of G, and we conclude that X(G) < |(B,B)| <
(A, A).

If G[4] is not connected, then let A’ C A be a maximal subset such
that G[A’] is connected. Since there is no edge from A’ to A — A’, it follows
from the first case that |(4,4)| > [(4’,4")| > ¥(G). O

Corollary 1.4 Let G be a M'-connected graph and A # @ a proper subset
of V(G). Then |(4, A)| > min{)\'(G),4(G)}. In addition, if G[A] consists
of only isolated vertices, then |(A4, A)| > |Al6(G).

Let G; and G2 be two disjoint graphs of order n with the vertex sets
V(G) = {#1,23, -, %n} and V(G3) = {81, s, -, Un}. The graph G con-
sisting of the disjoint union of G; and G, together with the edges z;y; for
i=1,2,...,n, is denoted by G; ® G3. The edges z;y; are referred to as
cross edges.

In this paper we prove that r(G) > max{3,(G)} for a non X'-optimal
graph G. This generalizes a corresponding result of J.-M. Xu [5] on regular
graphs. If G; and G- are two disjoint A’-optimal graphs of order n such
that 2 < €(G;) < n— 2 for ¢ = 1,2, then we show that G; ® Gy is also
X-optimal. Furthermore, we investigate the cartesian product Hy x Hj to
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be M-optimal, when H; and H; are disjoint \’-optimal graphs. Different
examples will show that the presented results are best possible.

2. Non X-optimal graphs

Theorem 2.1 Let G be a M-connected graph. If G is not A-optimal,
then
r(G) > max{3,8(G)}.

Proof. Let X be a M-atom of G. In view of the hypothesis that G is
not A'-optimal, it follows from Theorem 1.1, that r = #(G) = |X]| > 3.
Therefore, it remains to show that r > §(G).

Let u € X such that s = dg(u) = mingex dg(z). Clearly, G[X] is
connected, and hence there exists a vertex v € X which is adjacent to u.
Because of dg(v) > £(G) — s + 2 and since G is not A'-optimal, we obtain

§G) > X =1(X,X)|> ) da(z) —r(r-1)
2 de(v)+(r- l)dc(:)Ef r(r—1)
> G)—s+2+(r—1)s—r(r-1)

This inequality implies

(r—(s— 1))(r—2) >0

and consequently, because of r — 2 > 0, we deduce that r > s = dg(u) >
§(G). o

Corollary 1.4 (J.-M. Xu [5] 2000) Let G be a A'-connected and k-
regular graph. If G is not X'-optimal, then r(G) > k > 3.

Example 2.3 Let n > 3 be an integer and let G = K, © K,. Then
&(G) = 2n -2, N(G) = r(G) = §(G) = n. Therefore, G is not A’-optimal
and r(G) = §(G). This example shows that Theorem 2.1 is best possible.

Using Turan’s [4] bound |E(G)| < |V(G)|? for triangle-free graphs G,
one can prove the next result, analogously to Theorem 2.1.

Theorem 2.4 Let G be a M-connected and triangle-free graph. If G is
not XN-optimal, then

r(G) > max{3,26(G) — 1}.
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Example 2.5 Let n > 3 be an integer and let K} ,_; be a complete
bipartite graph with the partite sets A; and B; such that |A;] = n -1
and B; = {b},b%,...,b%} for i = 1,2. Define G as the disjoint union of
K} .1 and K2, together with the edges b}b7 for j = 1,2,...,n. Then
€(G) =2n-2, X(G) =46(G) =n, and r(G) = 2n — 1. Therefore, G is not
X-optimal and r(G) = 26(G) — 1. This example shows that Theorem 2.4
is best possible.

3. Sufficient conditions for G; ©® G, to be M-optimal

If Gy and G are two disjoint graphs of order n, G = G; ® G2, and
¢(G) = min{dg, (uv) + dg,(v) : uv € E(G) a cross edge}, then

&(G) = min{é(G,) + 2,£(G2) + 2,¢(G)}. (5)

Theorem 3.1 Let G; and G2 be two disjoint A’-optimal graphs of order
n>4. If2 <€(G;) <n-—2fori=1,2, then G ® G, is also N'-optimal.

Proof. Assume that G = G; © G is not X-optimal and let X be a
XN-atom of G. Then, |(X, X)g| = X(G) < £(G) and, according to Theorem
1.1, we have r(G) = |X| > 3. Now we investigate different cases.

Case 1. Let X C V(G,) or X C V(G2), say X C V(Gy). Since X is a
X-atom of G, we observe that G,[X] is connected.

Subcase 1.1. The subgraph G; — X contains a component with at least
two vertices. Since G; is M'-optimal, Lemma 1.3 and (5) lead to the con-
tradiction

£(G) > |(X, X)e| > (X, X)e, |+ |X] 2 N(G1) +3 = £(G1) + 3 > €(G).

Subcase 1.2. The subgraph G; — X consists of only isolated vertices or
X = V(G)). Then, in view of the hypothesis n > £(G1) + 2, we obtain the
contradiction

£(G) > (X, X)al 2 (X, X)a, | + |X] 2 (n = [X)§(G1) + |X| > n > £(G).

Case 2. Let X; = X NV(G;) # 0 for i = 1,2, and, assume without
loss of generality, that |X;| > |X2| > 1. Consequently, |X;| > 2. Since
X = X1 U X, is a N-atom of G, we observe that |X;|+ |X2| < n and thus,
|X2| < 3.

Subcase 2.1. The subgraphs G[X;] and G; — X; contain a component
with at least two vertices for ¢ = 1,2. Then, because of £(G2) > 2, Lemma
1.3 yields the contradiction

€G) > I(X,X)al > (X1, Ri)aul + (X2, X2) |
> X(G1) + N(G2) =£(Gy) +€(G2) > £(Gh) +2 > £(G).

197



Subcase 2.2. The subgraphs G[X;] and G; — X; contain a component
with at least two vertices. If G, — X, consists of isolated vertices, then,
Lemma 1.3 yields the contradiction

E€G) > (X, X)el > (X1, X1)e, ] + (X2, X2)a,|
> N(G1)+(n-|X2))8(G2) > €(G1) +2 > £(G).

If G[X3] consists of isolated vertices, then, Lemma 1.3 yields the contra-
diction

E€G) > (X, X)el 2 (X1, X1)a, |+ (X2, X2)a,| + 1X1] = | Xa]
> XN(G1) +1X2l6(G2) + |X1] = |X2| > €(G1) +2 > £(G).

Subcase 2.3. The subgraphs G[X3] and G, — X, contain a component
with at least two vertices. If Gi ~ X; consists of isolated vertices, then,
Lemma 1.3 implies the contradiction

EG) > (X, X)al > (X2, Xa)a, |+ (X1, X1)e, | + IX1| = | Xz
> N(G2) + (n = |X1])6(G1) + IX1] = 1X2| > €(G2) + 2 > €(G).

If G[X,] consists of isolated vertices, then, Lemma 1.3 implies the contra-
diction

§G) > (X, X)al > (X2, X2)e,| + (X1, K1), |
2 XN(G2) +1X116(G1) > €(G2) +2 > £(G).

Subcase 2.4. The subgraphs G[X,] or G; — X, consist of isolated ver-
tices, and the subgraphs G[X;] or G5 — X, consist of isolated vertices.

If G[X)] contains only isolated vertices, then, with respect to the hy-
pothesis that X is a A-atom of G, we conclude that |[X2| = |X;| and
that G[X5] is connected. Hence, all the vertices of G, — X3 are isolated.
Consequently, we obtain the contradiction

§G) > (X, X)al 2 (X1, X1)e, |+ (X2, Xo)a, |
2 [X16(G1) + (n = |X20)8(G2) > |Xa| + 1 — | X2 = n > €(G).

If all the vertices of G; — X; and G; — X, are isolated, then

§(G) > I(X'X)GI > I(Xla)-(l)le + I(XZ:XZ)Gzl
2 (n=[X1])6(G1) + (n — |X2])é(G2)
2 2n-|X)| - |X2| > n > €(G),

a contradiction.
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Finally, we assume that G; — X1 as well as G[X3) consist of isolated
vertices. Then

£(G) (X, X)el > 1(X1, X1), | + (X2, X2)a, | + 1 Xa| — | X2]
(n = |X1])d(G1) + | X2|6(G2) + | X1 | — | X2|

>
> n—|Xi|+1X2| +|X1] - [ Xo| =0 2 £(C),

\Y

a contradiction. Since we have discussed all possible cases, the proof is
complete. O

Example 3.2 Let H be a connected vertex-transitive graph of order 4k —1
and degree 2k for k > 2. In view of Xu [5] (Theorem 6), H is A’-optimal
with M(H) = §(H) = 4k — 2 = n(H) — 1. If we define G by H © H, then
&(G) = 4k = n(H) + 1, however X'(G) < n(H) < §(G). Thus, G is not
X-optimal. These examples show that Theorem 3.1 is best possible.

The k-cube Q. is defined as Qo = K; and Qi = Qx—1 © Qg1 for k > 1.

Corollary 3.3 (Esfahanian [1] 1989) The k-cube Q is A'-optimal for
k>2.

Proof. Obviously, @, is M-optimal. Because of §(Q,) = 2(p—1) < 2P -2 =
n(Qp) — 2, it follows recursively from Theorem 3.1 that the (p + 1)-cube is
N -optimal. O

Theorem 3.4 Let G; and G be two disjoint A-optimal graphs of or-
der n > 4. If §(G;) > n—1 for i = 1,2, then every X-atom of G = G, © G2
consists of the endpoints of a cross edge (that means that G is )’-optimal)
or of V(Gy) or V(G2).

Proof. Firstly, we observe that §(G;) + A(G;) —2 > €(G;) > n—1 and
thus, §(G;) > n - A(G;)+1>2fori=1,2.
If we assume that there exists a A-atom X of G with 2 < |X| < n, then
by the definition of G, we see that n > |(X, X)g|. Now we distinguish the
same cases as in the proof of Theorem 3.1.

Case 1. Let X C V(G1) or X C V(G2), say X C V(G1). Since X is a
N-atom of G, it follows that G;[X] is connected.

Subcase 1.1. The subgraph G; — X contains a component with at least
two vertices. Since G; is N-optimal, Lemma 1.3 and (5) lead to the con-
tradiction

2
> MN(G1)+3=¢€(G1)+3>n.
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Subcase 1.2. The subgraph G; — X consists of only isolated vertices.
Then, because of §(Gy) > 2, we obtain the contradiction

n > |(X, X)el > (X, X)a, |+ |X] 2 (n — |X])6(G1) + 1X]| > n.

Case 2. Let X; = X NV(G;) # @ for i = 1,2, and, assume without loss
of generality, that |X;| > |X2| > 1. Similarly to Case 1 in this proof and
Case 2 in the proof of Theorem 3.1, one can show that this is impossible.

Therefore, every M-atom X of G consists of two vertices or of V(G) or
V(G2). Analogously to Case 1, one can prove that |X| =2 and X C V(G1)
or X C V(Gz) as well as |X| = n with X; # 0 for ¢ = 1,2 is not possible.
Consequently, X = V(G,), or X = V(G2), or X consists of two endpoints
of a cross edge. O

4. The cartesian product

The cartesian product G = G, x G2 of two disjoint graphs G; and G
consists of the vertices of the cartesian product V(G,) x V(G3), and two
vertices (a,u) and (b, v) are adjacent in G = G x G2, whenever a = b and
u adjacent to v in G2 or ¥ = v and a adjacent to b in G. Therefore,

dg((a,u)) = dg, (a) + dg, (u),
and if ab € E(G,) or uv € E(G3), then

5G((a7 u)’ (bru)) =¢a, (ab) + 2dg, (u),

£a((a,u),(a,v)) = {6, (wv) + 2dg, (a),
respectively, and consequently

£(G) = min{£(G1) + 26(G2), €(G=) + 26(Gh)}. (6)

Theorem 4.1 Let G; and G2 be two disjoint A’-optimal graphs and G =
Gy X Ga. Then G is M-optimal or the M-atoms of G have the form
{y} x V(G?2) for a vertex y € V(G1) with dg, (y) = §(G1) or V(G1) x {v}
for a vertex v € V(G,) with dg,(v) = §(G2).

Proof. Let ny = |V(G1)|, ng = IV(Gg)I, J(Gl) = §;, and J(Gz) = 5.
Since G; and G2 are M-connected, we note that n; > 4 and 4; > 1 for
i =1,2. Assume that G is not X-optimal, and let X be a X-atom of G.
Then, |(X,X)c| = X(G) < €(G) and, according to Theorem 1.1, we have
7(G) = |X| > 3. Furthermore, let A be the projection of X on V(G,), and
let B be the projection of X on V(G2).
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In the first two cases we assume that A # V(G;) and B # V(G,).

Case 1. Let X = {z} x B or X = A x {u}, say X = {z} x B. Since X
is a M'-atom of G, we observe that G2[B] is connected.

Subcase 1.1. The subgraph G, — B contains a component with at least
two vertices. Since G3 is A’-optimal, Lemma 1.3 and (6) lead to the con-
tradiction

§€G) > (X, X)el 2 (B, B)e,| +|X|dg, (z)
> MN(G2) + X161 > &(G2) + 36, > £(G).

Subcase 1.2. The subgraph G, — B contains only isolated vertices. Since
3 <|B| = |X| < n2 — 1, the inequality (2) yields the contradiction

£(G) I(X,X)g| > (n2 — | B|)S2 + | Blés

(n2 —|B|)éz + |B| — 2+ 26,

02 + (n2 — |B| — 1)d2 + |B| — 2 + 26,

82 +ny— 3+ 20 262+A(G2) - 2426,
£(G2) + 26, > £(G).

Now define a = |A| and b = |B| and let, without loss of generality,
X = A1 UA2U...U A, with Ay = {(2i,ux) € X} for 1 < k < b and
X =B UB3U...UB, with B; = {(¢j,u) € X} for 1 < j < a. Clearly,
A #0for 1 <k <band B; # @ for 1 < j < a. Since X is connected,
there ist at least one edge (x,u)(z,v) and at least one edge (z, u)(y, u) in
G[X].

Case 2. Let 2<a<n;—1land2<b<ny—1.

Subcase 2.1. There exists an index r such that, without loss of gener-
ality, G1[A,] and Gy[A,] contain an edge. Applylng Corollary 1.4 and (4),
we see that |(B;, B;)| > 42 for 1 < j < a and thus, Lemma 1.3 implies the
contradiction

€(G) > (X, X)al| > X(G1) + adz > &(Gy) + 282 > £(G).

\Y

VIV Il v

Subcase 2.2. The subgraphs G[Ax] or G1[Ag] consist of isolated vertices
for 1 < k < b and the subgraphs G3[B;] or G,[B;] consist of isolated vertices
for 1 < j < a. In thiscase, in particular, all vertices of the subgraphs G, — A
and G; — B are isolated. Then, with respect to Corollary 1.4 and (2), we
obtain the contradiction

§G) > I(X,X)gl 2 (n1—a)by +ady
> (m—a)1+a-2+20=061+(n1—a—1)6; +a—2+25,
> 01 +n—3+428;,>61 4+ A(G) -2+26,
> €(G1)+26; > €(G).
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Consequently, we deduce that |A| = n; or |B| = ny, say |4| = n;.
Firstly, we investigate the case |B| < n;—1. According to (4), X'(G3) >
42, and hence, on the one hand, Corollary 1.4 implies

I(X,X)g| > nid,.

On the other hand, if we choose Y = V(Gy) x {v} with dg,(v) = &2, then
[Y] < |X] and |(Y, ¥)g| = n162. Hence, X is only a M-atom, if X has the
form X = V(G) x {u} with dg,(u) = J..

Finally, we discuss the case |A| = n; and |B| = n;. We assume, without
loss of generality, that n, > n;. Because of 2|X]| < nyna, we observe that
Ak = V(G1) X u for only | 52| such sets and B; = z; x V(G?3) for only 3]
such sets. According to (4), M'(G;) > §; for i = 1,2. Therefore, Corollary
1.4 and (2) yield in the case §; > 2 the contradiction

nm
2
ot (G- Do+ > Ratn =246

01 +ny — 2+ 28, > £(G1) + 28, > £(G).

€6) > IX,X)al > o2+ 26

v

In the case §; =1 and d; > 3, we obtain

EG) > (X, X)al2 G+ 224,

n ny 3711
(?—2)52+262+?Z TR

61+n1—7+262+%+%3261+A(Gl)—2+252

> &(G1) +26; > £(G),

ng
— ) =

a contradiction. If §; = 1 and d, = 2, we conclude
- n n
€0 > I(X,X)gl> 56+ 520

= (%—1)624-524-122-2711—2'{-624-2
= 61+n1—3+262251+A(G’1)—2+262
> &(G1) + 262 > €(G),

a contradiction. In the remaining case §; = ;3 = 1, we see that

n n
162 + -—251 >n = n1ds,.

X, X)al > o2+ 5
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However, if we choose, as above, Y = V(G}) x {v} with dg,(v) = 43,
then |(Y,Y)g| = n1d2. Consequently, because of |[Y| < |X|, the set X is
not a M-atom. O

The k-dimensional toroidal mesh C(dy,ds, . ..,dx), studied by Ishigami
[3], can be represented as the cartesian product Cy4, X Cy, X . .. x Cy, , where
Cy, are cycles of length d; for i = 1,2,...,k.

Corollary 4.2 (Xu [5] 2000) Let C(dy,d,,...,dx) be the k-dimensional
toroidal mesh. Then, C(dy,ds,...,ds) is N-optimal if d; > 4 for each
i=12,...,k

Proof. Obviously, the cycle Cy, is AN'-optimal. Now assume that H, =
C(d1,ds,...,d;) is N-optimal for 1 < r < k. Then, by Theorem 4.1,
G= C(d;,dg, ydr41) = H, x Cq,,, is X'-optimal, or the A’-atoms X of G
have the form V(H )% {u} or {z} x V(Cdr.“) In both of the last two cases,
we find that |(X, X)g| > 8r. However, X'(G) < £(G) < 4(r+1)—2 = 4r+2,
and consequently, the graph G is A’-optimal. Inductlvely, we obtain the de-
sired result. O

Remark 4.3 With help of Theorem 4.1 it is possible to give a further
short proof of Corollary 3.3.
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