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Abstract

Upper and lower bounds are given for the toughness of generalized
Petersen graphs. A lower bound of 1 is established for t(G(n, k)) for
all n and k. This bound of 1 is shown to be sharp if n = 2k or if n
is even and k is odd. The upper bounds depend on the parity of k.
For k odd, the upper bound n—_’_i:f_,- is established. For k even, the

value ;2 is shown to be an asymptotic upper bound. Computer
verification shows the reasonableness of these bounds for small values
of n and k.

1 Terminology

Generalized Petersen graphs were defined by Watkins [7]. For each n > 3
and 0 < k < n, the generalized Petersen graph G(n, k) has vertex set

V={u,...,un,%1,...,0n}
and edge set

E = {(ui, ui41)|1 < < n}U {(uwi, )|l 4 <n}U{(v,vi44)]1 L8 < n}

Here, all subscripts are taken modulo n. Watkins excludes the case in which
n = 2k. However, we adopt the convention of Alspach [1] and include
those cases as well. The subgraph of G(n,k) induced by {u;,us,...,un}
is called the outer rim. The subgraph induced by {v;,vs,...,vs} is called
the inner rim. An edge of the form (u;,v;) is called a spoke. Clearly, the
automorphism group of G(n, k) contains the dihedral group of order 2n.
In fact, the obvious dihedral action on G(n, k) preserves setwise the inner
rim, the outer rim, and the spokes. Given a positive integer m < n, an
m-section of G(n, k) is a subgraph induced by a subset of V' of the form

{ui, Uity oy Uigbm—1,Vis Vigl,y-- -, 'Ui+m—l}
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for some i. If n = Im;, then G(n,k) can be built from a union of m;-
sections in the obvious way.

The toughness of a connected non-complete graph G = (V, E) is defined
by Chvital [3] as

t(G) = min{ (Cl?, ' ) |S €V, S disconnects G}, (1.1)

where w(G — S) is the number of components of the graph obtained from
G by removing the vertices of S. A subset S C V that achieves the min-
imum in (1.1) is called a tough set for G. Two tough sets S; and S, for
G(n, k) are said to be dihedral equivalent if there is an automorphism ¢ in
the dihedral group such that ¢(S;) = Sz. A dihedral tough class is a dihe-
dral equivalence class of tough sets. Note that there are some pairs (n, k)
such that the automorphism group of G(n,k) is bigger than the dihedral
group [5]. However, we do not consider non-dihedral automorphisms when
identifying tough classes.

Our main interest is in determining bounds for ¢(G(n, k)). Related to
this is the notion of asymptotic bounds, which we now define. For a fixed
value of k, we say that b is an asymptotic upper bound for the toughness
of the class of graphs G(n, k) if

ull’ngo HG(n,k)) <b.

Of course, asymptotic lower bounds are defined similarly.

2 Introduction

The toughness of generalized Petersen graphs was first explored in [6).
There, the case in which k = 1 is completely settled.

Theorem 2.1 ([6]). Forn > 3,

if n is even

HG(n,1)) = {IL if n is odd

n—-1

Note that
- nl}_{xgo t(G(n,1)) =1.

Hence, 1 is an asymptotic upper bound for the toughness of the class of
graphs G(n,1).

The case in which k& = 2 is considered in [4] The value 2 % is shown to
be the critical value for £(G(n,2)). Namely, $ is both a lower bound and
an asymptotic upper bound.
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Theorem 2.2 ([4]). Forn > 5,
HG(n,2)) < 3 + )
where
(i) e2(n) 2 0 forn #8,
(i) e2(n) — 0 as n — o0, and
(i) e2(n) =0 ifn =0 mod 7.
Remark 2.3. For n > 8, the values for €2 given in [4] are:

(0 ifn=0 mod?7,

s Un=1mod7,

sz Yn=2mod7,

e2(n) = ¢ 57:_7 ifn=3 mod7,
ozs Un=4modT,

g n=5modl,

75z fn=6mod7.

Note that €2(n) < &= — 0 as n — o0.
Theorem 2.4 ([4]). Forn>5 andn #8,

HC(m,2) 2 5.

Also, t(G(3,2)) = 3, t(G(4,2)) = 1, and ¢(G(8,2)
Corollary 2.5 ([4]). For n =0 mod 7, t(G(n,2)

)=
)=

3 Main Results

We present results like Theorems 2.1 and 2.2, but for general G(n, k).
Theorem 3.1. Forn>3 and0< k< n,

(a) t(G(n,k)) 2 1.
Moreover, if n is odd and ged(n, k) = 1, then t(G(n,k)) > 1.

(b) Ifk is odd and n > 2k + 1, then

if n is even,

1
t(G(n,k)) < {_"% if n is odd.

n—(
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(c) If k>4, k is even, and n > 2k + 1, then
HG(n,K) < g + cx(r),

where ex(n) < 2. Moreover, ex(n) =0 if 2k | n.
(d) {(G(n,k)) =1 ifn =2k or if n is even and k is odd.

Note that Theorem 3.1(b) with & = 1 yields the exact value given in
Theorem 2.1. However, the asymptotic upper bound of % given in Theo-
rem 2.2 is not obtained by plugging the value k£ = 2 into the asymptotic
upper bound 2= 2,‘ 7 given in Theorem 3.1(c). There is nonetheless a strong
relationship between the case in which k£ = 2 and the other cases in which
k is even. This is evident from the similarity in the proofs of Theorems 2.2
and 3.1(c).

The proof of Theorem 3.1 follows from the sequence of results in the
subsequent sections.

4 Lower Bounds

Chvétal’s primary interest in considering toughness [3] is its relationship
with Hamiltonicity. One such relationship is our main tool for establishing
lower bounds.

Theorem 4.1 ([3]). If G is a Hamiltonian graph, then t(G) > 1.

Theorem 4.1 applies to all Hamiltonian generalized Petersen graphs. A
complete characterization of all such graphs is given by Alspach [1).

Theorem 4.2 ([1]). All generalized Petersen graphs are Hamiltonian ex-
cept for

(i) G(n,2) = G(n,n - 2) = G(n, 23~ a2ly = G(n, 282)
for n =5 mod 6,

(it) G(n,%) forn =0 mod 4, n > 8.

Theorem 4.2 leaves only two exceptional cases in which the lower bound
of 1 must be established directly. Since Theorem 2.4 takes care of the
exceptions in Theorem 4.2(i), it only remains to consider the case in which
n = 2k.

Theorem 4.3. For n even, t(G(n, %)) =1.
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Figure 1: A nonstandard picture of G(8,4)

Proof. Let k = %. The disconnecting set S = {u1,vk+1} shows that
t(G(n,k)) < 1.

If Kk = 2 or k is odd, then the lower bound of 1 follows from Theorem 4.1.
For k = 4, the graph G(8,4) can be drawn as pictured in Figure 1. Let
C; and C, be the pictured inner and outer cycles, respectively. Let S be a
tough set for G(8,4), and let S; = SN C;, for i = 1,2. If either S; or S
is empty, then it is easy to see that w(G(8,4) — S) < |S|. Hence, it suffices
to assume that both S; and S, are nonempty. Since t(Cy) = t(C2) =1, it
follows that w(C; — S;) < |Si|, for i = 1,2. Hence,

w(G(8,4) = ) < w(Cy ~ S1) + w(Cz — S2) < |S1] +|S2| = 8]

That is, t(G(8,4)) > 1.

It remains to establish the lower bound of 1 for the case in which k is
even and k > 4. Let S be a nonempty subset of the vertices of G(n, k). To
show that ’

w(G(n,k) - S) < |S| (4.1)

it suffices to show that w(H — S) < |S|, where H is a subgraph of G(n, k)
obtained by removing some of the edges of G(n, k). The subgraph H that
we consider is a subgraph induced by a cycle C of order 2n — 3 in G(n, k)
plus the 3 remaining vertices of G(n,k). The cycle C is described as a
union of paths in G(n, k). For each integer 1 < j < £ — 1, let

Pj = V2j_1Vk42j—1Uk+42j -1 Uk+2jVk+2 V25 U2 U2 +1 V2541

53



Also let P% = vp—1V-1U—1uzu1v;. The cycle C is obtained as
C= P1UP2U“°UP%_1 UP%.
Observe that C contains all of the vertices of G(n, k) except {wg,vk,vn}.

The subgraph H is pictured in Figure 2, where C is the outer cycle.

Un
-1 Uy

Vg—-1 Vk+1

Uk-1 ® Ukl

Figure 2: Subgraph H of G(n, §)

Let T = {ug—1, Uk, Uk+1,Un}. Note that T consists of all the vertices of
degree 3 in H. The remaining 2n — 4 vertices have degree 2 in H and can
therefore be adjacent to at most 2 components of H — S.

Case 1: SNT is empty.

Let S2 = SN {v,v,} and S; = S — S;3. If S is empty, then inequality
(4.1) follows easily from the fact that ¢(C) = 1. If S; is nonempty, consider
removing the vertices of S by first removing the vertices of S; and then
removing the vertices of S, one at a time. Clearly, w(H — S1) < |S1|. Since
SN T is empty, the removal of a vertex of S, can not increase the number
of components of H — S;. Hence, inequality (4.1) must hold.

Case2: SCT.

Let ¢ be the automorphism of G(n, k) defined by

#(ui) = uip3 and  G(v;) = viys3

for each 1 < i < n. Note that ¢(T) = {ur+2, Uk+3, Uk+a,u3}. Since k > 4,
TN¢(T) is empty. Hence, SNG(T') is empty. Of course, ¢(H) is a subgraph
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of G(n, k) which is isomorphic to H. By replacing H by ¢(H) and T by
¢(T), the argument in Case 1 shows that inequality (4.1) holds.

Case 3: SNT is nonempty.

Let S; = SNT and S; = S — S;. Consider removing the vertices of S; and
then removing the vertices of S, one at a time. By Case 2, w(G(n,k)—5;) <
|Si|. Since each removal of a vertex of S; can increase the number of
components by at most one, inequality (4.1) must hold. O

Combining the results of Theorems 4.1, 4.2, 2.4, and 4.3 gives the first
halves of parts (a) and (d) of Theorem 3.1. The second half of Theorem
3.1(d) is justified in Section 5. The second half of Theorem 3.1(a) is a
consequence of the following results from [2] and [5].

Theorem 4.4 ([2]). If G is a connected vertez-transitive graph such that
t(G) = 1, then G is bipartite or an odd cycle.

Theorem 4.5 ([5]). If gcd(n, k) = 1, then G(n,k) = G(n, k') is vertex
transitive, where k' is the multiplicative inverse for k modulo n.

5 Upper Bounds

Theorem 5.1. For k odd andn > 2k +1,

HG(n, k) < { if n is even
7, < n e
;:@ zfn is odd

Proof. 1t suffices to give an example of a disconnecting subset S C V such
that the fraction
151

w(G(n, k) - S)

equals the asserted upper bound. The set S is specified by partitioning
the vertices of G(n, k) into sections and specifying which vertices of each
section belong to S by circling them. The section that we use the most is
the 2-section pictured in Figure 3. Our convention is to plot the outer rim

Figure 3: Key 2-section

vertices on the top row and the inner rim vertices on the bottom row. The
outer rim edges and the spokes are always drawn but the inner rim edges
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are only sometimes drawn.

Case 1: n is even.

In this case, G(n, k) can be built entirely with 2 copies of the 2-sections
from Figure 3. The set S is simply obtained by choosmg two vertices from
each of those 2-sections. Since k is odd, the vertices in G(n,k) — S form an
independent set.

Case 2: n is odd.

In this case, G(n, k) can not be built entirely with the 2-sections from Figure
3. Our aim is to mostly use that 2-section. However, we also need a starter
section of odd length. The starter section that is used is the (2k—1)-section
generated by {u1,us,...,u2x—1,v1,%2,...,V2k-1}. The subset of vertices to
be included in S is

{24110 < § < 572} U {upr254110 < 5 < E51U
{v254210 < j < &5 I}U {vk+2410 < j < E51}

The starter (2k — 1)-section for the case in which k£ = 7 is pictured in Figure
4. Note that if the 2k — 1 vertices from S are removed from the starter

20CYP P!

Figure 4: Key (2k — 1)-section for k =7

(2k — 1)-section, then ﬂ%l components remain. The graph G(n, k) can
be built from the starter (2k — 1)-section and 2=2t+L copies of the 2-section
in Figure 3. Clearly |S| = n. It is also easy to see that

w(G(n,k)-—S)=3(k2_ 1) 2k+l—n—¥
Here, components from the (2k — 1)-section do not get attached to compo-
nents from the 2-sections. - a

Note that Theorem 5.1 combined with Theorem 3.1(a) gives the second
half of Theorem 3.1(d).

Theorem 5.2. For k even, k> 4, andn > 2k +1,

HG(n, k) < s +ex(m),

where

56



(i) ex(n) — 0 as n — oo, and
(i) ex(n) =0 if n =0 mod 2k.

Proof. Our aim is to use a particular 2k-section as much as possible. If the
set of vertices in the 2k-section is {u1,us,...,ugk,v1,2,...,V2;}, then the
subset to be included in S is .

{u1} U {‘U,2j|0 <j< L;-} U {uk+2,-+1|0 <ji< %}U
{v24110 < § < §}U {wes250 <5 < £}

The 2k-section for the case in which k& = 6 is pictured in Figure 5. Note

Figure 5: Key 2k-section for k = 6

that if the 2k vertices from S are removed from the 2k-section, then 2k — 1
components remain. If 2k | n, then G(n, k) can be built entirely with copies
of the 2k-section represented in Figure 5. Moreover,

S| 2k
w(G(n,k)-8S)  2k-1"

That is, €x(n) = 0 and 32 is the associated upper bound. If 2k { n,
then a starter m,-section is needed, where m, = n modulo 2k. The graph
G(n, k) can then be built with one copy of the m,-section and 2322 copies
of the 2k-section represented in Figure 5. An upper bound of % for ex(n)

is obtained by taking m, to be the unique integer such that
0<m, <2k and m, =n modulo 2k

and specifying a starter my,-section with all of its vertices in S. O

Remark 5.3. The method of computing the error term er(n) in the proof
of Theorem 5.2 is certainly not the best possible if 2k { n. A better approach
for n > 4k is to use a starter my-section where

2k <mg, <4k and my; =n modulo 2k.

Moreover, the best starter section is likely to come from one of the possible
tough sets for G(my, k). More details and evidence regarding this point are
given in Subsection 6.2.
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6 Conjectures and Computer Evidence

This section is devoted to showing the reasonableness of the upper bounds
given in parts (b) and (c) of Theorem 3.1. In fact, modulo finding the
smallest possible values of the error terms €x(n) in Theorem 3.1(c), we
believe that our upper bounds in parts (b) and (c) of Theorem 3.1 are sharp.
Specifically, we conjecture that the following lower bounds complement our
upper bounds.

Conjecture 6.1. Ifn and k are odd and n > 3k, then

HG(m, k) 2 — g7
2

Conjecture 6.2. If k is even, k > 4, and n > 2k + 1, then

2k
2k-1"

t(G(n,k)) 2

To give evidence that our bounds are the best possible, we use a com-
puter to determine {(G(n,k)) for all 3 < k < 7and 2k+1 < n < 18.
Additionally, all of the dihedral tough classes have been determined in
those cases. However, the complete list of dihedral tough classes is only
presented here for k = 4. That case is given special attention in Subsection
6.2.

Recall that Theorem 3.1(d) tells us that t(G(n,k)) =1ifn=2korifn
is even and k is odd. Table 1 lists the values of t{(G(n,k)) foral 3< k<7
and 5 < n < 18. The value X signifies that G(n, k) is not defined for those
values of n and k. Since G(n,k) = G(n,n—k), the table is completely
determined by the portion for which n > 2k.

Knl| 5|6 |7 (8|9[10[11[12[13}14|15]| 16|17 18

3| 41|l S| Bjv|B|1|E]|1

afl 8|88 |14 || |Bils |8 16]c¢e

4 | 4 | 4 3 | 4} 9 | 4 |11 11| 4 )7 |13 |5
4

5lx |12 |Bl1|Ej1 ]|
9 9

o | x|x[glelslslslvigld s s H[¢

Thhx|x|x|1|d|v |32l Bl1]E|

Table 1: Toughness Values
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6.1 Odd k and n

For n and k odd, the proof of Theorem 5.1 gives a disconnecting set S such
that
IS n

WG,k -5 n-EL

However, Table 1 shows that t(G(n,k)) is not always given by (6.1). If
k = 3 and n = 7, then t(G(7,3)) = 3 < ;25. If k=5 and n = 11, then

t(G(11,5)) = 2 < =22, If k = 7 and n € {15,17}, then #(G(n, 7)) < ;25
This shows that some condition like n > 3k is needed in Conjecture 6.1.

(6.1)

6.2 Even k

For k even, the proof of Theorem 5.2 uses a key 2k-section to show that, if

2k | n, then
t(G(n, k) £ 57—
’ 2k—1

In general, the upper bound is bigger than % by an error term ex(n). If
we write n = g-2k+m,, for nonnegative ¢ and m,,, then G(n, k) can be built
with g copies of the 2k-section and one copy of some m,-section. Since the
error term comes from the m,-section, the key to minimizing ex(n) is to
find the best possible starter my-section. The tough sets provided by the
computer for n < 18 help us to accomplish this.

For k = 4, the key 2k-section defined in the proof of Theorem 5.2 is the
topmost 8-section in Figure 6. Of course, shifted versions of this 8-section
can alternatively be used in the same way. Two such shifted versions are

included in Figure 6.

Figure 6: Shifted versions of key 2k-section for k = 4

Figures 7 through 16 show all of the dihedral tough classes for G(n,4)
for 9 < n < 18. Note that the unique dihedral tough class for G(16,4) is
obtained from two copies of the key 8-section. The unique dihedral tough
class for G(17,4) is obtained by joining the key 8-section with the first
tough set for G(9,4) in Figure 7. Also, each of the dihedral tough classes
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for G(18,4) comes from joining a key 8-section from Figure 6 with a tough
set for G(10,4) in Figure 8.

RUDL

Figure 7: Dihedral tough classes for G(9,4)

Qryury
Tty

FETETEETET

Figure 8: Dihedral tough classes for G(10,4)

QaTreTeeTs

TTETeETELT

Figure 9: Dihedral tough classes for G(11,4)

ROOODE
ROLODL

Figure 10: Dihedral tough classes for G(12,4)

TEIToTEaTee

1P PYSCS YIS

Figure 11: Dihedral tough classes for G(13,4)
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Figure 12: Dihedral tough classes for G(14,4)

Figure 13: Dihedral tough classes for G(15,4)

TYETEETETTETEE TS

Figure 14: Unique dihedral tough class for G(16,4)

QI ETEITITTETEY

Figure 15: Unique dihedral tough class for G(17,4)
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QI TyTaTestar
CDYALATTaEACT Y
Iy IAIAMEAET AR

SETETEITETTETEETEY

Figure 16: Dihedral tough classes for G(18,4)

In light of the evidence in Figures 7 through 16, we propose for starter
sections the first tough sets listed for G(n,4) for n € {9,10,11,13,14,15}.
For n = 4 modulo 8, we propose the starter section shown in Figure 17.
Note that this 12-section does not appear in Figure 10. Those 12-sections

WETTEETELTY

Figure 17: Starter section for G(n,4) if n = 4 mod 8

can not be used as starter sections due to the cyclic components which
appear in them. This occurs since 12 can be factored as 12 = 3-4. A
similar exception appears in Theorem 2.2 for G(8,2) since 8 =4- 2.

Remark 6.3. The values for ¢4 given by our proposed starter sections are:

)

ifn=0 mod8
“wacqE ¥n=1mod8
e ifn=2mod8
=2  ifn=3mod8
ifn=4 mod 8
7tz ifn=5mod8
-2 ifn=6 mod8
-% ifn="7mod8

€4 (n) = <

~3[00 ~3160 =300 3|00 =00 ~Jjoo ~yjoo O
[l
X

”

Note that, for our choice of starter sections for k = 4, the appropriate
key section from Figure 6 depends on the starter section. For n =g 3,4,6,
the first key section in Figure 6 should be used. For n =g 1, the second
key section is required. The third key section from Figure 6 is needed for
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n =g 2,5,7. It is possible to use the same key section for each of the
congruence classes modulo 8. However, longer starter sections are needed.
In this case, we would need to use starter m,-sections where

16<m, <24 and m, =n modulo 8.
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