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Abstract

We tackle the problem of estimating the Shannon capacity of cycles
of odd length. We present some strategies which allow us to find tight
bounds on the Shannon capacity of cycles of various odd lengths, and
suggest that the difficulty of obtaining a general result may be related
to different behaviours of the capacity, depending on the “structure”
of the odd integer representing the cycle length. We also describe the
outcomes of some experiments, from which we derive the evidence
that the Shannon capacity of odd cycles is extremely close to the
value of the Lovdasz theta function.

1 Introduction

The purpose of this note is to study the Shannon capacity of odd cycles,
and give some insights into this strikingly difficult problem, which remains
open even for the 7-cycle.

The notion of capacity of a graph has been introduced by Shannon
in [12), and after that was labeled as Shannon capacity. This concept arises
in connection with a graph representation of the problem of communicating
messages in a zero-error channel. One considers a graph G, whose vertices
are letters from a given alphabet, and where adjacency indicates that two
letters can be confused. In such a setting, the maximum number of one-
letter messages that can be sent without danger of confusion is clearly
given by a(G), the independence number of G. If a(G*) stands for the
maximum number of k-letter messages that can be safely communicated,
we immediately see that a(G*) > a(G)*, and that equality does not hold
in general (see, e.g., [10] for some examples).
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The Shannon capacity of G is the number
= lim * k
0(G) = lim \/a(G*),

which satisfies O(G) > a(G), where again equality does not need to occur.

Shannon capacity can be defined in terms of strong graph products. We
say that two vertices are adjacent if they are either connected by an edge
or equal. Then for two graphs G and H, we define their strong product
G - H as the graph with vertex set V(G) x V(H), where (i, j) is adjacent
to (¢, j') if and only if ¢ is adjacent to 7' in G and j is adjacent to j’ in
H. If G* denotes the strong product of k copies of G, then a(G*) is the
independence number of G¥.

It was very early recognized that the determination of the Shannon
capacity is a very difficult problem, even for small and simple graphs (see
[7, 11]). Some advances have been obtained in [4], where a number of nice
estimates for the size of the maximum independent set of certain powers of
odd cycles have been determined.

In a famous paper of 1979, Lovasz introduced the “theta function” 9(G),
with the explicit goal of estimating ©(G) [10].

There are several equivalent definitions of the Lovasz theta function [9].
We give here the one that follows from Theorem 5 in [10].

Definition 1 Let A be the family of matrices A such that a;; = 0 if i and
Jj ore adjacent in G, and let A\ (A) > A2(A) > ... > A\ (A) denote the
eigenvalues of A. Then

- A1 (4)
"0 =132}

Combining the fact that ©(G) < J(G) with the easy lower bound
©(Cs) > /5, Lovész has been able to determine exactly the capacity of
Cs, the pentagon, which indeed turns out to be /5.

The last section of [10] raises a number of interesting questions, e.g.,
determining the Shannon capacity of odd cycles (which we will denote
by Cr, with the subscript indicating the length), and saying whether or
not 9(G) = O(G). The latter question was answered in the negative by
Haemers, who showed in [8] that the capacity of the complement of the
Schdfli graph is strictly less than the value of its theta function.

Lovasz theta function has the remarkable property of being computable
in polynomial time, despite being sandwiched between two hard to compute
integers, i.e., clique and chromatic number. This property has stimulated
a number of studies on using the theta function to analyze the approxima-
bility of clique and chromatic number (see, e.g., [6, 13]).
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For several families of simple graphs, the value of ¥(G) is given by
explicit formulas. For instance, in the case of odd cycles of length n we
have

_ ncos(m/n)

UCa) = 1 +cos(m/n)

Lovész observed that the question of the truth of 9(G) = O(G) pinpoints
the following crucial difficulty: in all cases where the value of O(G) is
exactly known, there is some k such that o(G*) = ©(G)*. The key remark
is now that, if 9(G) = ©(G) for, say, the 7-cycle, then no such & can exist,
since no power of 9(C7) is an integer (as one can easily verify by checking
the above expression for 9(Cp,)).

Shannon capacity and Lovész theta function attracted a lot of interest
in the scientific community, because of the applications to communication
issues, but also of the connections with some central combinatorial and
computational questions in graph theory, like computing the largest clique
and finding the chromatic number of a graph. The reader can find in
[1, 2, 3, 5] a sample of results and applications of ¥(G) and ©(G). Despite
a lot of work in the field, many basic open questions remain open, notably
that of evaluating the Shannon capacity of C7, and, more in general, of odd
cycles.

In this paper, we present some strategies which allow us to improve
on the estimates of the Shannon capacity of odd cycles [4], and to point
out different behaviours of the capacity, depending on the structure of the
odd integer representing the cycle length (see the summary of bounds in
Table 1).

Section 2 is centered around a Theorem which provides a tight lower
bound on a(C,‘:;}l_H), and thus allows us to establish a good estimate of
O(Cizes1)-

In Section 3 we make an efficient use of the expansion technique intro-
duced in [4], and derive good estimates on a(CZ,,) starting from a(C%).

In Section 4 we finally present some experimental results which, besides
improving some of the bounds obtained theoretically, add further evidence
to the fact that the Shannon capacity of odd cycles is in general extremely
close, if not equal, to the Lovész theta function.

2 A lower bound on o(C%), for n = k2¢ +1

From now on we represent C¢ as a hypercube H with d dimensions of size
n. Each cell of H corresponds to a node of C4. An independent set of C¢
is given by a subset of the corresponding cells of H, such that no two cells
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are adjacent. We specify a node of C¢, or a cell of H, with a d—tuple of
values in the range 0, 1,...,n — 1. Due to the toroidal nature of C%, we will
silently assume that the tuple’s values are computed modulo n. Note that
the cells adjacent to a cell with coordinates (41,1, ...,44) are the 3¢ — 1
cells obtained by adding {-1,0, +1} independently to each coordinate.

Example 1 In [{] it is shown that a(C7) > 7® = 343 and that one such
independent set I is given by

I= {(.'121,2:2,.’33,2331 + 239 + 223,271 +4x2 +623) : 0 < 21,%2,23 < 7},
where the last two values of the tuples are computed modulo 7.

The exact determination of the size of maximum independent sets in
C4 seems to be a very hard task, in the general case. When n is of the form
k2? + 1, Baumert et al. have proved in [4] that

«ch=(5)" "

Here we now show that a very good lower bound can be obtained also
for the next power of the graph, i.e., C4*!. This lower bound will allow us
to improve upon several estimates of [4].

Theorem 1 Let k be an odd positive integer. If n = k2% + 1, then
d+1 nyd+t 1 fmNd g
oCi 2 (3) -3 (3) +=)-
Proof:

We prove the theorem by showing that an independent set for C3+! of
the required size is given by:

I = {(ir,82,...,8(d—1)sds 2t + 297 2kiy + 200~ Dkip + 20d-Dfiy 4 .
+2ki(g_1) + kia — (ia mod 2))|t =0,...,(k—3)/2+ (ig mod 2)},
(1)

where we have represented C3+! as a hypercube with d + 1 dimensions of
size n.

The number of nodes in the above independent set can be easily es-
timated, observing that from the d — 1 free indices (i3, 13,... »4(d—1)) one
obtains a contribution to the bound by the factor n4~1, and that such a
factor must be multiplied by %(nk — 1), which can be obtained analyzing
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the range of variation of the index ¢, and its combination with the index
14, which depends on the parity of ¢g. Thus the size of the set I turns out

to be 1nd=1(nk — 1), which is equal to (3)*** — 1 ((g—)d + nd“).

Let us now consider the following n? subsets of nodes of Cd+1:

Ciyigynig = {(il,iz eeosbdgy1)lia41 =0,...0 — l}.

All the graphs induced by these sets of nodes are isomorphic to C.

We now define a new graph G whose nodes all correspond to a set
Ciy in,..nnia) 'ij = 0, ceay— 1, ] = 1, e ,d.

In G there is an edge between nodes (i1,%2,...,%q4) and (j1,J2,---,Jd),
if there exists at least an edge in C3+! between the set c;, ,,... i, and the
set €j, ja,....ja- It turns out that G is isomorphic to C4.

Each edge of G belongs to a clique of size 2¢, which is the maximum
value of a clique size in G. In particular, a maximum size clique in G can
be described as:

Kilyizy---,id = {(jl,j2,-~yjd)|jt € {’I:g,ig + 1},t = 1,2,...d}

For each of such maximum cliques in G, we consider nodes which are
independent in C4+!, for each individual maximal clique in G, in a single
Cn-

More precisely, we define the following subset I of C4

Ly iayia = {Jav1(G1, d2,- - - Jar1) €I and (j1,-.., ja) € Kijig,...is}-
Let now

Virsiz,onia = {10 J2s- -+ Ja+))l(G1y -+ 5 Jd) € Kiy iy,...ia }-

I is clearly an independent set in C4*! if and only if, Viy, iz, .. ., 44, We
have that

Iil Ji2,.iq 15 AN independent set, and |I N Vi1 ,izy---,idl = IIil 2y idl' (2)
We can now estimate the size of the independent set (1). For ig # n—1,
we have that
Ii;,iz,...,ia = {a: + 2t|.’L‘ = 2(d_l)ki1 + 2(d_2)ki2 R o Zk‘i(d_l)

+k’id—(id mod 2), t=0,1,..., (n—l)/2)},
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while, for iy = n — 1, we have

Liyig,..ia = {z + s + 2t|z = 200"V + 200 Dkeiy .« + 2ki(g_y) + kig,
s={0,k}, t=0,..., (k—3)/2}.

Note that all these sets satisfy condition (2).
O
Note that Theorem 1 is a generalization of Theorem 6 in [4], which
provides a bound for hypercubes of size 3.

3 Expansion

The ezpansion operation is a technique which allows us to determine an
independent set for C¢,, starting from an independent set for C¢, and has
been originally introduced by [4]. We build upon the work of [4] to optimize
the use of expansion in order to improve the best known bounds on the sizes
of some independent sets.

As in the proof of Theorem 1, we represent C¢ as a hypercube H with
d dimensions of size n.

For each subcube ¢ of size 2, uniquely identified by its corner with
coordinates ¢ = (i1, 12, . .. ,%4) (where each coordinate i; corresponds to the
minimum value for the h-th coordinate of any vertex of the subcube), the
outcome of an expansion operation with respect to one coordinate i;, of c is
given by the n + 2 hyperplanes (w.r.t. the k-th dimension) 1,2,...,iz, 4 +
1,ik,% + 1,...,n — 1,n. After repeating this operation w.r.t. each of the
d dimensions, we eventually end up with a hypercube of size n + 2.

It is trivial to verify that the expansion process maps any independent
set into a new independent set. Indeed, if we look at the expansion step
w.r.t. the ix-th coordinate, we can see that the cells belonging to all the
hyperplanes but iy and i + 1 keep the same neighbors, while the two
‘extra copies’ of the hyperplanes i and i; + 1 are adjacent to the two
hyperplanes i; + 1 and i, respectively, and such proximity does not affect
the independent set, since it was also present in the original independent
set.

In Figure 1 we have described the expansion process, applied to a cube
of dimension 2 (i.e., a square) w.r.t. its subsquare of size two located in the
upper-left corner.

Note that the square of dimension n + 2 can be decomposed into a 2 x 2
subsquare S equal to the one which had been used for the expansion, an
n X n square equal to the original one, and a copy of the two rows and
columns to which S belongs.
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Figure 1: Expansion of a square.

In a similar way, a cube of dimension 3 and size n will be expanded into
a cube of size n + 2 formed by the original cube, the size 2 cube S used for
the expansion, and a copy of the 6 planes and the 12 rows and columns to
which the 23 cubes of S belong.

In general, after expanding a hypercube H corresponding to C2 w.r.t.
one of its subcubes S of size 2, we will get a hypercube corresponding to
C4, , which can be decomposed in the union of H, S, and a copy of all the
hyperplanes (with dimensions 1,2,...,d — 1) of H which are incident onto
elements belonging to S.

Whenever a given independent set of C2 shows a regular structure, we
can count the number of its elements belonging to each hyperplane, and
thus evaluate the size of the ‘expanded’ independent set of CZ_,.

Indeed we have the following Theorems.

Theorem 2 For each n of the form k2% + 1, with k > 0 and d > 1, we
have

n+i)d—id  (i\* (n+i\? n-1 1 [i\®
(Gt 2k =R (5) = (35) 25 3)

where 7 is even.

Proof: An independent set of the required cardinality can be obtained
expanding ¢/2 times the maximum independent set of C4, whose cardinality
is kn4—1, as we have seen in Section 2.

Such independent set has the following structure: each of its n9~! cycles
Ch contains exactly k nodes, and, in general, each hyperplane (of dimension
J > 1, and thus consisting of n’ cells) contains kn’—! elements from the
independent set.

The subcube of size 2 located at the intersection of all the hyperplanes
that have been ‘replicated’ is contained in 27~7 (;‘) hyperplanes of dimension

J, each contributing to the independent set with ni(k/n) = kn’~! elements.
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W.lo.g. we may assume that the cube of size 2 contains an element of
the independent set. Then the cardinality of the independent set of C3,,
obtained by means of expansion is

k d d
d-1 r 1 d-1 2 d-2 | .. 9d—1 —
14+kn + (n) [2 (‘:)n +2 (2)11 +e 42 (d—l)n]

k(n+2)9¢+1

1+knd+k[(n+2)d—nd—2d]=
n n

After executing /2 expansions, with i even, we obtain an independent
set for C4,; whose cardinality can be evaluated in a similar way. Recalling
that n = k29 + 1, we indeed obtain

i\ ¢ ~d | (i 10Nd
(1) +knt ! 4 E[(n +i)¢-n? -9 = k(n +9)” + (/2) )|
2 n n
(]
We now apply the expansion process to the independent set of Theo-

rem 1, in order to obtain a lower bound on a(C21}).

Theorem 3 For each n of the form k2% + 1, with k > 1 odd and d > 1,

we have
.\ d+1 N dil .
a(Cr)) 2 (n;z) .n—1+%.[(%) +2d—1id_(n-i2-1)d ,
4

n

where i is even.

Proof:

An independent set with the required cardinality can be obtained by
expanding i/2 times the independent set of C4+1 | obtained from Theorem 1,
and whose cardinality is n9~!(nk — 1)/2.

The proof is similar to the previous one, but it is slightly more compli-
cated, since the structure of the independent sets of C3*! is not perfectly
symmetric.

Indeed in this case each C, does not contain a constant number of
elements of the independent set, but rather a number of elements which
is either |k/2] or [k/2]. Analogously, pairs of adjacent hyperplanes cor-
responding to C2 can overall contain either nk — 1 or nk elements. By
means of a tedious analysis of the structure of the maximum independent
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set of C4*!, one can eventually derive the following formula, whose shape
is similar to that of (3), and which can be simplified in order to get (4).

nk (n + i)d'H — pd+l _ gd+l

2n

a(CHD) > G/ + Pt nd

(n+1)? —nd—zd
2n )

4 Experimental results

Our investigation towards finding sharp estimates for a(Cg) has been also
carried out by designing and implementing algorithms for the detection
of large independent sets. This experimental activity has made it possi-
ble to improve upon many of the known lower bounds on the size of the
independent sets.

4.1 Algorithm description

Given the high degree of regularity of C2, our algorithm for searching large
independent sets in G = C¢ does not explicitly store the adjacency matrix
of G. In particular, each vertex of G is identified by a d-tuple of numbers
between 0 and n — 1, in such a way that two vertices s and ¢, with s =
(i1,...,iq) and t = (j1,...,Ja), are adjacent if and only if, for each k =

., d, either iy = ji or iy = jr =1 (mod n). Given an independent set
IS and a vertex t € IS, we say that ‘it is possible to move’ ¢ if there exists
a vertex t' adjacent to £ such that, after substituting ¢’ to ¢, we still obtain
an independent set.

The following is a high level description of our algorithm.

1. Build a ‘starting’ independent set IS for G. IS can be a previously
computed independent set, or it can be generated by randomly adding
vertices to an initially empty independent set.

2. For each vertex t € IS, try to ‘move’ ¢ in a random direction, in order
to obtain a new independent set of the same cardinality.

3. With probability P,, check if there exist vertices in G which can be
added to the current independent set.

4. For each t € IS, delete ¢ from IS with probability Py.
5. Go to Step 2.
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After Step 3, we check if the cardinality of the current independent set
improves upon the largest known value, and, if this is the case, we store
such current independent set. The algorithm terminates after a certain
amount of time or an appropriate number of iterations.

The probabilities of adding (P,) and of deleting (P;) used in Steps 3 and
4 are not constant. The best experimental results have been obtained by
varying them according to the simulated annealing paradigm. In practice,
in the initial stages of the algorithm we use larger values for P; and smaller
for P,, in such a way that, working on a non optimal independent set,
Step 2 could more easily move suitable vertices. As time goes by, the value
of Py (P;) is decreased (increased), in order to give an advantage to a
‘stabilization’ of the independent set. If, after a given number of iterations,
we do not obtain improvements, then we increase again the value of P; to
make it possible for the algorithm to avoid the current local optimum.

The ability of our algorithm to rapidly approximate the maximum in-
dependent strongly depends on an expedient imported from tabu search:
at Step 2, after having moved a vertex of the independent set from position
t to the adjacent position ¢, we mark vertex t as prohibited. Prohibited
vertices cannot be reconsidered for insertion into the independent set for a
given number of iterations. In this way, we force the current independent
set to ‘move’ towards sets of vertices not yet considered.

An example of an independent set for C4 obtained by our algorithm is
shown in Figure 2.

Our algorithm has been implemented in C, and executed on a Linux
workstation based on a 4060Mhz Pentium II.

4.2 An upper bound

When dealing with Shannon capacity, it often turns out to be easier to
improve lower bounds rather than upper bounds. Our small contribution
to the upper bound issue concerns C3;, for which it was known that 247 <
a(C33) < 252. More precisely, in [4] it was shown that a(C;) < 252. By
adopting a search technique — to be described next — we have shown that
a(C};) # 252, which implies Theorem 4.

Theorem 4 o(C3,) < 251.

Proof:

Any ‘candidate’ independent set of cardinality 252 can be classified ac-
cordmg to the number of vertices belonging to each of the 13 subgraphs
C%;, which, in the geometric representation of the graph, can be viewed as
the ‘slices’ of size 13 x 13 forming the cube corresponding to C3;. We de-
note by Go, G, - .., G2 these subgraphs, and by g;, fori = 0,1,...,12, the
number of elements of the independent set belonging to G;. By assumption,
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n 3 4 5 6 d | o'(cH2 | 8(Cy)

5 10 o 25 o 50 o 125 o 2 2.2361 2.2361
7 33 o 108 e 343 1101 e 4 3.2237 3.3177
9 81 o 324 1458 6561 3 4.3267 4.3601
11 148 o 761 e 3996 21904 3 5.2896 5.3863
13 234_7_ 1531 e 9633 61009 3 6.2743 6.4042
15 382 x,e 2770 e 19864 c 145924 ¢ | 3 7.2558 7.4171
17 578 o 4913 o 39304 334084 4 8.3721 8.4270
19 8%} 7666 o 68994 651610 4 9.3571 9.4348
21 1092 11441 114660 1201305 4 10.3423 10.4410
23 1437 x, e 16466 x 181126 ¢ 2074716 c | 4 11.3278 11.4462
25 1875 o 23125 a 281250 3515625 4 12.3316 12.4505
27 2362 o 31522 x, e 413350 5579044 4 13.3246 13.4542
29 2929 42017 x, e 594587 8578041 4 14.3171 14.4574
31 3580 x, e 54934 x, e 830560 12816400 ¢ 4 15.3095 15.4601
33 4356 o 71874 o 1185921 o 18974736 5 16.3988 16.4626
35 5197 o 90947 o 1591572 o 27056724 5 17.3926 17.4647
37 6142 113586 2101333 37824138 5 18.3865 18.4666
39 7195 x, e 140211 x 2734074 x 51947406 ¢ 5 19.3804 19.4683
41 8405 o 171462 a 3510826 x 70644025 5 20.3743 20.4699
43 9696 o 207514 x, e 4454896 x 94012416 5 21.3682 | 21.4713
45 11115 249005 x, e 5591997 x 123543225 5 22.3621 22.4726
47 12666 x,e 296439 x,e 6950358 x 160427556 ¢ 5 23.3562 23.4737
49 14406 o 352047 o 8588377 a | 207532836 4 24.3740 | 24.4748
51 16244 o 414196 o 10492965 x | 263867536 4 25.3689 | 25.4758
53 18232 483091 12721391 x | 332849699 4 26.3638 26.4767
55 20377 x, e 560244 x 15313309 x 415701048 ¢ 4 27.3586 27.4776
57 | 22743 o 646551 a 18311493 x | 517244049 4 28.3564 | 28.4783
59 25222 o 742247 x 21761957 x 636149284 4 29.3520 29.4791
61 27877 848193 x 25714075 x 777127129 4 30.3476 30.4798
63 | 30712 x,e | 965097 x 30220701 x 0943226944 ¢c | 4 31.3432 31.4804

Table 1: Forn =5,7,...,63, and for p = 3,4, 5,6 we report the cardinality
a'(C9) of the largest known independent set for C¢. The alphabetic code
which follows the numeric values has the following meaning: ’o’ denotes an
already known optimal value, while the other codes denote an improvement
upon the values obtained in [4]: in particular ’a’ indicates that the numeric
value has been obtained by applying Theorem 1, ’x’ that the numeric value
has been improved thanks to the application of the expansion formulas, ’c’
that the value has been determined thanks to improvements obtained on
smaller powers, and ’e’ that the improvement has been obtained experi-
mentally. The column labeled as d indicates, for each n, which is the actual
value of d that provides the maximum value for o/(C%)}/4, and this value
is itself reported in the adjacent column. The last column reports the value
of the Lovész theta function of Cj,.
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n,d] 3] 4 5 6 A

5

7 3 12 | 0.0096139
9

11 21

i3 1

15 | 2| 66 104 | 1524 | 0.0126851
17

19

21

23 [ 2| 3 33 378 | 0.0005160
25 144 0.0005682
27 256 0.0069569
29 105 0.0093310
31 | 2 | 599 464 | 14316 | 0.0145705
33

35

37

39 | 2| 1 6 114 | 0.0000085
a1 201 29 0.0000337
43 31 92 0.0000883
45 177 232 0.0001856
47 [ 2| 694 504 | 5066 | 0.6003387
49 28514

51 37645

53 48788

56 | 2| 1| 62252 742 | 0.0000122
57 264 | 78382 0.0028951
50 366 | 97562 0.0036190
61 486 | 120221 0.0043481
63 | 2 | 627 | 146834 | 122844 | 0.0050920

Table 2: For n = 5,7,...,63, and d = 3,...,6, we report the improve-
ments obtained for the cardinality o/(C%) of the largest known indepen-
dent set for C3. The last column shows the corresponding increment for

maxg=3,...s{a'(C)/4}.

we have 3. g; = 252 and g; + gi4+1 < 39 for each i, since a(C%) = 39. Up
to symmetries, there are 22 sequences s; of values g; which satisfy these

constraints. In the following we list three of them, i.e.,

s1 = (19,19,20,19,20,19, 20, 18, 20, 19, 20, 19, 20) ,
(19,20,18,21,18,21,18,21,18, 21, 18,19, 20),
s3 = (18,18,21,18,21,18,21,18,21,18,21,18,21).

82

Starting from an independent set whose slices have cardinality

85 = (9,0,---»95.12) »
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5 311 0 4 2 [
6 6 3 1 8 5
] 41214102 6
[1] 311 5 ] 0
412 3 1 5 [ 1
4 ]2 6 3 1 3 1
0 1 2
6 6 1 1 3 5
0 4 4 |2 6 8
1 [ 3 2 5 0
4 3 1 6 5 0 3 1
2 2 4 [ 2,4 3 1
[ 5|13 0 0 4 12
5 3 (] 5 4 2
3 4 5
3 1 0
1,3
2,4 2,4
5
6 5
[}
[1] 6
6

Figure 2: Representation of the independent set of cardinality 108 of C7.
Each 7 x 7 matrix represents one of the 7 subgraphs C§ which form C?. A
numeric value k in position 4, j in matrix A indicates that vertex (h,i, j, k)
belongs to the independent set.

we consider the cardinalities of the 13 independent sets of C?; obtained by
merging (two by two) the neighboring slices of G. In this was, we obtain
22 sequences

ti = (95,0 + 951,951 + Gi2- - -» G511 + Gi12, Gj12 + i) -
Three of them are

1] (38,39, 39, 39, 39, 39, 38, 38, 39, 39, 39, 39, 39) ,
123 (39, 38, 39, 39, 39, 39, 39, 39, 39, 39, 37, 39, 39) ,
t3 = (36,39,39,39,39,39,39,39,39,39,39,39,39).

For each of the 22 sequences t;, we have generated all the possible
sequences u1, Uz, ... of 13 independent sets of CZ; with cardinality 4.0y,
tj,12. For each of these sets we have verified if the intersections between
adjacent elements could provide us with an independent set for C3; of the
appropriate cardinality. Since the distinct independent sets of C%; with
cardinality 39 and 38 are 52 and 794638, respectively, we have adopted
some tricks in order to reduce the number of candidates u; that must be
checked:
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1. The independent, sets of cardinality 38 are, up to symmetries, ‘only’
4702. Therefore one of these can be chosen, w.l.o.g., among 4702
candidates as opposed to 794638.

2. In a sequence u = (ug,uy,...,u12) derived from ¢;, two adjacent
elements u; and u;4+; must have an intersection of cardinality £;,;.

3. Given three consecutive elements of a sequence u = (ug, u1,-- -, U12),
the union of the first and the third one must contain the second one.

4. Given a partial sequence u = (up,uy,---,u11), there exists at most
one way to complete it with an element u;2. Indeed, by construction,
each element of a alleged independent set must appear an even number
of times in the sequence u, whose elements are the union of adjacent
slices of C%,.

The last argument allows us to consider independent sets of cardinality
36 or 37 only at the end of the process, and thus to avoid their explicit
generation in advance, as for the cardinalities 38 and 39. This can be done
because in each sequence ¢; there is at most one 36 or 37.

Building upon the previous arguments, we have carried out the proof
of non-existence of an independent set of C}; with cardinality 252 by a C
program which has run for about 12 hours on a workstation based on a 400
MHz Pentium 2 processor.

The combinatorial explosion of the feasible configurations suggests that
this approach cannot be applied to further reduce the upper bound on
a(Cs). =

The bounds obtained by applying our theoretical and experimental re-
sults are shown in Tables 1 and 2, where we point out differences and
improvements upon previously known results, e.g. those in [4].

5 Conclusions

This paper has provided several improvements in the estimates of the Shan-
non capacity of odd cycles. We have also obtained some new results on the
structure of independent sets in C¥,, and used them to bound ©(C,).

We believe that our contribution could provide a starting point for new
investigations. Both the arguments developed in Section 2 and in Section 3
seem to indicate that the Shannon capacity of odd cycles might depend in
a very subtle way on the value of their length, and that different techniques
might be needed to handle different lengths.
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