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Abstract. Recently, in connection with the classification problem for
non-Cayley tetravalent metacirculant graphs, three families of special
tetravalent metacirculant graphs, denoted by ®,, ®; and ®3, have
been defined [11]. It has also been shown [11] that any non-Cayley
tetravalent metacirculant graph is isomorphic to a union of disjoint
copies of a graph in one of the families ®;, ®3 or $3. A natural
question raised from the result is whether all graphs in these families
are non-Cayley. In this paper we determine the automorphism groups

of all graphs in the family ®5. As a corollary, we show that every graph
in ®4 is a connected non-Cayley tetravalent metacirculant graph.

1. Introduction

Non-Cayley vertex-transitive graphs have attracted considerable at-
tention in the last few years [1, 4-12]. There are two reasons for this.
Firstly, the number of such graphs seems to be small in comparison with
the number of Cayley graphs (see statistics for vertex-transitive graphs of
small orders in [7]). Secondly, it is conjectured (by C. Thomassen [3] and
others [14]) that there are only finitely many connected vertex-transitive
non-hamiltonian graphs and all such graphs are non-Cayley. At present,
only four nontrivial connected vertex-transitive non-hamiltonian graphs are
known to exist. These graphs are the Petersen graph, the Coxeter graph
and the two graphs obtained from these by replacing each vertex by a
triangle. All these four graphs are non-Cayley.

Metacirculant graphs were introduced in [1] as a logical generaliza-
tion of the Petersen graph for the primary reason of providing a class of
vertex-transitive graphs in which there might be some new non-hamiltonian
connected vertex-transitive graphs. This class includes many non-Cayley
graphs [1]. So a natural problem is to classify non-Cayley graphs in this
class. For cubic non-Cayley metacirculants, this problem has been solved
in [10]. Recently, in connection with the classification problem for non-
Cayley tetravalent metacirculant graphs, three families of special tetrava-
lent metacirculant graphs, denoted by ®;, ®; and ®3, have been introduced
[11]. It has also been proved [11] that any non-Cayley tetravalent metacir-
culant graph is isomorphic to a union of disjoint copies of a graph in one
of the families ®,, ®> or ®3. A question raised from this result is whether
all graphs in these families ®;, ®; and ®3 are non-Cayley.

In this paper, we determine the automorphism groups of all graphs in
the family ®2. As a corollary, we show that every graph in ®3 is a con-
nected non-Cayley tetravalent metacirculant graph. So the results obtained
in this paper are significant for the classification problem for non-Cayley
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tetravalent metacirculant graphs. Besides this, they are interesting them-
selves by providing an infinite family of connected tetravalent non-Cayley
vertex-transitive graphs whose automorphism groups have a rather simple
structure.

2. Preliminaries

All graphs considered in this paper are finite undirected graphs without
loops and multiple edges. Unless otherwise indicated, our graph-theoretic
terminology will follow [2], and our group-theoretic terminology will follow
[13]. If G is a graph, then V(G), Efé) and Aut(G) will denote its vertex-
set, its edge-set, and its full automorphism group, respectively. A graph G
is said to be vertez-transitive if the action of Aut(G) on V(G) is transitive.

For a group I' and a subset S C I' such that Ir ¢ S and S~! = S,
the Cayley graph on I relative to S, Cay(T', S), is defined as follows. The
vertex-set of Cay(l',S) is I, and two vertices f,g € I' are adjacent in
Cay(T, S) if and only if fg~! € S. It is known that a graph G is isomorphic
to a Cayley graph if and only if Aut(G) contains a regular subgroup. In
particular, Cayley graphs are vertex-transitive. However, there are vertex-
transitive graphs which are not Cayley graphs, the smallest example being
the well-known Petersen graph. Such a graph is called a non-Cayley vertex-
transitive graph.

A circulant graph is a Cayley graph on a cyclic group. It is also usually
defined in the following additive form. Let n be a positive integer. We will
write Z, for the ring of integers modulo n and Z; for the multiplicative
group of units in Z,,. Further, let S be a subset of Z, satisfying0 ¢ S = —S.
Then we define the circulant graph C = C(n,S) to be the graph with
vertex-set V(G) = {v; : j € Z,} and edge-set BE(G) = {vjv, : j, h €
Zy and (h — j) € S}, where subscripts are always reduced modulo n. The
subset S of a circulant graph C(n, S) is called its symbol.

Let m and n be two positive integers, a € Z,, u = |m/2] and Sy, S1,
..., S, be subsets of Z, satisfying the following conditions:

(1) O¢ SO = _SO’
(2) a™S, =S, for 0 <r < g,
(3) if m is even, then a*S, = —5,.

Then we define the metacirculant graph G = MC(m,n,0, Sy, ... ,Sy)
to be the graph with vertex-set

V(G) ={v} : i € Zm, j € Zn},
and edge-set
E(G) = {vivjit™ : 0<r <5 i € Zm; h,j € Zp and (h - j) € &*S,},

where superscripts and subscripts are always reduced modulo m and mod-
ulo n, respectiyely. It is easy to verify that the permutations p and 7 on
V(G) with p(v}) = v}, and 7(v}) = v:';l are automorphisms of G and that
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< p,T > is a transitive subgroup of Aut(G). Thus, metacirculant graphs
are vertex-transitive.

The definitions of the three families ®;, ®5 and ®3 of special tetrava-
lent metacirculant graphs were given in [11]. The role of these families for
the classification problem for non-Cayley tetravalent metacirculant graphs
were explained in the introduction. For the purpose of this paper we recall
here only the definition of the family ®-.

The family @ is defined to consist of all tetravalent metacirculant
graphs G = MC(m,n, e, Sy, S, ... ,Su), where m,n,a, S, S1,. .. , S, sat-
isfy the following conditions:

(P21) m > 2 and m = rs with r > 2 even and s odd,

(®22) n is a positive integer not divisible by 4,

(®93) o = —1 (mod n) but o* # —1 (mod n) forany 1 <t <r-—1,
(P24) So = {1,-1},

($35) S1 = {0} and Sz = --- = 5, = 0.

In order to obtain the results of this paper we shall, apart from the
group-theoretic techniques, also be using an algorithm for solving special
systems of two congruences. We shall show this algorithm in the next
section .

Convention: Unless otherwise indicated, congruences in this paper
are of modulo n. So for brevity instead of P(a) = 0 (mod n) we simply
write P(a) = 0. Also, when expressing numbers modulo n we always mean
that these numbers are 0,1, ... ,n—1.

3. Special Systems of Two Congruences
Let
P(a) = a;0* + a,10'7 1 + - - - + a1 + ap, and (3.1)
Q(a) = b + b1t~ + - + b + by, (3.2)
where a; # 0,a9 # 0,b; # 0 and by # 0 be two polynomials with integer

coefficients ag, ... ,as, by, ... ,b. We consider the following problem: find
all solutions of the system

{ Pla)=0 (33)

Q) =0,

where n and o are unknowns satisfying the following conditions:

(A) n is a positive integer such that it is not divisible by 4 but ¢(n) is
divisible by 4, where ¢ is the Euler ¢-function;

(B) a@ € Z; and has the property that there exists an even integer
r>2suchthat " =—-lbutatZ -1forany 1<t<r-—1

We note that systems of congruences considered here differ from usual
systems of congruences by the fact that n, the modulo number, is unknown
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in our systems. Moreover, n and a must satisfy the two additional condi-
tions (A) and (B). We do not attempt to investigate such a system in detail
or to give here its general solution. Instead, we give below an algorithm for
solving it.

Remark 1. Let G = MC(m,n,a,So,S1,...,S:) be a graph of the
family ®,. Then by Condition ®22 n is a positive integer not divisible by
4. By ®23 o must be of order 2r in Z;. It follows that 4 | |Z;| = ¢(n)
because r > 2 is even by ®5;. Together with Condition ®93 this implies
that n and « satisfy Conditions (A% and (B) of System (3.3).

Remark 2. Let n and a satisfy Conditions (A) and (B) of System
&3.3). Since r iseven, a” +1 =t){(a+1)+2and o" + 1 =ta(a— 1) +2
or some appropriate integers ¢; and #;. It follows that ged(a £ 1,n) < 2
because a” + 1 = 0. It is clear that if P(a) is a polynomial with integer
coefficients, then for all odd values of « either all the respective values of
P(a) are odd or all the respective values of P(c) are even. Therefore, since
n is not divisible by 4, it is not difficult to see that the following statements
are true:

(i) If P(a) = (a =+ 1)P() and for an odd value of a the value of P(a)

is even, then P(a) =0 if and only if Pla) =0;

(i) If P(a) = (a+1)P(a) and for an odd value of a the value of P(a)
is odd, then P{a) = 0 if and only if 2P(a) = 0;

Similarly, since n is not divisible by 4, gcd(2t,n) < 2. Therefore, the
following statements are also true:

__(iii) If P(a) = 2'P(c) with ¢ > 1 and for an odd value of a the value

of P(a) is even, then P(c) =0 if and only if P(a) = 0;

(iv) If P(a) = 2'P(a) with ¢ > 1 and for an odd value of « the value
of P(a) is odd, then P(a) = 0 if and only if 2P(a) = 0.

The above statements will be useful in the compiling Tables 5, 6, 7
and 8 of this paper.

An algorithm for solving System (3.3)

Let P(a) and Q(a) be given by (3.1) and (3.2), respectively. Then
the value max{t,!} is called the degree of System (3.3). Without loss of
generality we may assume that ¢ > .

Step 1. Let hy = lem(ay,br)/a;, he = lem(ay,bi)/bi, hs =
lem(ag, bo)/ag and hy = lem(ag, bo)/bg. For t > I, set Pi(a) = hiP(a) -
hoo'~'Q(a) and Qi(a) = Q(@). For t = I, set Pi(a) = (hiP(a) -
th(a))/ai if h1ag = habg, h1a1 = haby,... ,h1ai—1 = h2bi—) but hja; #
hab; and Q1(@) = (hsP(a) —haQ(e)) /o if hsar = haby, haaz = haba, ...,
hsaj—1 = h4bj_1 but haza; # hab;. The divisions by ot and o/ here are
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possible because a € Z;. Form now the system

P (Ol) =0
{ @Q1(a) =0. (34

It is clear that the degree of System (3.4) is less than the degree of System
(3.3) and any solution of (3.3) is also a solution of (3.4). In general, the
converse is not true. Also, it is clear that System (3.4) and the systems

{ Pi(a)=0 {—Pl(a)so { ~Pi{(a)=0 [ Pila)=0Qi(a)=0
—Qi(a) =0 Qi(a)=0, | -Qi(0)=0, | Qi(a)=P(a)=0
have the same set of solutions. Therefore, without loss of generality we
always assume that in (3.4) the degree of P;(a) is not less than the degree

of Q1(a) and the coefficients of the highest powers of a in P;(a) and @1 ()
are positive.

Step 2. Repeat Step 1 for System (3.4) and get a new system
{ Pya)=0
Q2(a) =0

with the degree less than the degree of System (3.4) and the set of so-
lutions containing all solutions of System (3.3). Repeat again Step 1 for
successively obtained systems until getting either a system of the type

g=0
{ Qi{a) =0, (35)
where g is a number and Q;(a) is a polynomial, or a linear system
crla+cp=0
3.6
{ dia+dy =0, ( )

where 0 < ¢; < d;. Go now to Step 5 if System (3.5) is obtained; otherwise
go to Step 3.

Step 3. Let e; = gcd{cy,d1). Then there exist integers z; and y;
such that e; = z1¢; + y1d;. The integers e;, z; and y; can be found,
for example, by extended Euclid’s algorithm for computing ged(eq,dy). It
follows that

z1(c1a+ co) + yi{dia + do) = era+ e =0, 3.7

where eg = z1¢p +91dp. Let fra+ fo =cia+co if cia+cg # era+ e and
fia+ fo=dia+do if cia+ ¢cp = era + eg. Form the system

{e1a+eo =

hHo+ fo (3.8)

0
0.

i
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Step 4. Set g = z1€9 — fo if fi = e1z;. Then from (3.8) we have
g = 0. Thus n must be a divisor of g.

Step 5. List all divisors of g, which satisfy Condition (A). Let these
divisors be ny,ng, ... ,ni. For each n = n;, by using Q;(a) = 0 if in Step 2
System (3.5) is obtained or (3.7) if in Step 2 System (3.6) is obtained, we
get all values a1, 2, . .. ,Qiw, satisfying it. The values of n and o from
the obtained pairs (n;, a;;) form possible solutions of System (3.3).

Step 6. Exclude those pairs (n;, a;;) for which P(a;;) # 0 (mod n;)
or Q(ai;) # 0 (mod n;).

Step 7. Check for each of the remaining pairs (n;, y;) if n; and a;;
satisfy Condition (B) and further exclude those pairs for which n; and a;;
do not satisfy it. The values of n and & from the remaining pairs (n;, ;)
are solutions of our system (3.3).

In the next section, in the course of the proof of Theorem 1, we will
illustrate how this algorithm works to solve such systems of two congru-
ences.

4. The Automorphism Groups of Graphs in &;

The purpose of this section is to prove the following result.

Theorem 1. Let G = MC(m,n,a, S, S1,-..,Su) be a graph in the
family @5, i.e., G satisfies Condition.sj @2 - ®o5. Further, let p,7 argd T
be the permutations on V(G) with p(v;) = vj41, T(v5) = v;"]Tl and m(v;) =

vJ.'". Then
(i) If r = 2, then Aut(G) = < p, 7,7 >;
(ii) If r > 2, then Aut(G) = < p,T >.

Proof. Let G = MC(m,n,a,So, 51, ... , Su) be a tetravalent metacir-
culant graph in the family ®2. An edge in G joining two vertices with the
same superscripts is called a horizontal edge; otherwise it is called a vertical
edge. A walk in G is called horizontal (resp., vertical) if all its edges are
horizontal (resp., vertical). Both horizontal and vertical walks are called
homogeneous. A maximal homogeneous subwalk of a walk W is called a
segment of W.

By the definition of the family ®, it is clear that the subgraphs G;
induced by G on V* = {v} : j € Z,},i=0,1,... ,m — 1, are the only
horizontal cycles in G. Each G; has the form G; = vjvi vl - vfn_l)a,.v(").

The direction on G; from v} to “i-' is called positive. Also, the cycles F; =
vvjol .- v;"‘lv;’, j=0,1,...,n—1, are the only vertical cycles in G. The

direction on F; from v to v} is called positive. For convenience we consider
a horizontal cycle G; as a walk having two segments: the vertical segment
vrp of length 0 and the horizontal segment vjvLV5a: “** Vp_1)a:¥ Of
length 7. Similarly, we consider a vertical cycle F; as a walk having two

segments: the vertical segment ©9v1v? ... v7*"!2? of length m and the

A 2 2
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horizontal segment vJv{ of length 0. A homogeneous path with the specified
beginning and terminating vertices is said to have a positive length if the
direction from its beginning to its terminating is the positive direction of
the homogeneous cycle containing it; otherwise it is said to have a negative
length.

Let p.and 7 be the permutations on V(G) with p(v;) = vj,, and
T(v}) = tr;';]. Then the subgroup < p,7 > is a transitive subgroup of
Aut(G). We say that two cycles C and D in G are equivalent if there exists
an element v € < p,7 > such that v(C) = D. It is clear that this relation
is an equivalence on the set of cycles in G and so this set is partitioned into
equivalent classes. In short, we will call them classes. It is clear that all
horizontal cycles form a class and all vertical cycles form another one. For
a subfamily Q2 of the family ®, some classes exist in a graph G of Q without
any additional conditions and some classes exist in a graph G of 2 only if
some additional conditions are satisfied in this graph. In the former case
such a class is called Q-unconditional and in the latter case it is called -
conditional. It is usually clear from the context what {2 we are dealing with.
So we will simply talk about unconditional or conditional classes without
mentioning . Cycles in unconditional (resp., conditional) classes are also
called unconditional (resp., conditional) cycles. In most cases, conditions
for the existence of certain cycles in G are expressed by congruences of the
type P(a) = 0, where P(¢) is a polynomial in o with integer coefficients.
For brevity a cycle of length £ is called an f-cycle, a class of ¢-cycles is
called an ¢-class, and conditions for the existence of an ¢-cycle are called ¢-
conditions. We say that two ¢-conditions are equivalent if they are satisfied
or are not satisfied in each graph of the family ®, simultaneously. For our
convenience we will identify equivalent ¢-conditions.

Since the subgroup < p, 7 > is transitive on V(G), it is not difficult to
see that in each class, except the class of horizontal cycles, there are cycles
containing v as the beginning vertex of a vertical segment of a positive
length of these cycles. Such a cycle is called a representative of the class
containing it. We also assume that the orientation on a representative of
a class is always such that the positive direction on it coincides with the

positive direction on the vertical segment containing vJ.

For the class of horizontal cycles of length n, the cycle Gy is assumed
to be the representative of the class and the pair (0,n) is called its type.
Further, for the class of vertical cycles of length m, the pair (m,0) is called
the type of its representative F. Now let C be a representative of a class
in G which is different from the class of horizontal cycles, as well as from
that of vertical cycles. By going from v in the positive direction of C, we
can talk about a segment following or preceding another one. Also, the
vertex of a segment we encounter first is assumed to be its beginning. We
represent the cycle C in the form

C =CoC1C2 -+ Cpy,
where Cy is the vertical segment containing v9, Ciy; is the segment fol-

lowing C; for each ¢ = 0,1,... ,t — 2 and C,_; is the segment preceding
Co in C. By the definition of segments it is clear that all C; with i even
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are vertical and all C; with i odd are horizontal segments of C. So the
number ¢ of segments in C must have the form 2w with w > 2. Let the
length (positive or negative) of a segment C; be ;. Then the sequence
(lo, 11,12, ... ,ls—1) is called the segment type, or shortly type, of C. It is
clear that 5 l; = 0 (mod m), and the type of a representative of a class

i even
determines this representative uniquely.

Let P be a homogeneous path in G with the beginning vertex v; For
any automorphism v € Aut(G), we assume that the beginning vertex of
the path (P) is y(v}). If P is horizontal (resp., vertical), then it is clear
by the definitions of p and 7 that both p(P) and 7(P) are horizontal (resp.,
vertical). Therefore, if P is horizontal (resp., vertical), then for any element
¥ € < p,7 > the path y(P) is also horizontal (resp., vertical). Consider
now the directions of P and v(P). By the definition of p it is not difficult
to see that for any integer j the directions of P and p’(P) are always the
same, i.e., both are positive or both are negative. Also, if P is vertical,
then for any integer % the directions of P and 7*(P) are the same, too. But
if P is horizontal, then for some integers k the directions of P and 7*(P)
may be opposite, i.e., one is positive and another is negative. This happens
if and only if ¥k = zm + y with z odd and 0 < y < m. Therefore, if for
a horizontal path P the directions of P and 7*(P) are opposite, then for
any horizontal path P’ the directions of P’ and 7*(P’) are also opposite.
Since any element v € < p,7 > can be represented in the form vy = Tip?
with appropriate integers i and j, it follows from the above observations
that for any element v € < p,7 > and any vertical path P the directions
of P and (P) are always the same, whereas for any element vy € < p, 7 >,
either P and y(P) have the same directions for any horizontal path P or
P and ~(P) have the opposite directions for any horizontal path P.

Now let C be a representative of a class C with type (lo, l1,... ,lt-1)-
Then by the assertions proved in the preceding paragraph it is not difficult
to see that a sequence (15,15, ... ,li_,) is the type of a representative of the

class C if and only if one of the following are true:

(a) For any 4= 0,1,...,t — 1,1{ = lg4:, where k is an even index such
that I, > 0 and subscripts are always reduced modulo ¢;

(b) For any i = 0,1,...,¢t — 1,I{ = (—=1)!lx4:, where k is an even index
such that I > 0 and subscripts are always reduced modulo ¢;

(c) For any i = 0,1,...,t — 1,I{ = —lx_;, where k is an even index
such that I < 0 and subscripts are a’]ways reduced modulo t;

(d) For any i = 0,1,...,t — 1,i{ = (=1)**'l_;, where k is an even
index such that l; < 0 and subscripts are always reduced modulo ¢.

The above assertions are helpful for determining whether two repre-
sentatives given by their types are representatives of the same class.

Let C be a class of £-cycles in G different from the class of horizontal
cycles, as well as from that of vertical cycles. Further, let (lo, 11y -+ 1 le=1)
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be the type of a representative C of C. To C we associate the polynomial
P(;(a/) — llalo + l3a10+12 + lsalo+l2+l4 ot ll_lalo+12+lq+~--+h-2 ,

where exponents of « are always reduced modulo m. Then it is clear that
Pc(a) = 0 is satisfied in G. Also, by Assertions (a)-(d) above it is not
difficult to see that for any two representatives C and D of C, Pc(a) =0
and Pp(a) = 0 are equivalent {-conditions.

Now let P(a) be a polynomial in a with integer coefficients. We say
that a class C in G exists under the condition P{a) = 0 if there exists a
representative C of C such that Pc(a) = P(a). Also, the class of horizon-
tal cycles and the class of vertical cycles are assumed to exist under the
conditions n = ¢ and m = ¢, respectively, where c is a constant positive
integer.

Since the group < p,7 > acts transitively on the set of horizontal
(vesp., vertical) edges of G, for any two horizontal (resp., vertical) edges
e; and e, the number of cycles in a class C containing e; is equal to the
number of cycles in C containing e;. Therefore, we can talk about the
number of cycles in a class C containing a given horizontal (resp., vertical)
edge without specifying this edge. Denote this number by h(C) (resp.,
v(C)). They can be counted by considering how many different cycles of
the form 7¢p? (C) contain a specified horizontal edge and a specified vertical
edge, respectively, where i € {0,... ,2m—1},j € {0,...,n—1}and Cisa
fixed representative of the class C. Further, we denote by he(G) and ve(G)
the number of ¢-cycles in G containing a given horizontal edge and a given
vertical edge, respectively.

The following proposition is crucial for the proof of Theorem 1.

Proposition 1. Let G be a graph in the family ®2. Then there exists
an integer £ with 4 < € < 12 such that he(G) # ve(G).

This proposition will be proved by a series of lemmas.
Lemma 1. Let C be a cycle in G. Then C has length at least 4.

Proof. Assume that G has a cycle C of length 3. If all edges in C
are horizontal, then C must be the subgraph G; induced by G on some
Vi={vi:je Z,} SinceG; is an n-cycle, n=3. But a? =1 (mod 3) for
any « € Z3. We get a contradiction to ®o3. If all edges in C are vertical,

then C has the form C = vJv}v?1?, and therefore m = 3. This contradicts

the fact that m > 2 is even by ®5;. Since |S;| = 1, the case that C has
two vertical edges and one horizontal edge also cannot occur. Thus G has
no cycles of length 3. W

Lemma 2. If G has a 4-cycle, then ha(G) # v4(G).

Proof. Let C be a 4-cycle in G. Suppose that C has both horizontal
and vertical edges. By the transitive action of < p,7 >, without loss of
generality we may assume that C has the form C = vjvgviv], where vg

and v} are adjacent in G;. But G is the circulant C(n, Ry) with Ry =
{a,—a}. Therefore, « = 1 or a = -1, contradicting ®93. Thus either
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all edges in C are horizontal or they are all vertical. If all edges in C are
horizontal, then C' = G; for some ¢ = 0,1,--- ,m — 1. Therefore, n = 4,
contradicting ®5. So all edges in C are vertical. It follows that m = 4 and
h(G)=0, u4(G)=1. =m

In order to prove Proposition 1 for the cases 5 < £ < 12 we need know
necessary informations about £-cycles existing in a graph of ®,. For this
purpose in the respective table we list all possible ¢-conditions for graphs
in some subfamily of ®; (Column II). For each of them we indicate the
number of ¢-classes existing under this £-condition (Column III?, the types
of representatives of the respective ¢-classes (Column IV) and the numbers
of £-cycles containing a given horizontal edge (Column V) or a given vertical
edge (Column VI) in the respective {-classes.

Lemma 3. If G has a 5-cycle, then hs(G) # vs(G).

Proof. Let C be a 5-cycle in G. If all edges in C are vertical, then
m = b, contradicting ®,,. If all edges in C are horizontal, then C = G; for
some i =0,1,... ,m — 1. Therefore, n = 5. There is only one such a cycle
containing a given horizontal edge.

Suppose now that C contains both horizontal and vertical edges. We
note that the number of vertical edges in C must be even and the number
of horizontal edges in C must be at least 2. Therefore, C contains exactly 2
vertical and 3 horizontal edges. In Table 1 we give necessary informations
about 5-cycles existing in graphs of ®;. From the table and the fact that
G has no unconditional 5-cycles it is clear that in all possible combinations
of 5-conditions that may occur in G, hs(G) > v5(G). R

No 5-conditions Number of Type of a representa- h(C) v(C)

5-classes tive of 5-class C
4y (I1) (I11) (IV) (V) (VI)
1 n=5 1 (0,5) 1 0
2 2a+1=0 1 12,-1,1) 3 2
3 2a-1=0 1 1.2-1-1) 3 2
4 a+2 =0 1 11-1.2) 3 2
5 a-2 =0 1 11-1-2) 3 2
Table 1

Lemma 4. If G has a 6-cycle, then there ezists an integer { with
4 < ¢ < 6 such that he(G) # ve(G).

Proof. Let G have a 6-cycle. If G also has an ¢-cycle with £ = 4 or
¢ =5, then h¢(G) # v¢(G) by Lemmas 2 and 3. Therefore we assume that
G has no f-cycles with £ < 5. Let C be a 6-cycle in G. If all edges in C are
horizontal, then C = G; for some i =0,1,... ,m—1. It follows that n = 6.
Since o = 1 (mod 6) for any a € Z;, we get a contradiction to ®3. Thus
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C must contain a vertical edge. In Table 2 we give necessary informations
about 6-cycles existing in graphs of ®2 which have no ¢-cycles with ¢ < 5.
We note that Conditions 2 and 3 cannot satisfy simultaneously. The similar
note is true for Conditions 4 and 5. Also, if G satisfies Condition 6 and
one of Conditions 2 or 3 (resp., Conditions 4 or 5), then by using the
algorithm suggested in Section 3 we can see that G also satisfies Condition
5 or Condition 4 (resp., Condition 3 or Condition 2). With these notes
and the fact that G has no unconditional 6-cycles it is not difficult to
check that in all possible combinations of 6-conditions that may occur in

G, he(G) # v6(G). W

No G6-conditions Number of Type of a representa- h(C) v(C)

6-classes tive of 6-class C
1) (n (1) Iv) (V) (VD)
1 m=6 1 (6,0) 0 1
2 3a+1=0 1 1,3,-1,1) 4 2
3 3a-1=0 1 1,3.-1-1) 4 2
4 a+3=0 1 11-1.3) 4 2
5 a-3=0 1 1,1,-1,-3) 4 2
6 r=2 1 (2,1,-2,1) 2 4
Table 2

For a class C of a graph G in ®2 and an integer £ > 3, denote
d(C)=h(C)—v(C) and de(G) = he(G) — ve(G).
Also, for an integer £ > 3 and an f-condition P(a) = 0 satisfied in G,
denote
dG_e(P(a) = 0) = d(Cl) + d(Cz) +---+ d(Ck),

where C,,C,, ..., C; are all #-classes in G existing under one of the ¢-

conditions equivalent to P(a) = 0. Further, set dg¢(P(e) = 0) = 0 if

P(a) = 0 is not satisfied in G. For any integer £ with 5 < ¢ < 12, ¢-

conditions listed in the respective tables of this paper for graphs in &,

clearly have the property that the sets of ¢-classes existing under them are

%zllirwifse disjoint. This property will be used frequently without mention.
herefore,

(@) = d(C}) +d(C) +--- +d(C+ 3 dee(Pla)=0), (41)

P(a)=0

where Cf, C%,...,Ct are all unconditional #-classes in G and P(a) = 0
runs through all ¢-conditions listed in the respective tables of this paper
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for graphs in ®2.
Lemma 5. If G has a 7-cycle, then there exists an integer £ with
4 < € < 7 such that he(G) # ve(G).

Proof. Let G have a 7-cycle. If G also has a t-cycle with ¢ < 6, then
by Lemmas 2, 3 or 4, for some integer £ with 4 < £ < 6, he(G) # ve(G).
Therefore, we may assume from now on that G has no t-cycles with ¢ < 6.

Since Condition ®23 holds, & must be of order 2r in Z,. It follows
that 4 | |Z,| because r > 2 is even. Let C be a 7-cycle in G. If all edges
in C are horizontal, then C = G; for some ¢ =0,1,... ,m — 1. Therefore,
n = 7. We have |Z;| = 6 which is not divisible by 4. This contradicts
the fact that 4 | |Z,| which we have proved above. If all edges in C are
vertical, then C = vJv}v? ... v3v] for some j = 0,1,...,n — 1, and
therefore m = 7, contradicting ®2;. Thus C must contain both horizontal
and vertical edges. It is clear that the number of vertical edges in C must
be even and the number of horizontal edges in C must be at least 2. So C
has 2 or 4 vertical edges. In Table 3 we give necessary informations about

7-cycles existing in graphs of ®; which have no ¢-cycles with ¢ < 6.

Assume that among Conditions 9-16 in Table 3 G satisfies at least two
different conditions. Let P(a) = 0 and Q(a) = 0 be two of them. Then
the values 7 and a of G form a solution of the system

{ Pla)=0
Q(a) =0.

This is just a system we have considered in Section 3. So by using the
algorithm suggested there we can solve System (4.2). The reader is invited
to verify that for any two different conditions P(a) = 0 and Q(a) = 0 which
are among Conditions 9-16 in Table 3, System (4.2) has no solutions. This
means that G satisfies at most one of these conditions. Also, it is clear that
G has no unconditional 7-classes. We distinguish two cases.

Case 1: G does not satisfy any of Conditions 9-16 in Table 3. In this
case, dg,7(S(a) = 0) > 0 for any condition S(a) = 0 in Table 3. Since
G has a 7-cycle, G satisfies at least one of Conditions 1-8. Let R(a) =0
be one of them. We have dg 7(R(a) = 0) = 3 > 0. Therefore, by (4.1)

d7(G) > dg,7(R(a) =0) > 0 and the lemma is true.

Case 2: G satisfies a condition P(a) = 0 which is one of Conditions
0-16 in Table 3. In this case, dc;,7(5'(a) = 0) > 0 for any condition
S(a) = 0 in Table 3, other than P(a) = 0. If G does not satisfy any of
Conditions 1-8, then d7(G) = dg,7(P(a) = 0) < 0. If G satisfies a condi-
tion R(a) = 0 among Conditions 1-8, then by (4.1) d7(G) > dg 7(P(a) =
0) + dg,7(R(a) =0) > 1 > 0 and the lemma follows. W

(4.2)

In any graph G of the family @, there is one $2-unconditional 8-class
with a representative C = v§vdvlv303, v} 1 v110v). In the next lemma we

deal with the case where G also has a conditional 8-cycle with the number
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No 7-conditions Number of Type of a representa- h(C) v(C)
7-classes tive of 7-class C

ey (I1) (I11) (Iv) V) (VD)

1 4a+4+1=0 1 1,4,-1,1) 5 2

2 4da-1=0 1 1,4,-1-1) 5 2

3 38a+2=0 1 1,3,-1,2) 5 2

4 3a-2=0 1 1,3,-1,-2) 5 2

5 2a+3=0 1 1,2,-1,3) 5 2

6 22-3=0 1 1,2,-1,-3) 5 2

7 a+4=0 1 1,1,-1,4) 5 2

8 «w-4=0 1 1,1,-1,-4) 5 2

9 2a°+1= 1 (2,2,-2,1) 3 4
10 22-1=0 1 (2,2,-2,-1) 3 4
11 a*+2=0 1 (2,1,-2,2) 3 4
12 a?2-2=0 1 (2,1,-2,-2) 3 4
13 ?4+a+1=0 1 (2,1,-1,1,-1,1) 6 8
14 o?+a-1=0 1 (2,1,-1,1,-1,-1) 6 8
15 o?-a+1=0 1 (2,1,-1,-1,-1,1) 6 8
16 o?—a-1=0 1 (2,1,-1,-1,-1,-1) 6 8

Table 3

of horizontal edges different than the number of vertical edges.

Lemma 6. If G has an 8-cycle with the number of horizontal edges
different than the number of vertical edges, then there exists an integer £
with 4 < £ < 8 such that he(G) # ve(G).

Proof. Let G satisfy the hypothesis of the lemma. If G has a ¢-cycle
with ¢ < 7, then by Lemmas 1-5 there exists an integer £ with 4 < £< 7
such that hy(G) # v¢(G). Therefore we may assume from now on that G
has no t-cycles with t < 7.

Let C be an 8-cycle in G with the number of horizontal edges different
than the number of vertical edges. If all edges in C are horizontal, then C =
G; for some 1 =0,1,... ,m— 1. So n = 8, contradicting 2. Thus C must
contain a vertical edge. In Table 4 we give necessary informations about
8-cycles with the number of horizontal edges different than the number of
vertical edges existing in graphs of ®2 which have no t-cycles with ¢t < 7.
We note that in each class C of 8-cycles with the number of horizontal
edges equal to the number of vertical edges, A(C ) = v(C ). Therefore,
it is not difficult to see from Table 4 that in any possible combinations of
8-conditions that may occur in G, hs(G) # vs(G). R

We partition the family ®; into two subfamilies ¥; and ¥5. The
subfamily ¥; consists of all graphs of ®2 which have either a t-cycle with
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No 8-conditions Number of Type of a representa- h(C) v(C)

8-classes tive of 8-class C
@ (I1) (III) (IV) ) (V1)
1 m=r=8 1 (8,0) 0 1
2 Ba+1=0 1 1,5,-1,1) 6 2
3 5a—1=0 1 15-1-1) 6 2
4 4a+2=0 1 1,4,-1,2) 6 2
5 40-2=0 1 1,4,-1,-2) 6 2
6 20+4=0 1 1.2.-1,4) 6 2
7 20—-4=0 1 1,2,-1,-4) 6 2
8 a+5=0 1 11,-15) 6 2
9 a-5=0 1 1.1,-1.-5) 6 2
Table 4

t < 7 or an 8-cycle with the number of horizontal edges different than the
number of vertical edges. The subfamily ¥, is the complement of ¥, in
®,. By Lemmas 1-6, Proposition 1 is proved for graphs in ¥;.

Now let G be a graph in ¥5. By definition, h¢(G) = v¢(G) = 0 for each
£=3,...,7 and hg(G) = vg(G). Thus to prove Proposition 1 for graphs
in Uy we must show that hy(G) # ve(G) for some ¢ with 9 < £ < 12.

We consider the numbers hjo(G) and v19(G) for a graph G in the
subfamily ¥5. We need know all ¥s-unconditional and all possible ¥o-
conditional 10-classes in G. It is not difficult to see that in G there are two

o 1 10 :

T5-unconditional 10-classes C;~ and C,  with representatives
10_,011,1.0,0 1 1 100

C1” = WV9VaV2aY2aV2a+1V2a+1Va+1V1%1 %, and

10_,011,00 .0 .1 1.0 0 0
C3" = YgVpVaVaVq+1Va+2Va+2V2V2V1Vp;

respectively. Further, h(C.%) = h(C;") = 6 and »(C}%) = v(C})) =
4. In Tables 5, 6, and 7 we give necessary informations about 10-cycles
existing in graphs of the subfamily ¥,. For simplicity we combine, where
it is possible, several similar 10-conditions into one combination with sign
“4» before certain terms which we call (%)-terms, if the numbers of 10-
classes as well as the numbers of 10-cycles containing a given horizontal edge
and the numbers of 10-cycles containing a given vertical edge in respective
similar classes existing under these conditions and their equivalents are
respectively the same. So the numbers in Columns III, V and VI for each
of the combinations in Tables 5, 6, and 7 are respectively the number of 10-
classes existing under any condition in the combination and its equivalents,
the number of 10-cycles containing a given horizontal edge and the number
of 10-cycles containing a given vertical edge in any respective similar class
existing under any condition in the combination and its equivalents. Also,
we indicate in Column IV of these tables only the types of representatives of
10-classes existing under the condition with sign “+” chosen for each (+)-
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term in combinations and its equivalents. The reader who wants to know
the types of representatives of 10-classes of other conditions in combinations
is invited to list them himself.

No 10-conditions Number of Type of a represen- h(C) v(C)
10-classes  tative of 10-class C

I (1) (I1I) Iv) vy (VD)
1 m=r=10 1 10,0) 0 1
2 m>4&r=4 1 4,1,-4,1) 2 8
Table 5

We explain how Tables 5, 6 and 7 are compiled. In Table 5 we list
10-conditions for the existence of 10-cycles with 10 or 8 vertical edges. In
Table 6 we list 10-conditions for the existence of at least one class of 10-
cycles with 6 vertical edges. The remaining 10-conditions under which only
classes of 10-cycles with 4 or 2 vertical edges exist are listed in Table 7. In
these tables we list conditions in the increasing order of the least numbers
of segments in cycles of 10-classes existing under them. For a fixed least
number of segments we list conditions for possible lengths of horizontal and
vertical segments in cycles of 10-classes existing under these conditions. By
this way we can obtain all possible 10-conditions. Now we must identify
equivalent 10-conditions and exclude those 10-conditions which result in
a contradiction with the definition of graphs in the subfamily ¥5. The
statements (i)—(iv) in Remark 2 (Section 3) are very helpful for this. Take
Condition o — 2a +1 = 0 (in Combination 5 of Table 6) as an example.
Since @® — 2a + 1 = (a — 1)(a? + a — 1), by Statement (ii) in Remark 2,
a® — 2a + 1 = 0 if and only if 202 4+ 20 — 2 = 0. But again by Statement
(i), 202 +2a ~2 =0 if and only if a® +2a% — 1 = (a + 1)(a? +a~1) = 0.
This shows that if one of these conditions is satisfied in a graph G of ®,
then both of the others are also satisfied in G, i.e., they are equivalent. By
our convention these 10-conditions must be identified. So for the condition
a® — 2a + 1 = 0 there exist in G six 10-classes listed as in Table 6. Take,
as another example, the condition 3a2 4+ 2a — 1 = 0. This condition allows
the 10-class with the representative of type (2,3,-1,2,-1,-1) to exist. But
3a% +2a — 1 = (a+1)(3a — 1). So by Statement (i), 3% + 2o — 1 = 0 if
and only if 3a — 1 =0, i.e., if one of these conditions is satisfied in a graph
G, then the other is also satisfied in G. Under the last condition there
exists the 6-class with the representative of type (1,3,-1,-1). Such a class
cannot exist in graphs of the subfamily ¥5. Because of this, the condition
3a? + 2o — 1 = 0 is not included in these tables.

If G has r = 2, then G has the 6-class with the representative of type
(2,1,-2,1). Further, if G has m = 4,6 or 8, then vertical cycles of G are
respectively 4-cycles, 6-cycles and 8-cycles with the number of horizontal
edges different than the number of vertical edges. So G is a graph in the

219



No 10-conditions No of Type of a representa- h(C) v(C)
10-cla-  tive of 10-class C
sses
@ (1) (I1I) (Iv) (V) (VD)
1 3a3+1= 1 (3,3-3,1) 4 6
2 a®+3=0 1 (3,1,-3,3) 4 6
3 208ta+1=0 1 (3,2,-2,1,-1,1) 8 12
4 o*+2a+1=0 2 3,1,-2,2,-1,1) g8 12
1,1,2,1,-2,1,-1,1) 4 6
5 o —20%+1=0 6 Undero®—-2a+1=0:
3,1,-2,-2,-1,1) 8 12
1,—1,2,1,—2,—1,-1,1) 4 6
Under o +22° -1=0:
3,1,-1,2,-2,-1) 8§ 12
2.11,1-1,1,-2,-1) 4 6
Under 2a +2a-2=0:
2,2,-1,2,-1,-2) 12 8
1,1,1,2,-1,1,-1,-2) 6 4
6 a®*+a+2=0 3 Undero®+a+2=0:
(3,1,-2,1,-1,2) 8 12
Under o? — a +2=0
2,1,-2,1,1,- , -1,1 4 6
1-2,11-1,1,-1,2 12 8
7 d—ax2=0 1 (3,1,-2-1,-1,2) 8 12
8 203 +a’+1 3 Under2a®+a%+1=0:
=0 (3,2,—1,1,—2,1) g8 12
Under 222 —a+1=0:
2,1,-1,-1,1,1,-2,1) 4 6
1-2,1.2,-1,1-1,1) 12 8
9 +2a%+a2-1=0 1  (3,2-1,1-2,-1) 8 12
10 +a®+2a%+1 2 3,1,-1,2,-2,1) 8 12
=0 21.1,1,-1,1,-2,1) 4 6
11 o +a?+£2=0 1 (3,1,-1,1,-2,2) 8 12
12 o*+a?t(a-1) 2 §31 -1,1,-1,1,-1,-1) 8§ 12
=0 2.1.1,1,-2,1,-1,-1) 8 12
13 o*—a?L(a+1) 2 3,1,-1,-1,-1,1,-1,1) 8 12
=0 2:-1,1.1,-2,1,-1,1) 8 12

Table 6
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No 10-conditions  Number of Type of a representa- h(C) v(C)
10-classes tive of 10-class C
(I (1) (111) (V) vy (V)
1 7Ta+1=0 1 1,7,-1,1 8 2
2 5a+3=0 1 1,5,-1,3 8 2
3 3a+5=0 1 1,3-1,5 8 2
4 ax7=0 1 1,1,-1,7 8 2
5 5a°+1=0 1 (2,5,-2,1) 6 4
6 40’+£2=0 1 (2,4,-2,2) 6 4
7 32+3=0 1 (2,3,-2,3) 6 4
8 202+£4=0 1 (2,2,-2,4) 6 4
9 o?+5=0 1 (2,1,-2,5) 6 4
10 4a?+ax1=0 1 (2,4-1,1,-1,1) 12 8
11 o?+4a+1=0 3 2,1,-1,4,-1,1) 12 8
1,3,1,1-1,1-1,1 12 8
17271a1)_1)2)—171 6 4
12 o?ta+4=0 1 (2,1,-1,1,-1,4) 12 8
13 3a?+20+1=0 2 2,3,-1,2,-1,1) 12 8
1,1,1,3,-1,1,-1,1) 6 4
14 3a?xazx2=0 1 (2,3,-1,1,-1,2) 12 8
15 22%2+3a-1=0 2 2,2,-1,3,-1,-1) 12 8
1,21,2-1,1-1,-1) 12 8
16 a?+3a—-2=0 2 2,1,-1,3,-1,-2) 12 8
1,2,1,1-1,1-1,-2) 12 8
17 2a2+a+3=0 1 (2,2,-1,1,-1,3) 12 8
18 o?+20+3=0 2 2,1,-1,2,-1,3) 12 8
1,1,1,1,-1,1,-1,3) 6 4
19 3a2+1=0 1 (1,1,1,3-1,-1,-1,1) 12 8
20 o?24+3=0 1 (1,1,1,1-1,-1,-1,3) 12 8
21 a?+20-1=0 1 (1,3,1,1,-1,-1,-1,-1) 12 8

Table 7

subfamily ¥, in these cases. Thus if G is a graph in the subfamily ¥»,
then m > 10 and 7 > 4. The following lemmas 7 and 8 deal with the cases
where G isin ¥ and has m=10or r = 4.
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Lemma 7. Let G be a graph in the subfamily ¥, and further suppose
that G has m = 10. Then h1o(G) # v10(G).

Proof. Since G is in ¥, and has m = 10, it is clear that r = 10,
i.e., G satisfies Condition 1 but does not satisfy Condition 2 of Table 5.
Therefore, dg,10(m = r = 10) = -1 and dg,10(m > 4 & 7 = 4) = 0. For
any 10-condition P(c) = 0 in Tables 6 and 7 we have dg,10(P(a) = 0) is
even. Further, d(C,%) = d(C}’) = 2. So by (4.1) d1o(G) is odd. This
means that dijo(G) 72 0, i.e., h10(G) # v10(G). W

Lemma 8. Let G be a graph in the subfamily Uy and further suppose
that G has r = 4. Then hm(qG) # v10(G).

Proof. Since r = 4 and G is in V5, G satisfies Condition 2 of Table
5. Therefore dg0(m > 4 & r = 4) = —6. Suppose that besides the

10-condition (m > 4 & r = 4) in Table 5, G also satisfies a 10-condition
Q(a) = 0 in Table 6. Then the values of n and a of G form a solution of

the system
{ at+1=0
Q(a)=0.

This is just a system we have considered in Section 3. So by using the
algorithm suggested there we can solve System (4.3). Take, for example,
Q(a) = o3 — a® — 2 = 0 (in Combination 11 of Table 6). Then System
(4.3) has the form

(4.3)

{ Pla)=a*+1=0 (4.4)

Qa)=a’-a?-2=0.

By using the algorithm suggested in Section 3, we successively obtain the
following systems

P(a)=a®+2a+1=0 Pa)=a®’+2a+3=0
Qia)=a®-a®-2=0, Q2(@)=3a®—a+4=0,

{c1a+co=5a——1150 {e1a+eo=a—4350
dia+dg=Ta+5=0, fia+ fo=5a—-11=0.

Therefore, g = 5eg — fo = —204 = 0. Step 5 of the algorithm gives us the
pairs (102,43), (51,43), (34,9) and (17,9), the values of n and « of which
form possible solutions of System (4.4). Continuing the algorithm we find
that only n = 34, « = 9 and n = 17, o = 9 are solutions of (4.4). But it is
easily seen that both of these solutions satisfy the congruence 4a — 2 = 0,
which is an 8-condition in Table 4. It follows that graphs G with these
values of n and a must be in ¥;, a contradiction. The reader is invited
to verify that for any other condition @Q(a) = 0 in Table 6, all solutions of
(4.3) also satisfy some conditions in Tables 1-4, i.e., graphs with values of
n and o a solution of System (4.3) must be in ¥,. This contradicts the
hypothesis that G is in ¥5. Thus G does not satisfy any 10-conditions in
Table 6. Further, since © = 4, it is clear that G also does not satisfy the
condition m = r = 10 in Table 5. We distinguish several cases.
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Case 1: G does not satisfy any 10-conditions in Table 7. In this case,
d10(G) = d(CL%) +d(C}®) +dg10(m >4 & r = 4) = 2+2— 6 = 2. This
means that h19(G) # v10(G) in this case.

Case 2: G satisfies a 10-condition R(a) = 0 in one of Combinations
1-4 or 10-21 of Table 7. In this case, dg,10(R(c) = 0) > 4. Therefore,
d(C}O)-I-d(C%O)—i-dG,lo(m >4&r= 4)+dc,1o(R(a) = 0) >242-6+4=
2 > 0. Since dg,10(S(a) = 0) > 0 for any 10-condition S(a) = 0 in Table
7, by (4.1) we get in total d1o(G) > 0. Again, h19(G) # v10(G) in this case.

Case 3: G satisfies a 10-condition R(a) = 0 in one of Combinations
5-9 of Table 7. Then the values n and « of G form a solution of the system

{ oA +1=0
R(a) =
Using the algorithm suggested in Section 3 we can solve this system and
find out that it has no solutions. Thus this case cannot occur.

The proof of Lemma 8 is complete. W

By Lemmas 7 and 8 we may assume from now on that G is a graph in
W5 and does not satisfy any 10-conditions in Table 5.

Lemma 9. Let G be a graph in the subfamzly Py and further suppose
that G does not satisfy any 10-conditions in Table § but satisfies at least
two 10-conditions of Table 6. Then h10(G) # v10(G).

Proof. Let P(G) =0 and Q(a) = 0 be two different 10-conditions of
Table G satisfied in G. Then the values of n and « of the graph G form a

solution of the system

Pla)=0

(4.5)
Qa)=0.

This is just a system we have considered in Section 3. So by using the
algorithm suggested there we can solve System (4.5). By the hypotheses
of the lemma, G is a graph in the subfamily ¥; not satisfying any 10-
conditions in Table 5. So a solution n and « of System (4.5) is required
to have the property that it does not satisfy any conditions in Tables 1- 5.
Because of this, we add to the algorithm in Section 3 the following step:

Step 8. Exclude those pairs (n:, @;;) which satisfy any condition in
Tables 1-5. The values of n and o from the remaining pairs (n;, a;;) are
solutions of System (4.5).

Remark 3. Suppose that we are using the algorithm suggested in
Section 3 to solve (4.5). If in an intermediate obtained system

{ Pi(a) =0

Qi(a) =0

either P;(a) = 0 or Q;(a) = 0 is a condition in Tables 1-5, then we can
stop the algorithm and conclude that System (4.5) has no solutions.
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Let (n;, a;;) be a solution of System (4.5). By substituting these values
n; and a;; into each of the 10-conditions of Tables 6 and 7 we can see
which 10-conditions are satisfied in a graph G with these values of n and a.

Therefore, by using Table 6 or Table 7 we can compute dg 10(P(a) = 0)

where P(a) = 0 is a 10-condition in Table 6 or Table 7. By (4.1) this
implies that we also can compute d1o(G). The reader is invited to verify
that for any two different 10-conditions P(o)) = 0 and Q(Cg' = (0 of Table 6
and for any graph G with n and « a solution of (4.5), dio(G) # 0 . Lemma
9 is therefore proved. W

Thus, by Lemma 9 Proposition 1 is proved for a graph G in ¥3 not sat-
isfying any 10-conditions of Table 5 but satisfying at least two 10-conditions
of Table 6. Therefore, in the next five lemmas we can restrict to consider
only graphs of the subfamily ¥, which do not satisfy any 10-conditions of
Table 5 and satisfy at most one 10-condition of Table 6.

Lemma 10. Let G be a graph in the subfamily U and further suppose
tha(t G; does not satisfy any 10-conditions in Tables 5 and 6. Then h1o(G) #
110 G .

Proof. By the hypotheses of the lemma, among 10-conditions G
possibly satisfies only 10-conditions in Table 7. We have a = d(C}°) +
d(C1%) = 4 > 0. For any 10-condition P(c) = 0 in Table 7, dg,10(P(c) =
0) > 0. It follows by (4.1) that in total d1o(G) > @ > 0 in any possible
cases. M

Lemma 11. Let G be a graph in the subfamily Yo and further sup-
pose that G does not satisfy any 10-conditions in Table 5 and among 10-
conditions in Table 6 G satisfies one and only one 10-condition which is a
condition in Combinations 1, 2, 6 or 8. Then hyo(G) # v10(G).

Proof. Let P(a) = 0 be a condition in Combinations 1, 2, 6 or 8,
which is the only 10-condition in Table 6 satisfied in G. Then dg,10(P(a) =
0) = —2. We have b = d(C}°) + d(C}°) + dg,10(P(a) =0) =2 > 0. For
any 10-condition Q(a) = 0 in Table 7, we have dg 10(Q(a) =0) > 0. It
follows by (4.1) that in total d1o(G) > b > 0 in any possible cases. R

Lemma 12. Let G be a graph in the subfamily ¥o and further sup-
pose that G does not satisfy any 10-conditions in Table 5 and among 10-

conditions in Table 6 G satisfies one and only one 10-condition which is a
condition in Combinations 4, 5, 10, 12 or 13. Then h1o(G) # v10(G).

Proof. (I) Assume first that G satisfies the hypotheses of the lemma
and P(a) = 0 is one of the 10-conditions in Combinations 12 or 13, which is

the only 10-condition in Table 6 satisfied in G. Then dg 10 (P(a) = 0) =-8
and dg 10(R(a) = 0) = 0 for any other 10-condition R(a) = 0 of Table 6.
We consider separately several cases.

Case 1: G satisfies a 10-condition @(a) = 0 in one of Combinations
1-4, 11, 13, 15, 16 or 18 of Table 7. Then dg,10(Q(a) = 0) > 6. We have
¢ = d(C}®)+d(CL®) +dg,10(P(a) = 0) +dg,10(Q(a) =0) > 2+2-8+6=
2 > 0. Since dg,10(S(@) = 0) > 0 for any 10-condition S(a) = 0 in Table
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7, by (4.1) we have in total d1o(G) > ¢ > 0 and the lemma is true in this
case.

Case 2: G satisfies a 10-condition @(a) = 0 in one of Combinations
5-10, 12, 14, 17 or 19-21 of Table 7. Then the values of n and « of G form
a solution of the system

{ Pla)=0

Q(a)=0.

Since G does not satisfy any 10-conditions in Tables 1-5, we can add Step 8
in the proof of Lemma 9 to the algorithm suggested in Section 3 in order to
solve System (4.6). The reader is invited to verify that for any 10-conditions
P(a) = 0 and Q(a) = 0 satisfying our assumptions and for any graph G
with 7 and « a solution of (4.6), h10(G) # vi0(G), i.e., the lemma is also
true in this case.

Case 3: G does not satisfy any 10-conditions in Table 7. In this case,
we have dyo(G) = d(C1%)+d(Cl%) +dg,10(P(a) =0) =2+2-8=-4#0
and the lemma is again true.

(ITI) Assume now that G satisfies the hypotheses of the lemma and
P(a) =0 is a 10-condition in one of Combinations 4, 5 or 10, which is the

only 10-condition in Table 6 satisfied in G. Then dg,10(P(c) = 0) = -6
and dg,10(R(c) = 0) = 0 for any other 10-condition R(a) = 0 of Table 6.

By arguments similar to those we have used in Part (I) we can show here
that h1o(G) # v10(G). We leave it to the reader to do in detail. W

Lemma 13. Let G be a graph satisfying the following conditions:
(i) G is in the subfamily U;
(ii) G does not satisfy any 10-conditions in Table 5;

(iii) Among 10-conditions in Table 6 G satisfies one and only one
10-condition which is a condition in Combinations 3, 7, 9 or 11;

(iv) G satisfies a 10-condition in Table 7.
Then h,lo(G) 7é 'U]()(G).

Proof. Let P(a) = 0 and Q(a) = 0 be the 10-conditions which
are satisfied in G and are respectively in Table 6 and Table 7. Then

de,10(P(c) = 0) = —4 and dg,10(Q(a) = 0) > 2. We have d = d(C1{°) +
d(C10) + dg,10(P(a) = 0) + dg,10(Q(@) =0) >2+2-4+2 > 0. Since
dg,10(S(e) = 0) > 0 for any 10-condition S(a) = 0 in Table 7, by (4.1) we
have in total d1o(G) >d >0. H

If G is a graph satisfying Conditions (i)—(iii) but not satisfying Condi-
tion (iv) of Lemma 13, then it is not difficult to see that hio(G) = v19(G).
i\le\(%r;heless, the following lemma shows that for such a graph hi2(G) #
"2 .

Lemma 14. Let G be a graph satisfying the following conditions:

(i) G is in the subfamily Uy,

(ii) G does not satisfy any 10-conditions in Table 5;

(4.6)
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(i1i) Among 10-conditions in Table 6 G satisfies one and only one
10-condition which is a condition in Combinations 3, 7, 9 or 11;

(iv) G does not satisfy any 10-condition in Table 7.

Then hlz(G) ;é ’Um(G).

Proof. Let G be a graph satisfying the hypotheses of the lemma
and P(a) = 0 be the only 10-condition of Table 6 satisfied in G which
is a condition in Combinations 3, 7, 9 or 11. Consider 12-classes in this
graph. It is not difficult to see that in G there are four ¥>-unconditional 12-
classes C12, C}2, C}? and C}? which have the representatives with types
(1,1,-1,3,1,-1,-1,-3), (1,2,-1,2,1,-2,-1,-2), (1,3,—1,1,1,—3,—1,—1) and (2,1,-
2,1,2,-1,-2,-1), respectively. We have

h(C}?) = K(C3?) = h(C3?) =8,
v(C?) =v(C3?) = v(CF?) = 4,
R(C}?) = 4 and v(C}?) = 8.

We note that the number of vertical edges in 12-cycles in G must be
even, and therefore it is equal to 12, 10, 8, 6, 4, 2 or 0. We partition the
set of 12-classes in G into two collections Pz and N¢. The collection Pg
consists of all 12-classes C in G with d(CG) = h(é —v(C) > 0. The
collection N consists of all 12-classes C in G with ¢(C) < 0. Further, let

d(Pg)= Y d(C), and d(Ng)= Y d(C).

CEPG CGNG

Then it is clear that d12(G) = d(Pg) + d(Ng). It is not difficult to see
that cycles in 12-classes of the collection P have the number of vertical
edges not greater than 6, whereas cycles in 12-classes of the collection N¢g
have the number of vertical edges greater than 6. It is clear that if G
has 12-cycles with 12 vertical edges, then m = 12 and all these 12-cycles
form one 12-class denoted by C}2. We have h(C}?) = 0 and v(C}?) = 1.
Therefore, C}? € Ng if it exists in G. Since G satisfies the hypotheses
of the lemma, it has no 12-cycles with 10 vertical edges. We also have
Cl2 € Ng. Thus, if m = 12, then the collection Ng consists of C}2, C}?
and conditional classes of 12-cycles with 8 vertical edges; otherwise, it
consists of the class C12 and conditional classes of 12-cycles with 8 vertical
edges. We distinguish two cases.

Cuse 1: G has no conditional 12-cycles with 8 vertical edges. If m =
12, then d(Ng) = d(C}2) + d(C?) = -5. If m # 12, then d(Ng) =
d(C12) = —4. On the other hand, since C}?, C}? and C}? are contained
in Pg, d(Pg) > d(C1?) +d(C3?) + d(C}?) = 12. It follows that d12(G) =
d(P¢g) + d(Ng) > 0 and the lemma is true in this case.

Case 2: G has a conditional 12-cycle with 8 vertical edges. For graphs
satisfying the hypotheses of Lemma 14, in Table 8 we give necessary infor-
mations about 12-cycles existing in them. Here we also adopt conventions
similar to those for Tables 5, 6 and 7.
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No 12-conditions Number of Type of a representa- h(C) v(C)
12-classes tive of 12-class
I (ID) (IIT) (Iv) (V) (V)

1 3a°+1=0 1 (4,3,4,1) 4 8
2 o'+3=0 1 (4,1,-4,3) 4 8
3 20t+a®+1=0 1 (4,2,-1,1,-3,1) 8 16
4 2a%'+02+1=0 1 (4,2,-2,1,-2,1) 8 16
5 20t -0a?2+1=0 1 (4,2,-2,-1,-2,1) 8 16
6 20°+axl1=0 1 (4,2,-3,1,-1,1) 8 16
7 of+2°-1=0 2 4,1,-1,2,-3-1) 8 16
3,1,1,1,-1,1,-3,-1) 4 8
8 a'+22+1=0 2 4,1,-2,2,-2,1) 8 16
2,1,2,1,-2,1,-2,1) 4 8
9 o'-202-1=0 2 4,1,-2,-2,-2,-1) 8 16
2,-1,21,-2-1,-2,-1) 4 8
10 o' +2a+1=0 2 4,1,-3,2,-1,1) 8 16
11.3,1,-3,1,-1,1) 4 8
11 o*-2a-1=0 2 4,1,-3,-2,-1,-1) 8 16
1-1,31,-3,-1-1,-1) 4 8
12 o'+a®+£2=0 1 (4,1,-1,1,-3,2) 8 16
13 o*+a?+2=0 1 (4,1,-2,1,-2,2) 8 16
14 a'-a?+2=0 1 (4,1,-2,-1,-2,2) 8 16
15 a'+ta+2=0 1 (4,1,-3,1,-1,2) 8 16
16 a*+alta?x1 2 41,-1,1,-1,1-2,1) 8 16
= 3,1,1,1,-2,1,-2,1) 8 16
17 ot +ad+(a-1) 2 41-1,1-21-1-1) 8 16
= 3.1.1,1,-3,1,-1,-1) 8 16
18 ot —at+(a+1) 2 41,-1-1,-11-1,1) 8 16
= 3-1,1.1,-3,1-1 1) 8 18
19 ot+a?tatl 2 §4,1,21 -1,1,-1,1) 8 16
=0 2.1,2,1,-3,1,-1,1) 8 16
20 +20% +a?-1 2 3,1,-1,1,1,1,-3,-1) 4 8
= 2.21,2,-1-1,-2,-1) 12 12
21 o —at2 2 3,1-3,1,1,-1,-1,1 4 8
=0 1,-2,2,1,-2,1,-1,2 12 12

Each of the 12-conditions in Combinations 20 and 21 is satisfied in G if

and only if it is the only 10-condition satisfied in G.
Table 8
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Since in this case G has a conditional 12-cycle with 8 vertical edges,
G satisfies a condition in Table 8, say Q(a) = 0. Therefore, the values n
and a of G form a solution of the system

{ Pla)=0
Q(a) =0.

By using the algorithm suggested in Section 3 we can solve System (4.7).
But a graph G we consider here must satisfy the hypotheses of the lemma.
So a solution n and « of System (4.7) is required to have the property
that it does not satisfy any conditions in Tables 1-7, other than P(a) = 0.
Because of this, we add to the algorithm in Section 3 the following step:

(4.7)

Step 8%. Exclude those pairs (n;, o;;) which satisfy any condition
in Tables 1- 7, other than P(a) = 0. The values of n and o from the
remaining pairs (n;, o;) are solutions of System (4.7).

Remark 4. Suppose that we are using the algorithm suggested in
Section 3 to solve System (4.7). If in an intermediate obtained system

{ Pia) =0
Qi(a) = Os

either P;(a) = 0 or Qi(a) = 0 is a condition in Tables 1-7, other than
P(a) =0, then we can stop the algorithm and conclude that System (4.7)
has no solutions.

Let (n;, ai;) be a solution of System (4.7). By substituting these values
n; and a;; into each 12-condition R(a) = 0 of Table 8 we can see if it is
satisfied in a graph G with these values of n and a. It follows that we
can compute dg,12(R() = 0), and therefore d(N¢) for this graph because
the sets of 12-classes existing under 12-conditions in Table 8 are pairwise
disjoint. On the other hand, for any conditions P(a) = 0 and Q(a) = 0
satisfying our assumption and for any graph G with n and o a solution of
(4.7) we can check which 12-conditions of either the type aa? +ba +c =0
with |a| +|b] +|c| = 8 or the type fa+g = 0 with |f| +|g| = 10 are satisfied
in G. Since 12-classes in G satisfying 12-conditions of these types are in Pg,
we can estimate d(Pg) and find out that in any cases d(Pg) > —d(Ng),
i.e., d12(G) > 0. So the lemma is again true in this case.

This completes the proof of Lemma 14. W
By Lemmas 1-14 Proposition 1 is proved. B

Now we complete the proof of Theorem 1. Let V* = {v} : j € Z,},
G; be the subgraph induced by Gon V*, i =10,...,m —1, and ¢ be an
automorphism of G. By Proposition 1, he(G) # v¢(G) for some integer ¢
with 4 < ¢ < 12. Therefore, ¢ cannot map horizontal edges to vertical
edges. It follows that for any ¢ € {0,1,... ,m — 1} there exists some j €
{0,1....,m — 1} such that ¢(V*) = V? because Gy, G1,... ,Gm—1 are n-
cycles on VO, V1 ... V™=l respectively. Therefore, {V?,V1,... ,V™=1}
is a complete block system for I' = Aut(G).

228



Let p, 7 and 7 be the permutations on V(G) with p(v}) = v}, 7(v}) =
vit! and w(vi) = vj*. Tt is not difficult to see that p and 7 are automor-
phisms of G. Further, the subgraph G; is the circulant graph C(n, R;)
with fo; = {a’, —a'}. Therefore, 7 is an automorphism of G if and only if
o' = +a™ for each i € Znm, i.e., if and only if a® = +a™ = F1 for each
i € Zm. By Condition ®23 it is clear that the last congruences are possible
if and only if a? = —1, i.e., if and only if G has r = 2.

Let o be the subgroup of I' consisting of all automorphisms of G
which leave V0 invariant. For each A C I'y denote by A | VO the restriction
of A on V0. Then

To | VO < Aut(Go). (4.8)
On the other hand, it is clear that p and 7™ are elements of 'y and Aut(Go)
= < p,7™ > | VO because Gy is an n-cycle. So

Aut(Go) =<p,"> |VO <To| vo. (4.9)
From (4.8) and (4.9) it follows that
Lo V0 =< p,7™ > |VO. (4.10)

Now let 8 be an arbitrary element of [o. By (4.10) there exists an
element ¥ € < p,7™ > such that 8|V® = y|V°. Hence v 18|V is
the identity permutation on V0, i.e., 78 fixes each vertex of V?. We

have shown before that {V?,V?1,..., V™ 1} is a complete block system for
I = Aut(G) and each element of I' must map a vertical edge to a vertical
edge. Further, vJv} and v9v; ! are the only vertical edges incident with .

35
Therefore, either

(i) v~'B(v}) = v} for each j € Zp, or

(i) y~1B(v}) = v;* for each j € Zn.

If Case (i) happens, then by reasoning similar to those we have done
above it is not difficult to see that v~'8(v;) = v} for each v; € V(G).
So 8=+ € < p,7™ >. If Case (ii) happens, then ’y‘lﬂ(v;-) = 'vj'" for
each vi € V(G), i.e., y7!8 = 7. So  is also an automorphism of G and
B=yr e < p, T, W >.

Assume first that G has r = 2. Then 7 is an automorphism of G. By

the assertions proved in the preceding paragraph it is not difficult to see
that I'o = < p,7™, 7 > in this case. Now let § be an arbitrary element of

T = Aut(G) and §(V°) = V*. Then =5(V0) = VO because 7¢(V?) = V*.
So r~id € g = < p,7™, 7 >. This implies that § € < p, 7,7 >, whence
'=<p,nm>.

Assume next that G has r > 2. Then 7 ¢ ' = Aut(G) because we

have shown earlier that 7 is an automorphism of G if and only if G has
r = 2. Therefore, Case (ii) cannot happen for any 8 € I'g. It follows that
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Fo= < p,7™ >. Again let 4 be an arbltra.ry element of I and 5V = Vi
Then 77%6(V°) = V? because 7* .Sor ey =< p, 7 >.
This implies that § € < p,7 >. T erefore =< P, T >.

The proof of Theorem 1 is complete. W

5. Non-Cayleyness of Graphs in &,
As a corollary of Theorem 1, we now prove the following result.

Theorem 2. Every graph in the family ®2 is a connected non-Cayley
tetravalent metacirculant graph.

Proof. Let G = MC(m, n,a,So,S1,. .. ,Su) be a graph in the family
®,. Further, let G have r = 2. Then by Theorem 1, I' = Aut(G) =
< p.7,m >, where p(vi) = vi,,, 7(v}) = vgh! and 7(vi) = v;*. It is easily
checked that the followmg defining relat.lons are satisfied in I':

n 2m

pPr=r"=n?=1, rpr7}

=p*, mp=pr and wrr=7""'. (5.1)
Let R be a regular subgroup of . Since V* = {v} : j € Z,}, i =
0,1,...,m — 1, are blocks of T, V%, i = 0,1,... ,m — 1, are also blocks
of R. Since R is regular, for each j = 0,1,... ,n — 1, there exists exactly
one r; € R such that rj(v) = 9. Lt R=<7;:5=0,1,... ,n—-1>.
Then |R| = n. On the other hand, R is contained in the setwise stabilizer
[y of VO in I. It is not difficult to see by (5.1) that [y = < p, 7™, 7 >
which has order 4n. Hence R is a subgroup of index 4 in I'y. There are two
cases to consider.

(i) n is odd.

In this case, < p > is the unique maximal normal subgoup of odd
order n of I'y. So R = < p >. Since R is transitive on V(G), there exists

an element v € R mapping V° to V. By (5.1) it is clear that « can be
represented in one of the following forms:

y=1p, y=ar"1p", y=7"Fp" or y=nr""1p% (5.2)

Since < p > = R < R, the element 8 = yp~* € R. Therefore, ™ € R.
On the other hand, by (5 2) ,3 has one of the following forms: B=17, f =
ar~l, B =7+ or B =wr™"1. Using (5.1) it is not difficult to check
that ,{3"’ = 7™ in either case. ThlS 1mphes that 7™ € R which is 1mp0351ble
bg((:{muse 7™ # 1 and it fixes v. Thus I' has no regular subgroup if n is
o

(ii) n = 2¢ with £ odd.

Let K be a subgroup of index 4 in I'o. Then |K| = n = 2¢. This means
that the order of K is not divisible by 4. Since < p > is a normal subgroup
of I'g, we can form the subgroup K < p >. We have (I'g/< p >) 2
(K<p>)f<p>ZK/(KN<p>)and |To/ < p>|=4. Since the
order of K is not divisible by 4, this implies that | K/ (KN < p >)] < 2.
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Hence, either |[KN< p> | = 20 or | KN < p > | = £. Therefore, either
K=<p>orKN<p>=<p?>. Itfollows that K is one of the following
groups:

Ki=<p>,
Ky ={p' :iis even} U{r™p’ : j is even},
K3 ={p':iiseven}U{r™p’ : j is odd},
Ki=<n>x<p*>

= {p' :iis even} U {mp’ : j is even},
Ky=<mp>

={p* : i is even} U {mp’ : j is 0dd},
Ko ={p' :iis even} U {m7™p’ : j is even},
K7 ={p' :iis even} U {n7™p’ : j is odd}.

If R = K, then we can get a contradiction as in (i). It is clear that
K>, K, and Kg are intransitive on V9, whereas R is transitive on it. So
R # K,,K4, Ks.

Assume now that R = K3. Since R is transitive on V(G), there exists
an element v € R mapping V° to V1. By (5.1) it is clear that y can be
represented in one of the forms: v = 7pf, v = 7™t v = 777 1p¢ or
v = 7" 1pt. If v = 7p* with ¢ even, then since p* with ¢ even is in Kj
we have yp~ = 7 € R. So 7™ € R. Since 7™ # 1 and 7™ fixes v], this
contradicts the regularity of R. If v = 'rio‘ with ¢ odd, then since 7™ p
with ¢ odd is in K3 we have y7™pt = (70°)(7™pt) = (77™)(T™pt ™)t =
7™+l € R. So (v™*1)™ = ™ ¢ R, a contradiction again. Similarly we
can get a contradiction if ¥ = 7™*1pt, v =777 1p! or v = n7™~1pt. Thus
R # K4. By similar arguments we can show that R # K5 and K7. It
follows that I' also has no regular subgroups R if n is even.

Thus the graph G is non-Cayley if r = 2. The proof of the fact that a
graph G in ®; with r > 2 is non-Cayley is similar. The reader is invited to
do this in detail. Also, it is trivial that G is a connected tetravalent graph.
This completes the proof of Theorem 2. B
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