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ABSTRACT. Suppose G is a graph. The minimum number of
paths (trees, forests, linear forests, star forests, complete bipar-
tite graphs, respectively) needed to decompose the edges of G
is called the path number (tree number, arboricity, linear ar-
boricity, star arboricity and biclique number, respectively) of
G. These numbers are denoted by p(G), t(G), a(G), la(G),
sa(G), 7(G), respectively. For integers 1 < & < n, let Cp, & be
the graph with vertex set {aj.a2, -+, an, by, ba,---,b,} and edge
set {aibj :i=1,2,---,n, j=i+L,i+2,---.i+k (modn)}.
We call C, x a crown. In this paper, we prove the following

results.
1 - n if k& is odd,
(1) p(Can) = (k/2) +1 if k is even.

(2) a(Cn) = t{Cas) = la(Cr) = [(k+1)/2] ifk>2.

(3) Fork>3and ke {3,5}U{n-3,n-2.n-1},
[k/2] +1 if & is odd,

5a(Cnx) = {
[k/2]+2 if & is even.
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(4) T(Cnx)=n ifk<(n+1)/20r ged(k.n) =1

Due to (3), (4), we propose the following conjectures.
Conjecture A. For3<k<n-1,
[k/2] +1 if k is odd.
Sa((.‘n,k) =
[k/2]+2  if k is even.

Conjecture B. For1<k<n-1, 7(Car)=n.

1 Introduction

Suppose G is a graph. The path number p(G) of G is the minimum number
of paths needed to decompose the edges of G. The tree number ¢(G) of
G is the minimum number of trees needed to decompose the edges of G.
The arboricity a(G) of G is the minimum number of forests needed to
decompose the edges of G. A linear forest is a forest each component of
which is a path. The linear arboricity la(G) of G is the minimum number
of linear forests needed to decompose the edges of G. A star forest is a
forest each component of which is a star. The star arboricity sa(G) of G
is the minimum number of star forests needed to decompose the edges of
G. The biclique number 7(G) of G is the the minimum number of complete
bipartite graphs needed to decompose the edges of G. These decomposition
invariants of general graphs satisfy the following properties.

Lemma 1.1 For any nontrivial graph G,

(1) NEG)I/(V(G) - 1)] £ a(G) < HG) < p(G),

(2) maz{a(G),[A(G)/2]} £ la(G) < min{p(G).[3[A(G)/2]/21}.

(3) u/2 < p(G) where u is the number of vertices with odd degree in G,
(4) a(G) < sa(G) < min{A(G), 2a(G)},

(5) a(G) = maz [|[E(H)|/(IV(H)| - 1)] where the mazimum is taken
over all the nontrivial induced subgraphs H of G.
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Proof. (1) The first inequality follows from the fact that any forest in (&
has at most [I((7)] — 1 edges. The other inequalities tollow directly from
the definitions.

(2) The inequalities a(G) < la(G) < p(G) follow directly from the
definitions. The inequality [A(G)/2] < la(G) follows from the fact every
linear forest has maximum degree no more than two. The proof of the
inequality la(G) < [3[A(G)/2]/2] can be found in [2].

(3) Let 2 be a path decomposition of G. Suppose x is a vertex with
odd degree in G. Then there exists at least a path in & with & as one of
its ends. Since a nontrivial path has two ends, 2|Z| > u, which implies
|2] > u/2. Thus p(G) > /2.

(4) The first inequality follows from the definitions. The inequality
sa(G) < 2a(G) [12] follows from the fact that every tree can be decomposed
into no more than two star forests. The inequality sa(G) < A(G) [20] can
be proved by induction on A(G) using the facts that every connected graph
contains a spanning tree, and that every nontrivial tree contains a spanning
star forest without isolated vertices.

(5) The formula is a well known result of Nash-Williams [17]. O

The arboricity, linear arboricity and star arboricity of regular graphs
have been investigated by many researchers. Using Lemma 1.1(5), J.
Akiyama and T. Hamada determined the arboricity of regular graphs in
the following.

Theorem 1.2 (3] Suppose G is a d-regular graph. Then a(G) = [(d +1)/2].
O

The linear arboricity of d-regular graphs was conjectured in [l] to be
[(d + 1)/2], the same value as the arboricity. Star arboricities of d-regular
graphs have lower bounds as follows.

Theorem 1.3 [20] Suppose G is a d-regular graph where d > 2. Then
sa(G) > [d/2] + 1.

Moreover, if d = 2p for some integer p > 2, and sa(G) = p+1, then there is
a partition of V(G) into p+ 1 equal size independent sets Ay, Aa,---. Apyy
such that for every i, j. 1 < i < j < p+1, there are exactly 2c edges between
A; and A;, where ¢ is the common cardinality of all sets 4;. O

An immediate consequence follows from Theorem 1.3.

Corollary 1.4 [20] Suppose G is a d-regular graph where d = 2p for some
integer p > 2. If p+ | does not divide |V (G)|, then sa(G) > p+ 2. a
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For a survey we also list the results about the above mentioned decom-
position invariants for complete graphs and complete bipartite graphs.

Theorem 1.5
(1)[3, 10] a(h,) =la(N,;) =t(Ks) = p(Ka) =[n/2].

(2)[4] sa(Kp) = [n/2]1+1 ifn>4.

(3)[21) r(Kp)=n-—1.

i ;- i if mn is odd,
(4)(20, 19] p(Kmn) =
mn if mn is even
[2n = 8(m, n)] and m > n,

where 8(m, n) = { Il m=n

6)6, 11]  a(Kmn) = t{(Kma) = [ma/(m+n-1)].

(6)[1] la(Kmpn) = [(m+d(m,n))/2]  ifm>n.
: | [n/214+2 ifn=40rn>6,
(T8, 20] sa(Knn)= {
4 if n=>5.

(8)[9] sa(Kpnkn) < min{n, [(kn+2)/(k+ 1)] + 1}

if (k,n) # (1,5).

Proof. Here we only prove (1) and (5).

(1) By Lemma 1.1(1), we have [n/2] < a(K,) < t(Kn) < p(Ka). By
Lemma 1.1(2), we have a(Kn) < la(Kn) < p(Kn). And it was proved in [10]
that p(K,) = [n/2]. Thus a(K,) = la(K,) = t(Kn) = p(K,) = [n/2].

(5) By Lemma 1.1(1), [mn/(m+n—1)] < a(Km,a) < t(Kmn). It
was proved in [11] that ¢{(Kmnn) = [mn/(m +n—1)]. Thus a(Km,n) =
t(Kmna) = [mn/(m+n-1)]. O

The results about trees are as follows.
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Theorem 1.6 Suppose T is a tree. Then

(D[10) p(T) = u/2 where u is the number of vertices of T with
odd degree.

)] la(T)=[7(T)/2].

(3) sa(T)=2 ifT is not a star.

Proof. (3) Since a(T) = 1, the result follows immediately from Lemma 1.1
(4). a

A well-known conjecture about path numbers was posed by Gallai. He
conjectured that for any connected graph G on n vertices, p(G) < [n/2].
In [7], Donald proved the following result using a construction of Lovész.

Theorem 1.7 [7) Let G be a graph with u vertices of odd degree and g
vertices of even degree. Then p(G) < u/2+ |3g/4] < |3n/4]| where n =

u+g.
a

The following result follows immediately from Theorem 1.7 and Lemma
1.1(3).

Theorem 1.8 [16] Let G be a graph with vertices of odd degree only. Then
p(G) = u/2 where u is the number of vertices of G. a

For integers 1 < & < n, let Cpx denote the graph with vertex set
{ai,as,--.@n,by,bo,--- by} and edge set {a;b; : i=1.2,---.n,j=i+
1,i4+2,---,i+ k (mod n)}. We call Chx a crown. Decompositions of
edges of the crown into isomorphic cycles. isomorphic stars and isomorphic
complete bipartite graphs have been investigated in (13], {15] and [14],
respectively. In this paper, we will study path numbers, tree numbers,
arboricities, linear arboricities, star arboricities and biclique numbers of
the crown.

2 The path number, tree number, arboricity
and linear arboricity of C),
In this section, we determine the path number, tree number, arboricity,

and linear arboricity of the crown.
For our discussions we use the following terminology and notation.

The label of the edge a;b; (L < i.j < n)in Chpis j—1ifi < jand

37



J+n—iif¢ > j. For integers p,q,s,t with s < t, we use the nota-
tion (ap.‘.jbq.(,.j),sjsg to denote the walk ap+,b,,+,ap+,+lbq+,+l (R ap+qu+t
in Cp x; here and in the sequel the subscripts of a,b are taken modulo
n. Similarly, the notation (ap—jbs+;)egj<e is used to denote the walk
ap-sbq+aap-5-lbq+s+l e 'ap—tbq+t in C‘n.k-

Since (',  is k-regular, we have, by Theorem 1.2, a(C x) = [(k + 1)/2].
As to the other invariants, let us begin with the following lemma.

Lemma 2.1 Ifk is even. then
a(Cak) = H{Cnk) = 1a(Crp) = p(Cup) = (K/2) + L.
Proof. Suppose k is even. By Lemma 1.1(1) and (2), we have
a(Cap) < tCnk) < p(Cnx) and
a(Cnk) < la(Cok) < p(Car)-

Since a(Cn k) = [(k + 1)/2] = (k/2) + 1, it suffices to show that p(Cn x) <
(k/2) + 1.

For 1 < p < k/2, let F(¥) be the cycle (ajbau4j)1<j<ntl-

Note that each F(#) consists of those edges with labels ‘2;1k— | and 2p. We
see that Cy, 4 is decomposed into cycles F(V), F(?) ... F(3).
For 1 < u < k/2, let Q(#) be the path obtained from F{#! by removing

the path aE_“Hb_.;_“a%_”.

Let Q(O) be the path (a%_1+11)§+))1515€_an

k

We see that Q(® consists of those paths removed from F M fF@ .. F3),
Thus Cy x is decomposed into paths Q(®,Q(!, .- Q(3). Hence p(Cnx) <
(k/2) + 1. a

c n if k is odd,
Th 2.2 )=
corem 2.2 PICak) =\ (iny 41 ifk is even.

Proof. By Theorem 1.8, the case for odd & holds. By Lemma 2.1, the
case for even & holds. |

Theorem 2.3 t(Cax) = [(k+1)/2] if k> 2.

Proof. By Lemma 2.1, the result holds for even k. Suppose & is odd.
Since [(k 4 1)/2] = a(Cnx) < H{Cu). it suffices to show that #(Ch k) <
[(k+1)/2].
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Case 1. n is odd.

Let 7 be the subgraph of Cp x induced by the edge set
{anba, arbs, a1bs, asbs} U {aibj : j =5,7,9,- -, nii=j—-3.j—-2.j— 1}.
Let 71 be the subgraph of C,  induced by the edge set

{aibi:i=n—2,n=1.n}U{an-1ba} U{anb; : j = 3.5.7.--- .k} U
{aibj : j=4.6.8,---.n—1;i=j~3,j-2,j-1}.
Note that 7' and ZV) are trees. Fori =2,3,4,5, .- (k=1)/2, let Z
be the path (bg;.,.jaj)lsjs,,. Then Cy,  is decomposed into trees g0 1),
9(2), e g5, (An example of this decomposition for Ci; ¢ is given in

Table 1.) Thus #(Cn k) < (k+1)/2 = [(k +1)/2].
bl bg b3 b4 bs bs b-,' b3 bg blO bll

G| x|0j0]112]12]|313|4]4]x
G x{x(0|1]0([2(2]3|3(4]4
a3l 4 | x[(x[1]0}1|2[2]3|3]4
a4 (4 (41 x| x{0f1|0]2]|2|3]3
@ (3 |44 |x|{x|1]0}L]|2[2]3
a6 | 3 | 3144 |x|x]0f1]0]2]2
art 213 (3144 xx|[1f0o}1l]2
ag | 2 | 213 (3 (44| x|x]0]|1]0O
as (1 {2233 |[4]|]4|x]|x]|1]0
@iof 1| 1] 2|2 . 313144 x]x10
e 1o 1 21|31 |4]|1]|x]x

The mark x in the row a;, column b; indicates that a;b; is not an
edge. The number s in the row a; . column b; indicates that the

edge a;b; belongs to the tree T,

Table 1: The tree decomposition of C'jy o
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Case 2. n is even.
Let 7™ be the subgraph of Cy, x induced by the edge set
{aiby :i=n—=2.n<=1,n}U {a1ha.aib3. azbz} U
{abj 1 j=5.7.9. - n—lii=j—3j-2j—1}.
Let 7" be the subgraph of C,  induced by the edge set
{an-1ba,anba} U {anbj : j =3.5.7.--- k}U
{aibj : j=4,6.8,---,n;i=j-3,j—2,j-1}.
Note that 7® and 7! are trees. Fori =2,3,4,5,--,(k—1)/2, let !
be the path (b2i4ja;)1<j<n. Then Cy « is decomposed into trees g0 F0)

g ... g5, (An example of this decomposition for Cia s is given in

Table 2.) Thus t(Cnx) < (k+1)/2. a

by ba bz by bs be br bg by bio byy bio
a [ x (0|0 |1 ]2i2 (3|3 |4]4|x]|Xx
a (x| x |01 ]|]0y2]12|3|3]|414]x
a3 | x | x| x| 1|01 f(2]2 ;3|3 ]|4}]4
a3 |4 [ x| x (x| 0| 1]0;2([2})3]3]4
as | 4[4 x| x|x|1|0{L]|2|2]3]3
as | 3 |44 | x| x| x10]1{0]2 3
a7 [ 3314 |4 | x|x|x]|1}j0]|1]2¢]2
ag | 2 | 33|44 |x|x|x]0]L1]0]2
ag (212|133 |44 x| x]x|1}0!l1
a0 021233 |44 |x|x1x]0]|1
a0 L2233 [4j4x]|x]x}l
a2l 01 { 1|21 |31 [4]L]x}x]X

Table 2: The tree decomposition of C'js.9

As mentioned in Section 1, it was conjectured [1] that the linear ar-
boricity of d-regular graphs is [(d + 1)/2]. Now we show that this is true
for crowns.
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Theorem 2.4 la(Ch 1) = [(k+1)/2].

Proof. By Lemma 2.1, the result holds for even k. Suppose k& is odd.
Since [(k + 1)/2] = a(Ch x) < la(Ch k), it suffices to show that la(C', &) <
[(k+1)/2].

If £ =1, it is trivial that la(C» &) = 1. Assume that & > 3.

For 1 < p < (k= 1)/2. let C'¥) be the cycle (ano“+J+1)l<J<,,al
Note that each C#) consists of those edges with labels 24 and 2u+ L. We
see that C, x is decomposed into cycles C}) C%) .. . CU ) and edges
ayba, anbz. -+ an_1by,and;. Now we reconstruct this decomposition to ob-
tain a linear forest decomposition.

For 1 < p < (k=1)/2. let P be the path obtained from C*) by
removing the edge ag_-rl__“_i_lbk R

Let F(®) be the subgraph of Cn x induced by the edge set

{aibit1:1<i<n}uU {05%1_“+1bk; R 1< u<(k-1)/2}.
Note that F(®) is a linear forest consisting of paths of length 3 and paths of
length 1. We see that C', & is decomposed into linear forests F(0), P(1) p(2),

PUF) . Thus la(C i) < (k4 1)/2=[(k+1)/2]. O

3 The star arboricity of C,

Recall that a star forest is a forest each component of which is a star, and
the star arboricity sa(G) of a graph G is the minimum number of star
forests needed to decompose the edges of G. In this section. we investigate
the star arboricity of the crown.

Theorem 3.1 sa(Cnx) = [k/2]+1 ifk>3 isodd and n=a[k/2]+b
where a > b are nonnegative integers.

Proof. Since Cy, 4 is a regular graph with degree k, we have, by The-
orem 1.3, sa(Cnx) > [k/2] + 1. To prove the reverse inequality, let
k = 2t — 1 for some integer ¢ > 1. For convenience, we consider (),
as the graph with vertex set {c1,ca, -+, ¢a} U {d},da, - .dn} and edge set
{cidj :i=1.2,--- nij=i—t+li—=t+2,.-- i+t—2,i+t=1(mod n)}. In
the aequel of the proof. the subscripts of ¢ and d are taken modulo n. Sup-
pose S is a subgraph of C,, x and ! is a positive integer. We use S+/ to de-
note the subgraph of C, & induced by the edge set {ci41dj+i : cidj € E(S)}.
In the following, note that n = b(t + 1) + (a — b)t.
Let G be the star forest of C', x induced by the edge set
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E(C)

{C.'d,' .
U{cud; :

U{c;d, :

U{cud; :

U{c;d,

P=t L2+ 1), b+ 1))

v=1L({¢+)+ L2t + )+ L (0=t + 1) + L;
J=v+lLv+2,--- v+t—-1}

v=1(t+ 1)+ 1,20+ 1)+ Loy (b= 1)(t + 1) + L:
J=v+lLv+2,---, v+t -1}

v=b(t+ 1)+ Lo+ 1) +t+1,b(L+1)+2t+1,

bt D)+ (a—-b-1)t+ 1
j=v4+lv+2, - v+t -1}

=04+ 1)+ L0+ 1)+t + 1,60 +1)+ 20+ 1,

bt )+ (a=b= 1)+ 1
j=v+lv+2,--- v+t -1}

Then G,G+1,G+2,--,G + (t — 1) are edge disjoint star forests in C, .
(As an example, the star forests G,G+1,G+2in C)4,5 are given in Fig. 1.)

1 ca
dy d2
€3 €3
da ds
€3 c4
d3 dy

€3 €4
dy dy
€4 s
dyq dg
s 6
ds dg

c8

€s <5 <7 cg €10 ‘1 €12 €13 <14
ds dg dr ds dg  dyo dyy  dyy  dyy  dyy
cg €7 ) c9 €10 ‘1t <12 €13 €14 <1
dg dz dg dg djg dyp  dy2 dyy dyy dy
cr cg €9 € 11 €12 €13 €14 € €2
dz dg dg dyp d1n  d1p  di3 dig 4y da

Figure 1: The star forests G,G+1,G+2in C45

Let H be the star forest induced by the edge set
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E(H)= {cydj:v=t+12(t+1),---.b(t+1)
j=v+lLv+2,--,04+t-1}

U{cjdy :v =t + 12(t+ 1),---,b(t +1);

j=v+lv+2,--,v+t-1}

U{C;(l;:i: 1,2,3,---, t=Ltori=t+(t+1),
t+20t+ 1)t 43+ 1), -t +b(t+ 1)
ori=t+b(t+1)+ 1.t +b{t+1)+2.
t+b(t+1)+3,---.n}.

(As an example, the star forest H in Cy4,5 is given in Fig. 2.) We can see

that C, 4 can be decomposed into star forests G, G+1, G+2,---,G+{(t-1)
and H. Thus sa(Cn ) < t+1=[k/2] + 1. This completes the proof. O

€1 °2 €3 ©4q cs €8 cy <8 <9 €10 €11 €13 €13 ‘14

'R da dy dy ds dg dy da dg djp dn 42 d13 de

Figure 2: The star forest H in C'i45

Theorem 3.2 For k = 3,5,

sa(Cax) = [k/2] + 1.
Proof. It is easy to see the sufficient condition of Theorem 3.1 is satisfied
for the case n > k = 3 and the case n > 6,k = 5. Hence, by Theorem 3.1,

$a(Cn k) = [£/2] + | holds for these cases. The only case left is n =k = 5.
But this is also true since sa(Cs s) = sa(Ks;s) = 4 by Theorem 1.5(7).

Theorem 3.3 Fork=n-1,n-2,n-3 > 3,
[k/2]1+1 if k is odd.

sa(C,,,k) = {
[k/2] +2 if k is even.
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Proof. For the proof we reformulate the theorem as follows.
(1} sa(Chn=1) = [n/21+1 ifn>d,
[n/2] if n>5isodd

(2) Sa(c'n.n—'_’) =
(n/2)+ 1 if n > 6 is even.

(3) 5a(Cn.n—3) [n/2] ifn>6.

Firstly we prove (1).

Since R’y o can be decomposed into the crown C, ,-; and a matching
of size n, and obviously a matching is a star forest, we have sa(fi, ,) <
5a(Cnn-1) + 1. Thus sa(Cp n-1) > sa(Ry ) — 1. Using Theorem 1.5(7),
we then have sa(Crn-1) > [n/2] + 1 for n = 4 or n > 6. As to the
case n = 5, it is easy to see sa(Cs 4) > 4 by applying Corollary 1.4. Thus
sa(Cpn-1) > [n/2] + 1 for n = 5, and hence for n > 4. Now prove the
reverse inequality. Let V(R;) = {v1,v2,---,vn}. For a star G in K, with
center v; and terminal vertices v;,, vi,,- -, vi,, . We use G to denote the
star in Cy n—1 with center a; and terminal vertices b;,, b;,,---.b;, and G(*
the star with center b; and terminal vertices a;,.a;,,---.a;,. For a star
forest & in K, with components Gy, Ga. - -, Gy, we use Z' to denote the
star forest in Cp ,—1 with components G(ll), G(g),Gf_,”,G’f_,g’, oW, G?'
Let | = [n/2] + 1. By Theorem 1.5(2), K, can be decomposed into [
star forests, say Z#,, Fa,---, F. It is easy to see that C, ,_; can be
decomposed into star forests #{, F5, -+, F,. Thus sa(Crpn-1) < I =
[n/2] + 1.

Secondly we show that sa(C n-2) = (n/2) +1if n > 6 is even.

Since sa(Cpn-2) < 5a(Cpn-1) < (n/2)+ 1, we need to show

5a(Cn n=2) > (n/2) + 1. By the first part of Theorem 1.3,

sa{(Cnn-2) > [(n=2)/2] + 1 = n/2. Now apply the “moreover”
part of Theorem 1.3. Suppose sa(Cp n-2) = n/2. Then there is a par-
tition of V(Cn n-2) into independent sets A;, Aa,- -, Az such that |4;] =
2n/(n/2) = 4 for | < i < n/2, and there are exactly 8 edges between
Ai and Aj for 1 < i < j < n/2. Since each Ad; is an independent set
in Cp n—2 with |4;] = 4, we can see that each ; is either contained in
{a1,an,---,an} or contained in {by,b2, -, bn}. Without loss of generality,
we assume A;, A2 C {ay,a2,--+,an}. Then there is no edge between A,
and A4a. This contradiction implies sa(Cn n-2) > (n/2) + L.

Thirdly, we show that sa(Cn n-2) = [n/2] if n > 5 is odd.

We apply Theorem 3.1. Since n > 5 is odd. we have n — 2 > 3 is odd
and n =2[(n—2)/2] + 1. Thus sa(Cpn-2)=[(n=2)/2] + 1 =[n/2].

Fourthly, we show that sa{Cy ,-3) = [n/2] if n > 6 is odd.
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Now n > 6 is odd. Since sa(Cpn.n-3) < sa(Cyn-2) = [n/2]. we only
need to show sa(C, n-3) > [n/2]. We apply Corollary 1.4 to Cp,n-3. We
see that n —3 is even, (n—3)/2 > 2 and (n—3)/2+ 1 = (n—1)/2 does not
divide 2n for n > 6. Thus sa(Cp n-3) > ((n=3)/2)+2 = (n+1)/2 = [n/2].

Lastly, we show that sa(Cp .n-3) = [n/2] if n > 6 is even.

We apply Theorem 3.1. Since n—3 > 3isodd and n = 2 [(n — 3)/2]+2,
we have sa(Cp n-3) = [(n - 3)/2]+1=n/2. a

Due to Theorems 3.2 and 3.3. we propose the following conjecture.

Conjecture A. For3<i<n-1,
[k/2]+1  if kis odd,
sa(Cp i) =

[k/214+2  if kis even.

4 The biclique number of C),

Recall that the biclique number 7(G) of a graph G is the minimum number
of complete bipartite graphs needed to decompose the edges of G. In ths
section we investigate the biclique number of the crown.

Lemma 4.1 IfG is a bipartite graph with bipartition (X,Y), then 7(G) <
min{|X|, |Y}}.

Proof. Let |X|=mand X = {z1.22, -, 2} It is trivial that G can
be decomposed into m complete bipartite graphs. namely. the maximal
stars with centers at ry,za, -, &, respectively. Thus 7(G) < m = [X].
Similarly, 7(G) < Y.

Suppose ¢;,es,- -+, ex (k > 2) are edges in a graph G. If e; and ¢; are
not in any complete bipartite subgraph of G for every i # j, then we say
that ey, ea, - - -, ey are incompatible edges in G.

Lemma 4.2 If a graph G contains k incompatible edges, then 7(G) > k.

Proof. Suppose G contains k incompatible edges and suppose G is de-
composed into 7(G) complete bipartite graphs. Since the k incompatible
edges belong to distinct complete bipartite subgraphs, & < 7(G). a

Let G be a bipartite graph with bipartition (X, Y) where X = {z),z2,---,
zm)}and Y = {y1, 42, -+, ¥a}. We use M(G) to denote the m x n matrix
(eij) where

1 if r; is adjacent to y; in G,
-
hd 0 otherwise.
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For a matrix M, we use (M) to denote the rank of M.

Lemma 4.3 [14] Suppose G is a bipartite graph. Then 7(G) > r(M(G)).

a
For a positive integer n, let {, = e"%".‘
Lemma 4.4 (18] The cyclic determinant
Qg Q) Qz - Qp-y
Qn-1 @y oy -+ Qp-2
det | ®n-2 Qn-1 @o - Qp-3
[+ 3] Qaa [o & TR g
n-1
= [[(eo + oy + ¢Han + - + ¢ Moy _y) ]
j=0

Lemma 4.5 Suppose n, j,k are positive integers such that j Z 0 (mod n).
Then ¢ +C¥ +¢¥ +---4+¢% =0 if and only if kj = 0 (mod n).

. . ) . 1 (ki
Proof. This follows from the identity ¢ +(3/ +¢3 +-- +¢& = ¢ ll—"

~J
n

Theorem 4.6 7(Cr i) =n ifk < (n+1)/2 or ged(k,n) = 1.

Proof. It follows from Lemma 4.1 that 7(Cpx) < n. Now we show
(Cnk) 2 1.

Suppose k < (n + 1)/2. We show that ab2,asbs,--,an_1bn,a,b, are
incompatible edges. Suppose, to the contrary, that forsome 1< i< j < n,
a;bi41 and a;b; 4, are in a complete bipartite subgraph of Cy . Then a;bj4)
and a;b;4, are edges in Cp &, which implies j+1 < i+k and i+1 < j+k—n.
Thus n < 2k — 2. This contradicts that k¥ < (n + 1)/2. This contradiction
confirms there are n incompatible edges in Cr . Thus, by Lemma 4.2,
T(Ca k) > n.

Suppose ged(k,n) = 1. The crown Cy x is a bipartite graph with bipar-
tition (A, B) where A = {ay,aa,---,an}, B = {by,ba,---,ba}. Thus

(s 73} [+ 3} Qo -+ Op_)

Qp-1 Qo @y - Qup-2

M(Cni) = Qp.2 Qp-) Qp -+ p-3
(A3} Q9 o3 - (A7)}
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where g =0,y =aa=---=ar = Loy = g = - =an_ =0. By

net :
Lemma 4.4, det (M (Cn ) = 1 (¢Z +¢37 +- - +¢%J). Since ged(k,n) =1,

j=0
-1
we have kj Z 0 (mod n) for | < j < n~ 1. Thus. by Lemma 4.5, "H (¢ +
i=l
. . net .
¢4 4+¢ki) # 0 and hence det(M(Cnx)) =k [T (CL+CH +---+C¥) #0
i=t .
Thus r(M{C, x)) = n. By Lemma 4.3, 7(Cy ) > n. a

We propose the following conjecture.

Conjecture B. For1<k<n-1, 7(Chr)=n.
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