Four traps are almost always enough to catch a square-celled animal

Dieter Rautenbach¹

Equipe Combinatoire, Université Paris 6, 175 rue du Chevaleret, 75013 Paris, France, email: rauten@math2.rwth-aachen.de

Abstract. In a recent paper [7] Maynard answered a question of Harary and Manvel [3] about the reconstruction of square-celled animals. One of his results relied on a general algebraic approach due to Alon, Caro, Krasikov and Roditty [1]. Applying arguments of a more combinatorial nature we improve this result and give an answer to a question raised by him in [7].

Keywords. Reconstruction; Square-celled animal; Deck

1 Introduction

A square-celled animal is a finite set of rookwise connected squares which form a simply connected region in the plane. A sub-animal arises from a square-celled animal by deleting any one square and two animals will be called *isomorphic* if one can be transformed into the other by translation and/or rotation by a multiple of 90°.

In [4], [6] and [13] the problem of counting square-celled animals was mentioned and studied and in [3] Harary and Manvel considered the problem of reconstructing a square-celled animal from the multiset of all its sub-animals given up to isomorphism. For some examples see the following figure.

Figure 1.

In Figure 1, A_1 , A_3 , A_4 and A_6 are square-celled animals, A_2 is not simply connected and A_5 is not rookwise connected. A_4 , A_5 and A_6 are the three sub-animals of A_3 , A_5 is a sub-animal but not a square-celled animal and A_4 and A_6 are isomorphic.

¹The author was supported by a post-doctoral DONET grant.

The main result of [3] was the following.

Theorem 1 (Harary and Manvel [3]) Every square-celled animal is uniquely determined (up to isomorphism) by the multiset of all its subanimals (given up to isomorphism).

Harary and Manvel [3] asked if Theorem 1 is still true for animals that are not simply connected. Using a general algebraic approach due to Alon, Caro, Krasikov and Roditty [1], Maynard [7] was able to give a ninc-lines proof of an affirmative answer to this question.

A set A of m squares of the form $[x, x + 1] \times [y, y + 1]$ for $x, y \in \mathbb{Z} = \{0, -1, 1, -2, 2, ...\}$ in the plane was called an m-fig in [7]. Again, isomorphism is defined with respect to translation and/or rotation by a multiple of 90° .

For some integer k with $1 \le k < m = |A|$ the k-deck of A was defined as the multiset of all subsets of A of cardinality m-k given up to isomorphism. Maynard proved the following theorem which easily implies an affirmative answer to the question in [3].

Theorem 2 (Maynard [7]) Let m and k be integers. If $m-k \geq 7$, then all m-figs are uniquely determined (up to isomorphism) by their k-decks.

Maynard remarks that it is not clear whether the bound of 7 in Theorem 2 is best-possible. Using arguments of a more combinatorial nature we will show that it can be improved to 5. In fact, our proof shows that 4 seems to be the right bound.

We will use a different way to formulate the problem. Instead of square-celled animals or m-figs, we will consider finite sets of (distinct) points in the plane \mathbb{R}^2 . This clearly allows a more general setting for the problem. In order to turn a square-celled animal or an m-fig into a set of points one can e.g. just consider the set of centers of the squares.

Let $A, B \subseteq \mathbb{R}^2$ be two finite sets. We say that A and B are isomorphic and write $A \cong B$, if one can be transformed into the other by translation and/or rotation by a multiple of 90°. For some $k \geq 1$ we define the k-deck of A as a function $d_{A,k}$ defined on sets S of k points in \mathbb{R}^2 as

$$d_{A,k}(S) = |\{S' \subseteq A| \ S' \cong S\}|.$$

(Note that m-k is replaced by k.) Using this notation, Theorem 2 can be restated as follows.

Theorem 2' (Maynard [7]) Every finite set $A \subseteq \mathbb{Z}^2$ with $|A| \ge 7$ is uniquely determined (up to isomorphism) by its 7-deck.

Our main result whose proof will be postponed to the next section is the following.

Theorem 3 Every finite set $A \subseteq \mathbb{R}^2$ with $|A| \ge 5$ is uniquely determined (up to isomorphism) by its 5-deck.

Our proof and intuition suggest that the 4-deck should actually be sufficient for reconstruction (only the very last part of the proof uses the 5-deck). It is quite easy to see that the 2-deck can not carry enough information to determine every set uniquely. Hence the best-possible bound for Theorem 3 is at least 3.

The reader who is interested in the graph-theoretic origins of the reconstruction problems is referred to Bondy's excellent survey [2]. It is obvious that similar reconstruction problems can be considered for subsets of \mathbb{R}^n using various notions of isomorphism. Such problems were studied e.g. in [1], [8], [9], [10], [11] and [12].

2 Proof of the Theorem 3

Let $A \subseteq \mathbb{R}^2$ be any finite set. Consider the group G of automorphisms of the plane \mathbb{R}^2 that is generated by translations and rotations by multiples of 90°. For some k with $2 \le k \le |A|$ let S be a set of representatives of the orbits defined by the action of G on sets $S \subseteq \mathbb{R}^2$ of cardinality k.

For all sets $\tilde{S} \subset \mathbb{R}^2$ with $|\tilde{S}| = k - 1$ we have

$$d_{A,k-1}(\tilde{S}) \ = \ \frac{1}{|A|-|\tilde{S}|} \sum_{S \in \mathcal{S}, d_{A,k}(S) > 0} d_{A,k}(S) \cdot d_{S,k-1}(\tilde{S}),$$

i.e. the k-dcck of A uniquely determines the (k-1)-deck of A. We note that this observation corresponds to Kelly's lemma for finite graphs [5] (see also [2]). During the proof we may therefore use the k-deck of A for all k < 5.

Whenever we say that 'A is uniquely determined' we implicitly mean 'A is uniquely determined up to isomorphism'. If it is suitable for our exposition, then we will replace A by a set isomorphic to A.

We choose $(\tilde{x}, \tilde{y}) \in \mathbf{R}^2$ such that

- (i) $d_{A,2}(\{(0,0),(\bar{x},\bar{y})\}) > 0$,
- (ii) given condition (i), \tilde{x} is maximum and
- (iii) given condition (ii), \tilde{y} is maximum,

i.e. (\tilde{x}, \tilde{y}) is the maximal element of $\{(x, y) - (x', y') | (x, y), (x', y') \in A\}$ under lexicographic order.

Considering the smallest 'rectangle' of the form $[x_1, x_2] \times [y_1, y_2]$ that contains A, it is easy to see that $d_{A,2}(\{(0,0),(\tilde{x},\tilde{y})\}) \leq 2$.

Case 1. $d_{A,2}(\{(0,0),(\tilde{x},\tilde{y})\})=1$.

We assume without loss of generality that $(0,0), (\tilde{x},\tilde{y}) \in A$. For all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0), (\tilde{x},\tilde{y})\}$ we have that (see left part of Figure 2)

$$|A \cap \{(x,y), (\tilde{x}-x, \tilde{y}-y)\}| = d_{A,3}(\{(x,y), (0,0), (\tilde{x},\tilde{y})\}).$$

Figure 2.

If

$$|A\cap\{(x,y),(\tilde{x}-x,\tilde{y}-y)\}|\in\{0,2\}$$

for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0), (\tilde{x},\tilde{y})\}$ with $(x,y) \neq (\tilde{x}-x,\tilde{y}-y)$, then A is uniquely determined. Hence we assume that

$$|A \cap \{(x',y'), (\tilde{x}-x', \tilde{y}-y')\}| = 1$$

for some $(x', y') \in \mathbf{R}^2 \setminus \{(0,0), (\tilde{x}, \tilde{y})\}$ with $(x,y) \neq (\tilde{x} - x, \tilde{y} - y)$. We assume without loss of generality that $(x', y') \in A$. Now we have that for all $(x,y) \in \mathbf{R}^2 \setminus \{(0,0), (x',y'), (\tilde{x},\tilde{y})\}$ (see right part of Figure 2),

$$|A\cap\{(x,y)\}|=d_{A,4}(\{(x,y),(0,0),(x',y'),(\tilde{x},\tilde{y})\})$$

and A is uniquely determined.

Case 2.
$$d_{A,2}(\{(0,0),(\tilde{x},\tilde{y})\})=2.$$

It is easy to see that the smallest rectangle of the form $[x_1, x_2] \times [y_1, y_2]$ that contains A is a square in this case. We may therefore assume without loss of generality that $A \subseteq [0, \tilde{x}] \times [0, \tilde{x}]$ and that $A \cap (\{0\} \times \mathbb{R}) \neq \emptyset$, $A \cap (\{\tilde{x}\} \times \mathbb{R}) \neq \emptyset$, $A \cap (\mathbb{R} \times \{0\}) \neq \emptyset$ and $A \cap (\mathbb{R} \times \{\tilde{x}\}) \neq \emptyset$. Let

$$y_{\text{left}} = \max\{y \ge 0 | d_{A,3}(\{(0,y),(x,0),(\tilde{x},\tilde{y}+y)\}) > 0 \text{ for some } x \in \mathbf{R}\}$$

and let

$$x_{\text{bottom}} = \max\{x \ge 0 | d_{A,3}(\{(0, y_{\text{left}}), (x, 0), (\tilde{x}, \tilde{y} + y_{\text{left}})\}) > 0\}.$$

Let $y_{\text{right}} = \tilde{y} + y_{\text{left}}$ and $x_{\text{top}} = x_{\text{bottom}} - \tilde{y}$. We may assume without loss of generality that (see Figure 3)

$$(0, y_{\text{left}}), (\tilde{x}, y_{\text{right}}), (x_{\text{top}}, \tilde{x}), (x_{\text{bottom}}, 0) \in A$$

and that $(0, y) \notin A$ for all $y < y_{left}$, $(\tilde{x}, y) \notin A$ for all $y > y_{right}$, $(x, \tilde{x}) \notin A$ for all $x < x_{top}$ and $(x, 0) \notin A$ for all $x > x_{bottom}$.

Figure 3.

By the choice of y_{left} and x_{bottom} , we know that

$$y_{\text{left}} \geq \max\{x_{\text{top}}, \tilde{x} - x_{\text{bottom}}, \tilde{x} - y_{\text{right}}\}.$$

Furthermore, if $y_{\text{left}} = \max\{x_{\text{top}}, \tilde{x} - x_{\text{bottom}}\}$ and $y_{\text{left}} > \tilde{x} - y_{\text{right}}$, then $y_{\text{left}} = x_{\text{top}}$ and $\tilde{x} - y_{\text{right}} = \tilde{x} - x_{\text{bottom}}$ and, if $y_{\text{left}} = \tilde{x} - y_{\text{right}}$, then

$$y_{\text{left}} = x_{\text{top}} = \tilde{x} - y_{\text{right}} = \tilde{x} - x_{\text{bottom}}.$$

Let $\mathbf{c}_{\text{left}} = (0, y_{\text{left}})$, $\mathbf{c}_{\text{right}} = (\bar{x}, y_{\text{right}})$, $\mathbf{c}_{\text{top}} = (x_{\text{top}}, \bar{x})$ and $\mathbf{c}_{\text{bottom}} = (x_{\text{bottom}}, 0)$. Let $C = \{\mathbf{c}_{\text{left}}, \mathbf{c}_{\text{right}}, \mathbf{c}_{\text{top}}, \mathbf{c}_{\text{bottom}}\}$.

We will now consider different cases. Note that the definitions of \tilde{x} , y_{right} , x_{bottom} , y_{left} and x_{top} just used the 2- or 3-deck of A. We will therefore be able to determine in which case we are.

Case 2.1. $y_{\text{left}} > \max\{x_{\text{top}}, \tilde{x} - x_{\text{bottom}}, \tilde{x} - y_{\text{right}}\}.$

For all $(x, y) \in \mathbb{R}^2 \setminus \{c_{\text{left}}, c_{\text{bottom}}, c_{\text{right}}\}$ we have

$$|A \cap \{(x,y)\}| = d_{A,4}(\{(x,y), \mathbf{c}_{\mathsf{left}}, \mathbf{c}_{\mathsf{bottom}}, \mathbf{c}_{\mathsf{right}}\})$$

and A is uniquely determined.

Case 2.2. $y_{\text{left}} = \max\{x_{\text{top}}, \tilde{x} - x_{\text{bottom}}, \tilde{x} - y_{\text{right}}\}.$

If $y_{\text{left}} \neq \tilde{x} - y_{\text{right}}$, then, as noted above,

•
$$y_{\text{left}} = x_{\text{top}} \neq \tilde{x} - y_{\text{right}} = \tilde{x} - x_{\text{bottom}}$$
.

For all $(x, y) \in \mathbb{R}^2 \setminus \{c_{\text{left}}, c_{\text{bottom}}, c_{\text{right}}\}$ we have

$$|A \cap \{(x,y)\}| = d_{A,4}(\{(x,y), \mathbf{c}_{\mathsf{left}}, \mathbf{c}_{\mathsf{bottom}}, \mathbf{c}_{\mathsf{right}}\})$$

and A is uniquely determined. Hence we may assume now that $y_{\text{left}} = \bar{x} - y_{\text{right}}$ which implies that $y_{\text{left}} = x_{\text{top}} = \bar{x} - y_{\text{right}} = \bar{x} - x_{\text{bottom}}$.

For $\mathbf{x} = (x, y) \in \mathbf{R}^2$ let $\mathbf{x}_{left} = (x, y)$, $\mathbf{x}_{right} = (\bar{x} - x, y_{right} - (y - y_{left}))$, $\mathbf{x}_{top} = (x_{top} + (y - y_{left}), \bar{x} - x)$, $\mathbf{x}_{bottom} = (x_{bottom} - (y - y_{left}), x)$ (see Figure 4) and

$$X_{\mathbf{x}} = \{\mathbf{x}_{\text{left}}, \mathbf{x}_{\text{right}}, \mathbf{x}_{\text{top}}, \mathbf{x}_{\text{bottom}}\}.$$

It is easy to see that $|X_x| = 1$ for exactly one $x \in \mathbb{R}^2$ and that $|X_x| = 4$ for all other $x \in \mathbb{R}^2$.

Figure 4.

For all $(x,y) \in \mathbf{R}^2 \setminus C$ we have

$$|A \cap X_{\mathbf{x}}| = d_{A,3}(\{(x,y), \mathbf{c}_{left}, \mathbf{c}_{right}\}).$$

For the unique $\mathbf{x} = (x,y) \in \mathbf{R}^2 \setminus C$ with $|X_{\mathbf{x}}| = 1$, the intersection $A \cap X_{\mathbf{x}}$ is uniquely determined. Similarly, for all $\mathbf{x} = (x,y) \in \mathbf{R}^2 \setminus C$ with $|X_{\mathbf{x}}| = 4$ and $d_{A,3}(\{(x,y),\mathbf{c}_{\text{left}},\mathbf{c}_{\text{right}}\}) \in \{0,4\}$, the intersection $A \cap X_{\mathbf{x}}$ is uniquely determined. We will therefore not consider these $\mathbf{x} = (x,y) \in \mathbf{R}^2 \setminus C$ again in what follows.

We note the following observation. If $\mathbf{x} = (x, y) \in \mathbf{R}^2 \setminus C$ is such that

$$d_{A,3}(\{(x,y),\mathbf{c_{left}},\mathbf{c_{right}}\})=2,$$

then there are two different possibilities. The set $(A \cap X_x) \cup \{c_{left}, c_{right}\}$ is either isomorphic to

It is easy to see that we can differentiate these two possibilities by considering

$$d_{A,4}(\{\mathbf{x}_{\text{left}},\mathbf{x}_{\text{right}},\mathbf{c}_{\text{left}},\mathbf{c}_{\text{right}}\})$$
 and $d_{A,4}(\{\mathbf{x}_{\text{left}},\mathbf{x}_{\text{bottom}},\mathbf{c}_{\text{left}},\mathbf{c}_{\text{right}}\})$.

Case 2.2.1.
$$d_{A,3}(\{(x',y'), c_{\text{left}}, c_{\text{right}}\}) = 1$$
 for some $x' = (x',y') \in \mathbb{R}^2 \setminus C$ with $|X_{x'}| = 4$.

We assume without loss of generality that $\mathbf{x}' = \mathbf{x}'_{left} = (x', y') \in A$. Now for all $(x, y) \in \mathbb{R}^2 \setminus (C \cup \{(x', y')\})$ we have that

$$|A \cap \{(x,y)\}| = d_{A,4}(\{(x,y),(x',y'),c_{\text{left}},c_{\text{right}}\}),$$

and A is uniquely determined. Hence we can assume that

$$d_{A,3}(\{(x,y),c_{left},c_{right}\}) \neq 1$$

for all $(x, y) \in \mathbb{R}^2 \setminus C$ with $|X_x| = 4$.

Case 2.2.2.
$$d_{A,3}(\{(x',y'), c_{left}, c_{right}\}) = 3$$
 for some $x' = (x',y') \in \mathbb{R}^2 \setminus C$.

We assume without loss of generality that $\mathbf{x}'_{\text{left}}, \mathbf{x}'_{\text{bottom}}, \mathbf{x}'_{\text{top}} \in A$. Let $\mathbf{x} = (x, y) \in \mathbb{R}^2 \setminus (C \cup X_{r'})$. If $d_{A,2}(\{(x, y), c_{\text{left}}, c_{\text{right}}\}) =$

Let $\mathbf{x} = (x, y) \in \mathbf{R}^2 \setminus (C \cup X_{\mathbf{x}'})$. If $d_{A,3}(\{(x, y), \mathbf{c}_{left}, \mathbf{c}_{right}\}) = 3$, then there are the following four possibilities (see Figure 5)

- a) $x_{right} \not\in A$,
- b) $\mathbf{x}_{top} \notin A$,
- c) $\mathbf{x}_{left} \notin A$ or
- d) $x_{bottom} \notin A$.

Figure 5.

Let $S_1 = \{\mathbf{x}_{left}, \mathbf{x}'_{left}, \mathbf{c}_{left}, \mathbf{c}_{right}\}$, $S_2 = \{\mathbf{x}_{right}, \mathbf{x}'_{left}, \mathbf{c}_{left}, \mathbf{c}_{right}\}$ and $S_3 = \{\mathbf{x}_{bottom}, \mathbf{x}'_{left}, \mathbf{c}_{left}, \mathbf{c}_{right}\}$.

Given possibility a) we obtain $d_{A,4}(S_1) = 3$. Given possibility b) we obtain $d_{A,4}(S_1) = 2$, $d_{A,4}(S_2) = 2$ and $d_{A,4}(S_3) = 3$. Given possibility c) we obtain $d_{A,4}(S_1) = 2$ and $d_{A,4}(S_2) = 3$. Given possibility d) we obtain $d_{A,4}(S_1) = 2$, $d_{A,4}(S_2) = 2$ and $d_{A,4}(S_3) = 2$. We can therefore differentiate all four possibilities.

If $d_{A,3}(\{(x,y),c_{left},c_{right}\})=2$, then a similar case analysis as above again using the *test sets* S_1 , S_2 and S_3 leads to the same conclusion. Hence also in this case the set A is uniquely determined and we can assume that

$$d_{A,3}(\{(x,y),\mathbf{c}_{\text{left}},\mathbf{c}_{\text{right}}\}) \neq 3$$

for all $(x,y) \in \mathbb{R}^2 \setminus C$.

Case 2.2.3. $d_{A,3}(\{(x,y), c_{left}, c_{right}\}) \notin \{1,3\}$ for all $\mathbf{x} = (x,y) \in \mathbf{R}^2 \setminus C$ with $|X_{\mathbf{x}}| = 4$.

If $d_{A,3}(\{(x,y),c_{left},c_{right}\}) \neq 2$ for all $(x,y) \in \mathbb{R}^2 \setminus C$, then A is uniquely determined (by the observations at the end of Case 2.2). Hence we assume that

$$d_{A,3}(\{(x',y'),c_{\text{left}},c_{\text{right}}\})=2$$

for some $\mathbf{x}' = (x', y') \in \mathbf{R}^2 \setminus C$. As noted at the end of Case 2.2, there are essentially two different possibilities for the intersection of A with the set $X_{\mathbf{x}'}$. Since both cases can be treated similarly, we may assume without loss of generality, that

$$\mathbf{x}'_{\text{left}}, \mathbf{x}'_{\text{bottom}} \in A$$
.

Now for all $(x,y) \in \mathbb{R}^2 \setminus (C \cup \{x'_{left}, x'_{bottom}\})$ we have that

$$|A \cap \{(x,y)\}| = d_{A,5}(\{(x,y), \mathbf{x}'_{\text{left}}, \mathbf{x}'_{\text{bottom}}, \mathbf{c}_{\text{left}}, \mathbf{c}_{\text{right}}\}),$$

A is uniquely determined and the proof is complete. (Note that this was the only time we actually used the 5-deck.) \Box

For the analogous question in \mathbf{R}^1 algebraic and combinatorial arguments lead to the same result. Both imply that every finite set in \mathbf{R}^1 with at least 4 elements is uniquely determined up to translation and reflection, i.e. the mapping $x \mapsto -x$, by its 4-deck. For higher dimensions the combinatorial arguments get more and more involved and difficult whereas the algebraic arguments remain as simple and powerful as was demonstrated in [7].

Acknowledgement. I would like to thank the referee for her/his careful reading and useful remarks.