Four traps are almost always enough
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Abstract. In a recent paper [7] Maynard answered a question of Harary -
and Manvel [3] about the reconstruction of square-celled animals. Ounc of his
results relied on a general algebraic approach due to Alon, Caro, Krasikov
and Roditty [1}. Applying arguments of a more combinatorial nature we
improve this result and give an answer to a question raised by him in (7).
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1 Introduction

A square-celled animal is a finite set of rookwise connected squares which
form a simply connected region in the plave. A sub-animal arises from a
square-celled animal by deleting any one square and two animals will be
called isomorphic if one can be transformed into the other by translation
and/or rotation by a multiple of 80°.

In [4], (6] and [13] the probiem of counting square-celled aniiuals was
mentioned and studied and in [3] Harary and Manvel considered the prob-
lem of reconstructing a square-cclled animal from the multisel of all its
sub-animals given up to isomorphism. For some examples see the following
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Figure 1.

In Figure 1, A;, A3, A4 and Ag are square-celled animals, Az is not
simply connected and As is not rookwise connected. A4, A and Ag are
the three sub-animals of A3, As is a sub-animal but not a square-celled
animal and A; and Ag are isomorphic.
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The main result of [3] was the following.

Theorem 1 (Harary and Manvel [3]) Every square-celled animal is
uniquely determined (up to isomorphism) by the multiset of all its sub-
animals (given up to isomorphismj.

Harary and Manvel [3] asked if Theorem 1 is still true for animals that
are not simply connected. Using a general algebraic approach due to Alon,
Caro, Krasikov and Roditty {1}, Maynard [7] was able to give a ninc-lines
proof of an affirmative answer to this question.

A sel A of m squares of the form {z,z + 1} x [y,y I 1) for z,y € Z =
{0,-1,1,-2,2,...} in the plane was called an m-fig in [7]. Again, isomor-
phism is defined with respect to translation and/or rotation by a multiple
of 90°.

For some integer k with 1 < k < m = |A] the k-deck of A was defined as
the multiset of all subsets of A of cardinality m—k given up to isomorphism.
Maynard proved the following theorem which easiiy impiies an affirmative
answer to the question in {3].

Theorem 2 (Maynard [7]) Let m and k be integers. If m—k > 7, then
all m-figs are unigucly determined (up to isomorphism) by their k-decks.

Maynard remarks that it is not clear whether the bound of 7 in Theorem
2 is best-possible. Using arguments of a more combinatorial nature we will
show that it can be improved to 5. In fact, our proof shows that 4 seems
to be the right bound.

We will use a different way to formulate the problem Instead of square-
celled animals or m-figs, we will consider finite sets of (distinct) points in
the plane R2. This clearly allows a more general setting for the problem.
In order to turn a square-celled animal or an m-fig into a set of points one
can c.g. just consider the set of centers of the squares.

Let A, B C R? be two finite sets. We say that A and B are isomorphic
and write A & B, if one can be transformed into the other hy translation
and/or rotation by a multiple of 80°. For some k > 1 we define the k-deck
of 4 as a function d4 4 defined on scts S of k points in R? as

dax(S)=1{S' C A] &' = S}

(Note that m — k is replaced by k.) Using this notation, Theorem 2 can be
restated as follows.

Theorem 2’ (Maynard [7]) Every finite set A C Z? with {A] >
uniquely determined (up to isomorphism) by its 7- deck.

Our main result whose proof will be postponed to the next section is
the following.
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Theorem 3 Every finite set A C R? with |A| > 5 is uniquely delermined
(up to isomorphism) by its 5-deck.

Our proof and intuition suggest that the 4-deck should actually be suf-
ficient. for reconstruction (oniy the very iast part of the prooi uses the
5-deck). It is quite easy to see that the 2-deck can not carry enough infor-
mation to determine every set uniquely. Hehce the best-possibie bound for
Theorem 3 is at least 3.

‘I'he reader who is interested in the graph-theoretic origins of the rccon-
struction problems is referred to Bondy’s excellent survey [2]. It is obvious
that similar reconstruction problems can be considered for subsets of R"
using various notions of isomorphism. Such problems were studied e.g. in
(1}, {8), [9), [10], {11] and [12].

2 Proof of the Theorem 3

Let A C R? be any finite set. Consider the group G of automorphisms of
the plane R* that is generated by translations and rotations by multiples
of 90°. For some k with 2 < k < |A| let S be a set of representatives of the
orbits defined by the action of G on sets S C R? of cardinality k.

For all sets S C R? with |S| = k& — 1 we have

dap-1(S) = - 2 E da 1(S) - de (),
141 = 151 ses,dan(s)>0

i.e. the k-deck of A uniquely determines the (k — 1)-deck of A. We note
that this observation corresponds to Kelly’s lemma for finite graphs [5] (see
also [2]). During the proof we may therefore use the k-deck of A for all
k <5.

Whenever we say that ‘A is uniquely determined’ we implicitly mean
‘A is uniquely determined up to isomorphism’. If it is suitable for our
exposition, then we will replace A by a set isomorphic to 4.

We choose (Z,4) € R? such that
(i) da2({(0,0),(,9)}) >0,
(i) given condition (i), # is maximum and
(iii) given condition (ii), 7 is maximum,

ie. (&,§) is the maximal element of {(z,y) - (z',¥")|(2,9), (=',¥") € A}
under lexicographic order.
Considering the smallest ‘rectangle’ of the form [z1,z2] X [y1,¥3] that

~~~~~
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Case 1. ds2({(0,0),(z,9)}) = 1.

We assume without loss of generality that (0,0), (%,7) € A. For all (x, y) €
R?\ {(0,0), (Z,#)} we have that (see left part of Figure 2)

IA n {(EL‘, y)’ (5 -z, g"‘ y)‘}' = dA‘3({($, y)a (0$0)1 (i: ﬁ)})

tested positions cnply position
| a9 | &9
G
E-=4} ¥) (=)
(z,y) )
™
(0,0) (0,0)

Figure 2.

If
l’iﬁ {(z,y),(:?: - :1:,17 - y)}l € {01 2}

for all (x,y) € R?\ {(0,0),(2.9)} with (z,y) # (# — ,§ — y), then A is
uniquely determined. Hence we assume that

'A n {(z"yl): (i- a:’,ﬁ - !/')}I =1

for some (x',:y') € R? \ {(0,0),(53,17)} with (x’y) # (5: - wag - y)' We
assume without loss of generality that (z',3') € A. Now we have that for
all (z,y) € R?\ {(0,0), (',4"), (%,§)} (see right part of Figure 2),

140 {(z,9)}| = das({(z,9),(0,0), (z',9'), (Z,)})
and 4 is uniquely determined.
Case 2. d4.2({(0,0),(Z,%)}) =2.

it is easy to sce that the smallest rectangle of the form [z1, 3] x [y1,¥2]
that contains A is a square in this case. We may therefore assime without
loss of generality that A C [0,%] x [0,Z]) and that AN ({0} x R) # 9,
An({z} xR)#0, AN(R x {0}) # @ and AN(R x {z}) #0. Let

tere = max{y > 0|da,3({(0,), (,0),(Z,7 +y)}) > 0 for some z € R}

236



and let

Tpottom = max{z 2 0] da s({(0, ert), (,0), (£, + per)}) > 0}

Let Yright = § + Yiert and Ziop = Thottom — §. We may assume without loss
of generality that (see Figure 3)

(0, ylefc), (53, yﬂght)y (Ztop: 5:)’ (3boecom, 0) €4

and that (oxy) g A for all y < yenty (i’y) gAforaly> Yright) (‘515) gA
for all z < z4op and (z,0) ¢ A for all z > Tyottom.

1 ctop = (Ttop, F)

Cright = (&, yright)

4 cren = (0, Yier)

P o

Cbottom = (Tbottom,0)

Figure 3.
By the choice of yere and Tpotcom, We know that
aft > max{xt'op; Z — Thottom, T — yriglxt}‘

Furthermore, if Y1er = MaX{Trop, & — Thottom} and et > & — Yright, then
Yleft = Ttop and Z — Yright = % — Tpottom and, if Yen = F — Yright s then

Yieft = Ttop = Z- Yright = Z — Zpottom-

Let cienn = (0, Ytert) Cright = (z, yright): Ctop = (ﬁmpsi) and cpottom =
(®bottom, 0). Let C = {cleftscﬂghtsctops cbottom}-

We will now consider different cases. Note that the definitions of Z, Yrignt,
Thottom, Yieft and Zeop just used the 2- or 3-deck of A. We will therefore be
able to determine in which case we are.

Case 2.1. Yiere > max{Trop, £ — Tottom, & — Yright }-
For all (z,) € R\ {Ciefr, Chottom, Cright} We have

'A n {(a"’ y)}‘ = dA.“({(xv y)’ Clefts Cbhottom s cright.})

and A is uniquely determined.
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Case 2.2. Yot = max{Trop, Z = Thattam, & — Yright }-
If Yieet # & — Yright, then, as noted above,
o Vet = Ttop # & — Yright = Z — Twottom.
For all (z,y) € R?\ {clen,cbmom.,c,;m} we have
[AN{(z, )} = da,a({(z,9), Cletr, Cbottom, Cright })

and A is uniquely determined. Hence we may assume now that yien =
Z — Yright Which implies that yiefs = Ztop = Z — Yright = £ — Tbottom-

For x = (z,y) € R? let Xien = (2,9), Xright = (£ — Z, Yright — (¥ — Yiett))s
Xtop = (ztop +(y- Weft), & — Z), Xbottom = (Tvottom — (¥ — Yert), Z) (see
Figure 4) and '

Xx = {xleft, Xright s Xtop, xbottom}-
It is easy to see that |X,| = 1 for exactly one x € R? and that | Xy| = 4
for all other x € R2.

\ ]
Kright
Atop
Xpottom
Xieft
" . \
Figure 4.

For all (z,y) € R?\ C we have

'A n Xxl = dA,s({(z’ ¥), Ciefts cright})~

For the unique x = (z,y) € R?\ C with |Xx| = 1, the intersection AnXx
is uniquely determined. Similarly, for all x = (z, y) € R?\C with | Xx| =
and d 3({(z,¥), Crefe, Cright}) € {0,4}, the intersection AN X, is nmquely
determined. We will therefore not conmder these x = (z,y) € R*\ C again
in what follows.

We note the following observation. If x = (z,y) € R? \ C is such that

dA.3({(z; y)) Cleft, cright}) = 21
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then there are two different possibilities. The set (A N Xx) U {Ciett, Cright }
is either isomorphic to

{xletty Xrights Cleft crlght} or to {xlefh Xbottom) Clefts cright}'
It is easy to see that we can differentiate these two possibilities by consid-
ering ’

2
d ,a({Xieft, Xright, Cleft, Cright }) and d4,4({Xieft, Xbottom Cleft, Cright })-

Case 2.2.1. da3({{z,¥'), Clofs, Crigne }) = 1 for some x' = (2',3') € R?\C
With IXx’I = 4-

We assume without loss of generality that x' = xj,, = (2',y) € A. Now
for all (z,y) € R?\ (C U {(z',%')}) we have that

AN {(z, )} = das({(z,9), (2", ¥'), Crere, Crigne}),
and A is uniquely determined. Hence we can assume that
da,s({(z,9); Crere; Crigne}) # 1
for all (z,y) € R?\ C with | Xx| = 4.
Case 2.2.2. da3({(z',9'), Ciert, Crignt }) = 3 for some x' = (2',9') € R2\C.

We assume without loss of generality that x|, , X} ¢10m» Xtop € 4-
Let x = (z,y) € R? \ (CU Xx). If das({(z,y), Clett, Crignt }) = 3, then
there are the following four possibilities (see Figure 5)

a) Xegnt € 4,
b) Xtop & A,
C) Xiery & A or

d) Xbottom g A.
a) b) c) d)

L)L )
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Let S1 = {Xieft, Xiop: Cleft Cright }, S2 = {Xrights X{ege» Clett, Cright} and S3 =
{xbottoma x{gfta Ciett Cright}o

Given possibility a) we obtain d4,4(S;) = 3. Given possibility b) we
obtain dq,4(S1) = 2, dg 4(S2) = 2 and dg 4(53) = 3. Given possibility ¢)
we obtain da,4(S1) = 2 and d4,4(S3) = 3. Given possibility d) we obtain
@4,4(S1) = 2,d4,4(S2) = 2 and dg 4(S3) = 2. We can therefore differentiate
all four possibilities. )

If da3({(z,¥), Ciett, Cright }) = 2, then a similar case analysis as above
again using the test sets Sy, Sz and S3 leads to the same conclusion. Hence
also in this case the set A is uniquely determined and we can assume that

das({(z,9), Crett, cright}) #3
for all (z,y) € R?\ C.

Cause 2.2.8. dA,S({(15y y), Cleft s cright}) 3 {1»3} for all x = (z, y) € R? \C
with | Xy| = 4.

If da,s({(z,¥), Ciett; Crigns }) # 2 for all (z,y) € R2\ C, then ‘A is uniquely
determined (by the observations at the end of Case 2.2). Hence we assume
that

dA.3({(zl’ 1/'), Cleft, cright}) =2

for some x' = (2',%') € R?\ C. As noted at the end of Case 2.2, there
are essentially two different possibilities for the intersection of A with the
sct Xy . Since both cascs can be treated similarly, we may assume without
loss of generality, that

Kieft» Xbottom € A-

Now for all (z,y) € R?\ (C U {X}.t,, Xhottom}) We have that

'A n {(mv y)}' = dAﬁ({(“’* y)%x;efv x;)cttom’ Cleft, cright})’

A is uniquely determined and the proof is complete. (Note that this was
the only time we actually used the 5-deck.) O

For the analogous question in R.! algebraic and combinatorial arguments
lead to the same result. Both imply that every finite set in R! with at least
4 elements is uniquely determined up to translation and reflection, i.e. the
mapping ¢ — —z, by its 4-deck. For higher dimensions the combinatorial
arguments get more and more involved and difficult whereas the algebraic
arguments remain as simple and powerful as was demonstrated in [7].
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