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Abstract

An L(2,1)-labeling of a graph G is a function f from the
vertex set V(G) to the set of all nonnegative integers such
that |f(z) — f(y)| 2 2 if de(z,%) =1 and |f(z) — f(y)| 2 1 if
dg(z,y) = 2. The L(2, 1)-labeling problem is to find the small-
est number A(G) such that there exists a L(2, 1)-labeling func-
tion with no label greater than A(G). Motivated by the channel
assignment problem introduced by Hale, the L(2,1)-labeling
problem has been extensively studied in the past decade. In
this paper, we study this concept for digraphs. In particular,
results on ditrees are given.
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1 Introduction

The L(2,1)-labeling problem proposed by Griggs and Roberts [12] is
a variation of the frequency assignment problem (or the T'-coloring
problem) introduced by Hale [8]. Suppose we are given a number
of transmitters or stations. The L(2, 1)-labeling problem is to assign
frequencies (nonnegative integers) to the transmitters so that “close”
transmitters must receive different frequencies and “very close” trans-
mitters must receive frequencies that are at least two frequencies
apart.

To formulate the problem in graphs, the transmitters are repre-
sented by the vertices of a graph; two vertices are “very close” if they
are adjacent in the graph and “close” if' they are of distance two in
the graph. More precisely, an L(2,1)-labeling of a graph G is a func-
tion f from the vertex set V(G) to the set of all nonnegative integers
such that |f(z) — F(¥)| = 2 if do(z,y) = 1 and |f(z) — f(y)| > 1 if
de(z,y) = 2. A k-L(2,1)-labeling is an L(2, 1)-labeling such that no
label is greater than k. The L(2, 1)-labeling number of G, denoted by
MG), is the smallest number k such that G has a k-L(2, 1)-labeling.
'The L(2,1)-labeling problem has been extensively studied, see the
references.

For practical reasons, the transmitters may have the direction
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constraints. In this case, we consider the L(2, 1)-labeling on digraphs
(directed graphs). In a digraph G, the distance dg(z,y) from vertex
Z to vertex y is the length of a shortest dipath (directed path) from z
toy. We may define L(2, 1)-labelings, k-L(2, 1)-labelings and L(2, 1)-
labeling numbers for digraphs in precisely the same way as for graphs.
However, to distinguish with the notation for graphs, we use A\*(G)
for the L(2,1)-labeling number of a digraph G. In this paper, we
study the L(2, 1)-labeling numbers of ditrees (directed trees), which
are orientations of trees. Recall that an orientation of a graph is a
digraph obtained from the graph by assigning each edge of the graph

an direction. A graph is called the underline graph of its orientations.

2 Ditrees

We begin our study by giving the sharp upper bound 4 for the L(2,1)-
labeling number A*(T') of a ditree T'. Note that this upper bound is
quit different from the bounds for a (undirected) tree T: A(T)+1 <
A(T) < A(T) + 2, where A(T') is the maximum degree of a vertex in
T.

Define N*(v) = {u : vu is an edge} and N~(v) = {u : uv is
an edge}. If it is necessary to specify G, we use the notion N} (v)
for N*(v) and Ng(v) for N=(v). We call the vertices in N*(v) the

out-neighbors of v, in N~ (v) the in-neighbors and in N+(v) UN~(v)
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the neighbors. A leaf of a digraph is a vertex v with exactly one
neighbor. Note that a ditree of at least two vertices has at lesat two

leaves.

Theorem 1 For any ditree T, we have \*(T') < 4. Moreover, \*(T) =

4 if T has a dipath of length 4.

Proof. To prove X\*(T) < 4, we shall give a 4-L(2, 1)-labeling of
T. We actually label the vertices of T inductively by {0,2,4} with
the extra condition that if a vertex v is labeled by ¢ then all vertices
in N+(v) are labeled by (i + 2) mod 6 and all vertices in N~ (v) by
(i — 2) mod 6. For the case of |V(T)| = 1, we may label the only
vertex by 0. For a ditree T of at least two vertices, choose a leaf v of
T. Suppose u is the only neighbor of v. By the induction hypothesis,
T — v has a 4-L(2, 1)-labeling f by using only {0,2,4}. Now we can
extend the labeling f to V(T') by letting f(v) := (f(u) + 2) mod 6
if v e N*(u) and f(v) := (f(u) — 2) mod 6 if v € N~ (u). It is easy
to see that the extended labeling is a 4-L(2,1)-labeling of T using
{0,2,4} and satisfying the extra condition.

To prove the second statement, suppose T has a dipath v —
vy — Uy — Uz — Uy, yet there is a 3-L(2, 1)-labeling. For 1 <i <3, if
v; can be labeled by 1 (respectively, 2) then both v;_, and v;, should

be labeled by 3 (respectively, 0), contradicting to dg(vi—1,vit1) = 2.
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So, v, v2 and vs are all labeled by 0 or 3, and so two of them get the
same label, a contradiction. This proves \*(T") > 4 and so A\*(T) = 4.
|

Having the upper bound in mind, we now turn to the exact
value of X\*(T") according to the length of a longest dipath in T.
First, it is trivial that A*(T") = 0 whenever the longest dipath is of

length 0, i.e., T has exactly one vertex.

Theorem 2 For any ditree T whose longest dipath is of length 1, we
have X\*(T) = 2.

Proof. It is easy to see that A*(T') = 2, since T has at least one
edge.

Because T has no dipath of length 2, either N*(v) = 0 or
N-(v) = 0 for any vertex v in T. We can partition V(T') to be two
disjoint vertex sets A = {v: N*(v) =0} and B = {v: N~(v) = 0}.
Then labeling all vertices of A by 0 and of B by 2 gives a 2-L(2,1)-

labeling for T'. This completes the proof of the theorem. |

Theorem 3 For any ditree T whose longest dipath is of length 2, we
have \*(T') = 3.

Proof. It is easy to check that A*(T) > 3, since T has a dipath

with length 2. We then only need to prove that any ditree T without
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dipath of length 3 has a 3-L(2,1)-labeling. We in fact prove that
for a given i € {0,1,2,3} and a specified vertex v in T with either
N*(v) =0 or N~(v) =0, there is a 3-L(2, 1)-labeling with v labeled
by i.

The case of |V(T')| = 1 is trivial. Without loss of generality, we
may assume that the specified vertex v satisfies the condition that
N-(v) = 0. If [IN*(v)| > 2, then split T into two subditrees T} and
T, with V(T1) N V(T3) = {v}. By the induction hypothesis, both
T; and T3 have a 3-L(2, 1)-labeling with v labeled by the same value
i. Combining them together, we then get a 3-L(2, 1)-labeling for T
with v labeled by i. If N*(v) = {w}, then consider 7" = T — v.
For the case of N*(w) = @, by the induction hypothesis, 7" has a
3-L(2,1)-labeling with w labeled by (i + 2) mod 4. This labeling
can be extended to one for T by labeling v with i. For the case
of N*(w) # 0, all vertices in N*(w) have no out-neighbors and all
vertices in N~ (w) have no in-neighbors, since T has no dipath of
length greater than 2. Delete w from T to get subditrees. Each such
subditree 7, has a unique vertex w, that is a neighbor of w such
that Nf (w) = 0 or Ny (w,) = 0. By the induction hypothesis,
each subditree has a 3-L(2, 1)-labeling with w, labeled by a specified

value. We let w, be labeled by ¢ if w, in N~(w), and by k if w, in
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N*(w). Let w be labeled by j. Then we can assign (3, j, k) properly
by (0,3,1), (1,3,0), (2,0,3) or (3,0,2) to get a 3-L(2, 1)-labeling of
T with v labeled by i. |

From the above theorems, we know that A\*(T) = 3 or 4 when a
longest dipath of T is of length 3. The following two examples show

that both are possible. Consider the ditree T} = (W, E4) with
Vi = {v1,v2,v3,v4} and E; = {v1v2, V203, V304};
and the ditree T; = (V;, E,) with
Va = {v1,v2, V3, V4, Vs, Vs, U7, Us}
and

Ey = {02, V2V3, U3s, VsV, VsUs, UsU7, V7Us } -

It is the case that the longest dipaths of both T; and 75 are 3, but
A*(Ty) = 3 while A*(T2) = 4.

We close this paper by raising the question of determining the
L(2, 1)-labeling number of a ditree whose longest dipath is of length
3.
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