Gracefulness of n - cone $C_m \vee K_n^c$

Vasanti N. Bhat-Nayak¹

Department of Mathematics University of Mumbai Mumbai-400 098, India

and

A. Selvam²

Department of Mathematics
Dr. Sivanthi Aditanar College of Engineering
Tiruchendur-628 215, India.

Abstract: It is proved that the *n*-cone $C_m \vee K_n^c$ is graceful for any $n \geq 1$ and $m \equiv 0$ or $3 \pmod{12}$. The gracefulness of the following *n*-cones is also established: $C_4 \vee K_n^c$, $C_5 \vee K_2^c$, $C_7 \vee K_n^c$, $C_9 \vee K_2^c$, $C_{11} \vee K_n^c$, $C_{19} \vee K_n^c$. This partially answers the question of gracefulness of *n*-cones which is listed as an open problem in the survey article by J.A. Gallian.

1. INTRODUCTION

Our notation and terminalogy are as in [1]. If a, b are two integers, $a \leq b$, then [a,b] will denote the set of all integers from a to b. A vertex labeling of a (p,q) graph G=G(V,E) is an injective function f from V to a set of integers and the induced edge labeling f^* is the function from E to positive integers defined by $f^*(xy) = |f(x) - f(y)|$ for any edge $xy \in E$. A vertex labeling $f: V \longrightarrow [0,q]$ of G is said to be graceful if $f^*(E) = [1,q]$. A graph is said to be graceful if it has a graceful labeling. The graph $C_m \vee K_n^c$ This graph is obtained by considering the is known as a n-cone. C_m , n new independent vertices and joining each one of them to every vertex of C_m . For n = 1, the graph is known as a wheel and it is known to be graceful [3]. In his survey, Gallian[2] mentions that the case n=2, the graph in this case being called double cone, is still unsettled for gracefulness. Our main result is that the n-cones $C_m \vee K_n^c$ is graceful for $n \ge 1$ and $m \equiv 0$ or 3 (mod 12). We also establish the gracefulness of the *n*-cones $C_4 \vee K_n^c$, $C_5 \vee K_2^c$, $C_7 \vee K_n^c$, $C_9 \vee K_2^c$, $C_{11} \vee K_n^c$, and $C_{19} \vee K_n^c$.

¹ The first author holds Emeritus Fellowship of UGC, India.

² The second author received financial support for this research from Tamilnadu State

2. SPECIAL LABELINGS OF C_m

A vertex labeling f of a (p,q) graph G = (V, E) is said to be a *special labeling* if it satisfies the following conditions.

Condition 1 For any $i, 1 \le i \le p$, there exists a vertex u_i of G such that $f(u_i)$ is either 2i - 1 or 2i.

Condition 2 $f^*(E) = [1, 2p] \setminus f(V)$.

Condition 3 Both f(x) and $f^*(xy)$ are odd implies that f(x) < f(y).

We note that Conditions 1 and 2 imply that p = q.

The following theorem connects existence of a special labeling of a graph with p=q to the existence of a graceful labeling of the graph $G \vee K_n^c$. All throughout this paper, u_i , $1 \leq i \leq p$, will be a vertex of G and v_j , $1 \leq j \leq n$, will be a vertex of K_n^c .

Theorem M If a graph G with p = q has a special labeling, then the graph $G \vee K_n^c$ is graceful, $p \geq 3, n \geq 1$.

Proof Suppose f is a special labeling of G. Define a vertex labeling g on $G \vee K_n^c$ as follows:

$$g(v_j) = j - 1, \quad 1 \le j \le n$$

and for $1 \leq i \leq p$,

$$g(u_i) = i(n+1)$$
 if $f(u_i) = 2i$
= $i(n+1) - 1$ if $f(u_i) = 2i - 1$.

We claim that g is a graceful labeling of $G \vee K_n^c$. Clearly,

$$g:V(G\vee K_n^c)\longrightarrow [0,p(n+1)].$$

It is obvious that g is injective. We prove $g^*(E(G \vee K_n^c)) = [1, p(n+1)]$ by showing that for each $i, 1 \le i \le p$ and for each $k, \cdot 1 \le k \le n+1$, there is an edge e such that $g^*(e) = (i-1)(n+1) + k$.

Consider such a pair (i, k). Since f is a special labeling of G, by Condition 1, there is a vertex u_i on G such that $f(u_i)$ is either 2i - 1 or 2i.

Council for Science and Technology, India and Department of Mathematics, University of Mumbai, India.

Case 1 $f(u_i) = 2i - 1$ and $1 \le k \le n$.

Here $g(u_i) = i(n+1) - 1$. We have $g(v_{n-k+1}) = n - k$. Clearly n - k < i(n+1) - 1 and hence the weight of edge $u_i v_{n-k+1}$ is i(n+1) - 1 - n + k = (i-1)(n+1) + k.

Case 2 $f(u_i) = 2i - 1$ and k = n + 1.

By Condition 2, there is an edge $e_i = xy$ on G such that $f^*(xy) = 2i$. But then both f(x), f(y) are odd or both of them are even. Suppose f(x) = 2a, f(y) = 2b. Then $2i = f^*(xy) = |2a-2b|$ giving i = |a-b|. But then $g^*(e_i) = g^*(xy) = |b(n+1)-a(n+1)| = (n+1)|a-b| = i(n+1) = (i-1)(n+1)+(n+1)$. As k = n+1, e_i is a required edge. Similarly, when both f(x) and f(y) are odd, we get e_i to be a required edge.

Case 3 $f(u_i) = 2i$ and $2 \le k \le n+1$.

Here $g(u_i) = i(n+1)$ and $g^*(u_i v_{n-k+2}) = (i-1)(n+1) + k$ as $g(v_{n-k+2}) = n - k + 1 < i(n+1) = g(u_i)$.

Case 4 $f(u_i) = 2i$ and k = 1.

Let $e_i = xy$ be the edge on G such that $f^*(e_i) = 2i - 1$. Now one of f(x), f(y) is odd, say f(x) is odd. By Condition 3, f(x) < f(y). Let f(x) = 2a - 1, f(y) = 2b. Then $f^*(e_i) = f(y) - f(x)$ giving 2i-1=2b-(2a-1). So i-1=b-a. Also, as f(x) < f(y), g(x) < g(y) and hence

$$g^*(e_i) = g(y) - g(x)$$

$$= b(n+1) - a(n+1) + 1$$

$$= (b-a)(n+1) + 1$$

$$= (i-1)(n+1) + 1.$$

As k = 1, e_i is a required edge.

Thus we have proved that $g^*(E(G \vee K_n^c)) = [1, p(n+1)]$ and therefore g is a graceful labeling of $G \vee K_n^c$.

3. GRACEFULNESS OF $C_{24m} \vee K_n^c$

By Theorem M, in order to establish that $C_{24m} \vee .K_n^c$ is graceful, $m \ge 1$, $n \ge 1$, it is enough to show that C_{24m} has a special labeling. We obtain a special labeling of C_{24m} by constructing suitable labeling of paths of certain

lengths having certain labels to their end-vertices and then joining these labeled paths to form a specially labeled C_{24m} .

Let P_m denote a path of order m.

LEMMA 1.1 For $m \ge 2$, P_{4m-3} has a vertex labeling f such that $f(V) = [m+2,2m] \cup [2m+3,3m+1] \cup [5m+1,7m-1]$ and $f^*(E) = [2m+1,6m-4]$ where the end vertices of P_{4m-3} receive the labels 5m+1 and 7m-1.

PROOF Let $P_{4m-3} = w_1 w_2 \cdots w_{4m-3}$. Define a vertex labeling f as follows:

$$f(w_{2i-1}) = 5m+i$$
 for $1 \le i \le 2m-1$;
and $f(w_{2i}) = m+2$ for $i=1$
 $= 3m+3-i$ for $2 \le i \le m$
 $= 3m+1-i$ for $m+1 \le i \le 2m-2$.

It can be directly verified that $f^*(E) = [2m+1, 6m-4]$. Thus f is a required vertex labeling.

REMARK Lemma 1.1 is used later on and whenever we have m = 1 we give label 6 to the unique vertex of P_1 .

LEMMA 1.2 For any $m \ge 1$, P_{8m-1} has a vertex labeling f such that $f(V) = [1, m] \cup [m+2, 8m]$ and $f^*(E) = [1, 8m-2]$ where the end labels are 2m+1 and 8m.

PROOF Let $P_{8m-1} = w_1 w_2 \cdots w_{8m-1}$. Define a vertex labeling f as follows:

```
\begin{array}{rcl} f(w_1) & = & 2m+1; \\ f(w_{2i+1}) & = & 4m+1+i & \text{for} & 1 \leq i \leq m; \\ f(w_{2i}) & = & 4m+2-i & \text{for} & 1 \leq i \leq m; \\ f(w_{8m+1-2i}) & = & 8m+1-i & \text{for} & 1 \leq i \leq m+2; \\ f(w_{8m-2}) & = & 2m+2; \\ \text{and} & f(w_{8m-2-2i}) & = & i & \text{for} & 1 \leq i \leq m. \end{array}
```

Thus we have used the labels $[1,m] \cup [2m+1,2m+2] \cup [3m+2,5m+1] \cup [7m-1,8m]$ and obtained the edge labels $[1,2m] \cup [6m-3,8m-2]$. Therefore, it is enough to label the remaining sub path P_{4m-3} using the

labels $[m+2,2m] \cup [2m+3,3m+1] \cup [5m+1,7m-1]$ to obtain the edge labels [2m+1,6m-4]. Lemma 1.1 and the subsequent Remark says that this can be done.

LEMMA 1.3 For any $m \ge 1$, P_{8m-1} has a vertex labeling g such that g(V) =

 $\{16m+2, 16m+4, \cdots, 18m\} \cup \{18m+4, 18m+6, \cdots, 32m\}$ and $g^*(E) = \{2, 4, 6, \cdots,$

16m-4} where the end labels are 20m+2 and 32m.

PROOF Let f be a vertex labeling defined on P_{8m-1} as in Lemma 1.2. Then a required vertex labeling g is defined by g(w) = 2f(w) + 16m for all $w \in P_{8m-1}$.

LEMMA 1.4 For any $m \ge 1$, P_{16m+3} has a vertex labeling f such that $f(V) = \{1, 3, 5, \cdots, 16m - 1; 18m + 2; 20m + 2; 32m, 32m + 2, \cdots, 48m\}$ and $f^*(E) = \{16m - 2, 16m; 16m + 1, 16m + 3, \cdots, 48m - 1\}$ where the end labels are 20m + 2 and 32m.

PROOF Let $P_{16m+3} = w_1 w_2 \cdots w_{16m+3}$. Define f as follows:

$$f(w_{2i-1}) = 20m + 2 \text{ for } i = 1$$

$$= 48m + 4 - 2i \text{ for } 2 \le i \le 8m + 2$$
and
$$f(w_{2i}) = 2i - 1, \text{ for } 1 \le i \le 7m$$

$$= 18m + 2 \text{ for } i = 7m + 1$$

$$= 2i - 3, \text{ for } 7m + 2 \le i \le 8m + 1.$$

It can be directly verified that f is a required vertex labeling.

PROPOSITION 1 C_{24m} has a special labeling for any $m \ge 1$.

PROOF Consider the paths P_{8m-1} and P_{16m+3} with the corresponding labels defined in Lemmas 1.3 and 1.4 respectively. Concatenating the end vertices having the same labels, we have a vertex labeling f of C_{24m} such that $f(V) = \{1, 3, 5, \cdots,$

 $16m-1; 16m+2, 16m+4, \cdots, 48m$ and $f^*(E) = \{2, 4, 6, \cdots, 16m; 16m+1, \cdots, 16m\}$

 $16m + 3, \dots, 48m - 1$. Therefore, $f^*(E) = [1, 48m] \setminus f(V)$ and for each $i, 1 \le i \le 24m, f(V)$ contains either 2i - 1 or 2i. So, Conditions 1 and 2 of special labeling are clearly satisfied. Also, in f(V) the largest odd label is

less than the smallest even label and hence Condition 3 of special labeling is satisfied. Thus, f is a special labeling for C_{24m} .

THEOREM 1 $C_{24m} \vee K_n^c$ is graceful for any $m \geq 1$ and $n \geq 1$.

PROOF This follows from Theorem M and Proposition 1.

4. GRACEFULNESS OF $C_{24m+3} \vee K_n^c$

As in the case of C_{24m} , we give a special labeling of C_{24m+3} by constructing suitable labelings of paths.

LEMMA 2.1 For any $m \geq 2$, P_{4m-3} has a vertex labeling g such that $g(V) = [m+2,2m] \cup [2m+3,3m+1] \cup [5m+2,7m]$ and $g^*(V) = [2m+2,6m-3]$ where the end labels are 5m+2 and 7m.

PROOF Consider the vertex labeling f of P_{4m-3} defined in Lemma 1.1. Define g as follows:

$$g(w_{2i-1}) = f(w_{2i-1}) + 1$$
 for $1 \le i \le 2m - 1$

and

$$g(w_{2i}) = f(w_{2i})$$
 for $1 \le i \le 2m - 2$.

Then g is a required vertex labeling of P_{4m-3} .

REMARK For m = 1, give label 7 to the unique vertex of P_1 when the above lemma is used subsequently.

LEMMA 2.2 For any $m \ge 1$, P_{8m} has a vertex labeling g such that $g(V) = [1, m] \cup [m+2, 8m+1]$ and $g^*(E) = [1, 8m-1]$ where the end labels are 2m+1 and 8m+1.

PROOF Let $P_{8m} = w_1 w_2 \cdots w_{8m}$. Define a vertex labeling g on P_{8m} as follows:

```
g(w_1) = 2m+1;
g(w_{2i}) = 4m+1+i 	ext{ for } 1 \le i \le m+1;
g(w_{2i+1}) = 4m+2-i 	ext{ for } 1 \le i \le m;
g(w_{6m-4+2i}) = 7m-1+i 	ext{ for } 1 \le i \le m+2;
g(w_{6m-3+2i}) = m+1-i 	ext{ for } 1 \le i \le m;
and g(w_{8m-1}) = 2m+2.
```

Thus we have used the vertex labels $[1,m] \cup \{2m+1,2m+2\} \cup [3m+2,5m+2] \cup [7m,8m+1]$ and obtained the edge labels $[1,2m+1] \cup [6m-2,8m-1]$. Therefore, it is enough to label the remaining sub path P_{4m-3} (with end labels 5m+2 and 7m) using the labels $[m+2,2m] \cup [2m+3,3m+1] \cup [5m+2,7m]$ to obtain the edge labels [2m+2,6m-3]. This follows from Lemma 2.1 and the subsequent Remark.

LEMMA 2.3 For any $m \ge 1$, P_{8m} has a vertex labeling f such that $f(V) = \{16m + 4, 16m + 6, \dots, 18m + 2; 18m + 6, 18m + 8, \dots, 32m + 4\}$ and $f^*(E) = \{2, 4, 6, \dots, 16m - 2\}$ where the end labels are 20m + 4 and 32m + 4.

PROOF Consider the vertex labeling g of P_{8m} defined in Lemma 2.2. Define a new vertex labeling f as f(w) = 2g(w) + 16m + 2 for any vertex w of P_{8m} . It is easy to check that f is a required vertex labeling of P_{8m} .

LEMMA 2.4 For any $m \ge 1$, P_{16m+5} has a vertex labeling f such that $f(V) = \{1, 3, 5, \cdots, 16m+1; 18m+4; 20m+4; 32m+4, 32m+6, \cdots, 48m+6\}$ and $f^*(E) = \{16m, 16m+2; 16m+3, 16m+5, \cdots, 48m+5\}$ where the end labels are 20m+4 and 32m+4.

PROOF Let $P_{16m+5} = w_1 w_2 \cdots w_{16m+5}$. Define f as follows:

$$f(w_1) = 20m + 4;$$

$$f(w_{2i}) = 2i - 1 \text{ for } 1 \le i \le 7m + 1;$$

$$f(w_{14m+4}) = 18m + 4;$$

$$f(w_{14m+4+2i}) = 14m + 1 + 2i \text{ for } 1 \le i \le m;$$

$$f(w_{2i+1}) = 48m + 8 - 2i \text{ for } 1 \le i \le 8m + 2.$$

Clearly, f is a required vertex labeling.

PROPOSITION 2 C_{24m+3} has a special labeling for any $m \ge 0$.

PROOF When m = 0, give labels 1, 4, 6 to the vertices of C_3 .

When $m \geq 1$, consider the paths P_{8m} and P_{16m+5} with the corresponding labels defined in Lemmas 2.3 and 2.4 respectively. Obtain C_{24m+3} by concatenating their end vertices having the same labels. This gives a special labeling of C_{24m+3} .

THEOREM 2
$$C_{24m+3} \vee K_n^c$$
 is graceful for any $m \geq 0, n \geq 1$.

5. GRACEFULNESS OF $C_{24m-9} \vee K_n^c$

As in the earlier cases, here also we prove the gracefulness of $C_{24m-9} \vee K_n^c$ by showing the existence of a special labeling for C_{24m-9} .

LEMMA 3.1 For any $m \ge 3$, P_{4m-5} has a vertex labeling f such that $f(V) = [m+2, 2m] \cup [2m+3, 3m-1] \cup \{3m+1\} \cup \{5m-1, 7m-4\}$ and $f^*(E) = [2m, 6m-7]$ where the end labels are 5m-1 and 7m-4.

PROOF Let $P_{4m-5} = w_1 w_2 \cdots w_{4m-5}$. Define a vertex labeling f on P_{4m-5} by

$$f(w_{2i-1}) = 7m - 3 - i$$
 for $1 \le i \le 2m - 2$
and $f(w_{2i}) = 3m + 1$ for $i = 1$
 $= m + i$ for $2 \le i \le m$
 $= m + 2 + i$ for $m + 1 \le i \le 2m - 3$.

Then it is easy to check that f is a required vertex labeling.

LEMMA 3.2 For any $m \geq 3$, P_{2m-1} has a vertex labeling f such that $f(V) = \{3m\} \cup [3m+2,5m-1]$ and $f^*(E) = [1,2m-2]$ where the end labels are 4m and 5m-1.

PROOF We prove the result by induction on m. When m = 3, label the vertices of P_5 with the labels 14, 11, 9, 13, 12 in order and when m = 4, label the vertices of P_7 with the labels 19, 14, 18, 12, 15, 17, 16 in order.

Assume that the result is true for $m-2, m \geq 5$. That is, the vertices of P_{2m-5} can be labeled with the labels $\{3m-6\} \cup [3m-4, 5m-11]$ such that the edge induced labels are [1, 2m-6] and the end vertex labels are 4m-8 and 5m-11. This implies that by adding 8 to each label, the vertices of P_{2m-5} get labeled with the labels $\{3m+2\} \cup [3m+4, 5m-3]$ such that the

edge induced labels are [1, 2m-6] and the end vertex labels are 4m and 5m-3. With such a labeled path P_{2m-5} concatenate a path P_5 in which the labels 5m-1, 3m+3, 5m-2, 3m, 5m-3 are in order. This results a vertex labeling f of P_{2m-1} such that $f(V) = \{3m\} \cup [3m+2, 5m-1]$ and $f^*(E) = [1, 2m-2]$ where the end labels are 4m and 5m-1 and hence the result is true for any $m \ge 3$.

If we add a new vertex with the label 2m + 1 and make it adjacent to the vertex of P_{2m-1} that has received the label 4m, we get

LEMMA 3.3 For any $m \ge 3$, P_{2m} has a vertex labeling f such that $f(V) = \{2m+1\} \cup \{3m\} \cup [3m+2,5m-1]$ and $f^*(E) = [1,2m-1]$ where the end labels are 2m+1 and 5m-1.

LEMMA 3.4 For $m \geq 2$, P_{6m-6} has a vertex labeling f such that $f(V) = [m+2, 2m+1] \cup [2m+3, 7m-4]$ and $f^*(E) = [1, 6m-7]$ where the end labels are 2m+1 and 7m-4.

PROOF For m=2, label the vertices of P_6 with the labels 10, 8, 7, 4, 9, 5 in order. For any $m \geq 3$, concatenating the paths P_{4m-5} and P_{2m} together with the labels obtained in Lemmas 3.1 and 3.3 at the vertex having the same label, we get a required vertex labeling of P_{6m-6} .

LEMMA 3.5 For any $m \ge 2$, P_{2m+3} has a vertex labeling f such that $f(V) = [1, m] \cup \{2m+2\} \cup [7m-4, 8m-3]$ and $f^*(E) = [6m-6, 8m-5]$ where the end labels are 8m-3 and 7m-4.

PROOF Let $P_{2m+3} = w_1 w_2 \cdots w_{2m+3}$. Define a vertex labeling f on P_{2m+3} by

$$f(W_{2i-1}) = 8m-2-i ext{ for } 1 \le i \le m+2$$
 and $f(w_{2i}) = 2m+2 ext{ for } i=1$ $= i-1 ext{ for } 2 < i < m+1.$

One can easily check that f is a required vertex labeling. **LEMMA 3.6** For any $m \ge 1$, P_{8m-4} has a vertex labeling f such that $f(V) = [1, m] \cup [m+2, 8m-3]$ and $f^*(E) = [1, 8m-5]$ where the end labels are 2m+1 and 8m-3.

PROOF When m = 1, label the vertices of P_4 with the labels 1, 4, 3, 5 in order.

When $m \ge 2$, the result follows from Lemmas 3.4 and 3.5 by concatenating the end vertices having the same label.

By replacing each label f(w) with 2f(w) + 16m - 6, the above lemma implies the following.

LEMMA 3.7 For any $m \ge 1$, P_{8m-4} has a vertex labeling f such that $f(V) = \{16m-4, 16m-2, \cdots, 18m-6; 18m-2, 18m, \cdots, 32m-12\}$ and $f^*(E) = \{2, 4, 6, \cdots, 16m-10\}$ where the end labels are 20m-4 and 32m-12.

LEMMA 3.8 For any $m \ge 1$, P_{16m-3} has a vertex labeling f such that $f(V) = \{1, 3, 5, \cdots, 16m-7; 18m-4; 20m-4; 32m-12, 32m-10, \cdots, 48m-18\}$ and $f^*(E) = \{16m-8, 16m-6; 16m-5, 16m-3, \cdots, 48m-19\}$ where the end labels are 20m-4 and 32m-12.

PROOF Let $P_{16m-3} = w_1 w_2 \cdots w_{16m-3}$. Define a vertex labeling f on P_{16m-3} by

$$f(w_1) = 20m - 4;$$

 $f(w_{2i}) = 2i - 1$ for $1 \le i \le 7m - 3$
 $= 18m - 4$ for $i = 7m - 2$
 $= 2i - 3$ for $7m - 1 \le i \le 8m - 2$
and $f(w_{2i+1}) = 48m - 16 - 2i$ for $1 \le i \le 8m - 2$.

It is easy to check that f is a required vertex lebeling of P_{16m-3} .

PROPOSITION 3 C_{24m-9} has a special labeling for any $m \ge 1$.

PROOF Follows from Lemmas 3.7 and 3.8.

THEOREM 3 $C_{24m-9} \vee K_n^c$ is graceful for any $m, n \geq 1$.

6. GRACEFULNESS OF $C_{24m-12} \vee K_n^c$

Our proof technique is similar to that used in the earlier sections.

LEMMA 4.1 For any $m \ge 4$, P_{2m-4} has a graceful labeling f such that f(V) = [0, 2m-5] and $f^*(E) = [1, 2m-5]$ where 2m-6 and m-4 are the end labels.

PROOF Our proof is by induction on m. When m = 4, label the vertices of P_4 with the labels 2, 1, 3, 0 in order. When m = 5, label the vertices of P_6 with labels 4, 0, 5, 2, 3, 1 in order.

Assume that the result is true for $m-2, m \geq 6$. Then P_{2m-8} can be labeled with the labels [0, 2m-9] and the edge induced labels are [1, 2m-9] where the end labels are 2m-10 and m-6. Adding 2 to each vertex label, we get a vertex labeling of P_{2m-8} in which the vertex labels are from the set [2, 2m-7] and the edge induced labels are from [1, 2m-9] where the end labels are 2m-8 and m-4.

Concatenating a path P_5 with the labels 2m-6,1,2m-7,0,2m-8 in order, with the above labeled path P_{2m-8} at the vertex which has received the label 2m-8, we get a vertex labeling f of P_{2m-4} such that f(V)=[0,2m-5] and $f^*(E)=[1,2m-5]$ where 2m-6 and m-4 are the end labels. Thus f is a required vertex labeling.

The above lemma can be restated as follows.

LEMMA 4.2 For any $m \ge 4$, P_{2m-4} has a vertex labeling f such that f(V) = [3m+2, 5m-3] and $f^*(E) = [1, 2m-5]$ where 5m-4 and 4m-2 are the end labels.

LEMMA 4.3 For any $m \ge 3$, P_{4m-7} has a vertex labeling f such that $f(V) = \{2m+1\} \cup [2m+3, 3m] \cup [3m+2, 6m-5]$ and $f^*(E) = [1, 4m-8]$ where 2m+1 and 6m-5 are the end labels.

PROOF When m = 3, label the vertices of P_5 with the labels 13, 12, 9, 11, 7 in order.

When $m \ge 4$, label the first two vertices of P_{4m-7} with 2m+1 and 4m-2 in order and the last 2m-3 vertices of P_{4m-7} with 5m-4, 3m, 5m-2, 3m-1, 5m-1, 3m-2, 5m, 3m-3, \cdots , 6m-6, 2m+3, 6m-5 in order.

Now it is enough to label the remaining path P_{2m-4} with the labels [3m+2,5m-3] to obtain the edge labels [1,2m-5] where 5m-4 and

4m-2 are the end labels of P_{2m-4} . This can be done as stated in Lemma 4.2.

Hence the proof.

LEMMA 4.4 For any $m \ge 3$, P_{4m+3} has a vertex labeling f such that $f(V) = [1,m] \cup [m+2,2m] \cup \{2m+2,3m+1\} \cup [6m-5,8m-4]$ and $f^*(E) = [4m-7,8m-6]$ where the end labels are 8m-4 and 6m-5.

PROOF Let $P_{4m+3} = w_1 w_2 \cdots w_{4m+3}$. Define a vertex labeling f on P_{4m+3} by

$$f(w_{2i-1}) = 8m-3-i \text{ for } 1 \le i \le 2m+2;$$
and
$$f(w_{2i}) = 2m+2 \text{ for } i = 1$$

$$= i-1 \text{ for } 2 \le i \le m+1$$

$$= 3m+1 \text{ for } i = m+2$$

$$= i-1 \text{ for } m+3 \le i \le 2m+1.$$

This f is a required vertex labeling.

LEMMA 4.5 For any $m \ge 2$, P_{8m-5} has a vertex labeling f such that $f(V) = [1, m] \cup [m+2, 8m-4]$ and $f^*(E) = [1, 8m-6]$ where the end labels are 2m+1 and 8m-4.

PROOF When m=2, label the vertices of P_{11} by the labels 12, 6, 11, 1, 10, 2, 9, 8, 4, 7, 5 in order. When $m \ge 3$, the result follows from Lemmas 4.3 and 4.4 by concatenating the vertices that have received the label 6m-5.

The above lemma can be rewritten as

LEMMA 4.6 For any $m \ge 2$, P_{8m-5} has a vertex labeling f such that $f(V) = \{16m - 6, 16m - 4, \dots, 18m - 8, 18m - 4, 18m - 2, \dots, 32m - 16\}$ and $f^*(E) = \{2, 4, 6, \dots, 16m - 12\}$ where 20m - 6 and 32m - 16 are the end labels.

LEMMA 4.7 For any $m \ge 2$, P_{16m-5} has a vertex labeling f such that $f(V) = \{1, 3, 5, \cdots, 16m-9; 18m-6; 20m-6; 32m-16, 32m-14, \cdots, 48m-24\}$ and $f^*(E) = \{16m-10, 16m-8; 16m-7, 16m-5, \cdots, 48m-25\}$ where the end labels are 20m-6 and 32m-16.

PROOF Let $P_{16m-5} = w_1 w_2 \cdots w_{16m-5}$. Define a vertex labeling f on

 P_{16m-5} by

$$f(w_{2i-1}) = 20m - 6 \text{ for } i = 1$$

$$= 48m - 20 - 2i \text{ for } 2 \le i \le 8m - 2$$
and
$$f(w_{2i}) = 2i - 1 \text{ for } 1 \le i \le 7m - 4$$

$$= 18m - 6 \text{ for } i = 7m - 3$$

$$= 2i - 3 \text{ for } 7m - 2 \le i \le 8m - 3.$$

This f is a required vertex labeling.

PROPOSITION 4 C_{24m-12} has a special labeling for any $m \ge 1$.

PROOF When m = 1, label the vertices of C_{12} with the labels

in order which gives a special labeling of C_{12} .

When $m \ge 2$, the result follows from Lemmas 4.6 and 4.7 by concatenating the vertices with the same labels.

THEOREM 4 $C_{24m-12} \vee K_n^c$ is graceful for any $m, n \geq 1$.

7. CONCLUSIONS

In Theorems 1 to 4, we have proved that $C_{24m} \vee K_n^c$, $C_{24m+3} \vee K_n^c$, $C_{24m-9} \vee K_n^c$ and $C_{24m-12} \vee K_n^c$ are graceful. Consequently we have proved the following.

THEOREM 5 $C_m \vee K_n^c$ is graceful for $m \equiv 0, 3 \pmod{12}, m \geq 3$ and $n \geq 1$.

We remark that for n=1, our graceful labelings (for wheels) are different from those given by Hoede and Kuiper[3]. Regarding the nongracefulness of the n-cone, for even values of n and $m \equiv 2 \pmod{4}$, the n-cones $C_m \vee K_n^c$ cannot be graceful by parity condition of Rosa[4] which states that any graph with all vertices of even degree cannot be graceful when its size $q \equiv 1 \text{ or } 2 \pmod{4}$. Thus we have the following result.

THEOREM 6 $C_m \vee K_n^c$ is not graceful for n even and $m \equiv 2, 6, 10 \pmod{12}$.

We list below some further results on *n*-cones with short proofs.

PROPOSITION 5 The *n*-cones $C_7 \vee K_n^c$, $C_{11} \vee K_n^c$ and $C_{19} \vee K_n^c$ are graceful, $n \geq 1$.

PROOF We give a special labeling for C_7 and C_{11} and four special labelings for C_{19} .

 $C_7:1$ 14 5 7 10 4 12

 $C_{11}: 1$ 22 5 18 7 15 9 12 14 4 20

 $C_{19}:$

- (a) 1 36 3 34 5 32 7 30 12 26 16 22 20 24 13 28 9 17 38
- (b) 1 36 3 34 5 32 7 30 12 26 16 22 20 28 9 24 13 17 38
- (c) 1 36 3 34 5 32 7 30 12 28 9 22 14 24 20 26 15 17 38
- (d) 1 36 4 31 8 28 13 24 17 19 22 16 26 12 30 9 34 5 38

PROPOSITION 6 The *n*-cone $C_4 \vee K_n^c$ is graceful, $n \geq 1$.

PROOF Here we give directly a graceful labeling of $C_4 \vee K_n^c$, $n \geq 1$. Give labels $1, 2, \dots, n$ to the n vertices of K_n^c ; give labels 0, 3(n+1), 2(n+1), 4(n+1) cyclically to the four vertices of C_4 .

PROPOSITION 7 The doubel cones $C_5 \vee K_2^c$ and $C_9 \vee K_2^c$ are graceful.

PROOF In both the cases we directly give graceful labelings.

For $C_5 \vee K_2^c$, label the vertices of K_2^c with 1 and 3 and label the vertices of C_5 with 0, 15, 5, 14, 8 in order.

In $C_9 \vee K_2^c$, allot the labels 1 and 3 for the vertices of K_2^c and give labels 0, 27, 17, 26, 21, 9, 16, 5, 22 in cyclic order to the nine vertices of C_9 .