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Abstract

Denote the total domination number of a graph G by 7(G). A
graph G is said to be total domination edge critical, or simply 7:-
critical, if 7(G + €) < 7:(G) for each edge e € E(G). For 3;-critical
graphs G, that is, ye-critical graphs with v:(G) = 3, the diameter of
G is either 2 or 3. We study the 3;-critical graphs G with diam G = 2.

1 Introduction

Let G = (V, E) be a graph with order |V(G)| = n. The open neighbourhood
of a vertex v is the set of vertices adjacent to v, that is, N(v) = {w |vw €
E(G)}, and the closed neighbourhood of v is N[v] = N(v) U {v}. For § C
V(G) we define the open and closed neighbourhoods N(S) and NIS] of
S by N(S) = Uyes N(v) and N[S] = U,es N[v] respectively. For sets
$,X C V(G), if N[S] = X (N(S) = X, respectively), we say that S
dominates X, written S > X (S totally dominates X, respectively, written
S »¢ X). If § = {s} or X = {z}, we also write s > X, § > z, etc.
If $ » V(G) (S =t V(G), respectively), we say that S is a dominating
set (total dominating set) of G. The cardinality of a minimum dominating
(minimum total dominating) set of G is called the domination number (total
domination number) of G and is denoted by ¥(G) (7:(G), respectively); if
S is a minimum dominating (minimum total dominating) set, we also call
S a y-set (;-set) of G. We note that the parameter v,(G) is only defined
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for graphs G without isolated vertices. Domination-related concepts not
defined here can be found in [3].

The addition of an edge to a graph can change the domination number by
at most one. Sumner and Blitch [9] studied domination edge critical graphs
G, that is, graphs G for which 4(G +e) = 4(G) — 1 for each e € E(G). The
problem of characterising such graphs proved to be difficult and they were
able to characterise only those domination edge critical graphs G for which
7(G) = 1 or 9(G) = 2. Although the domination edge critical graphs G
with v(G) > 3 have not been characterised, many interesting properties of
these graphs found and many are still under investigation. (See [7] and [9]
for recent surveys.)

In this paper, we consider the same concept for total domination. A graph
G is total domination edge critical or just y;-critical if 7:(G + ) < 1(G)
for any edge e € E(G) # 0. It is shown in [4] that the addition of an edge
to a graph can change the total domination number by at most two.

Proposition 1 {4] For any edge e € E(G),
7(G) — 2 < 1(G +¢e) < 1(G).

Graphs G with the property 7:(G + €) = %(G) — 2 for any e € E(G) are
called supercritical and are characterised in [5).

As with domination edge critical graphs the problems associated with 'yt-
critical graphs also appear to be difficult, even when restricted to v (G) =
For the remainder of this paper, we restrict our attention to 3t-cr1t1cal
graphs G, that is, v,-critical graphs G with 7:(G) = 3. Note that since
7t(G) 2 2 for any graph G, the addition of an edge to a 3,-critical graph
reduces the total domination number by exactly one. Also, observe that
any graph G with v,(G) = 3 is connected. Sharp bounds on the diameter
of a 3;-critical graph are determined in [4].

Proposition 2 [4] If G is a 3,-critical graph, then
2 < diam G < 3.
The graphs in Figures 1 and 2 illustrate sharpness of these bounds. In

[6] we characterised the 3,-critical graphs G with diam G = 3. Here our
goal is to investigate the 3,-critical graphs with diameter two.

Cockayne, Dawes and Hedetniemi [1) showed that if a graph G is con-
nected and A(G) < n — 1, then %(G) £ n — A(G). We thus formulate the
following observation.
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Figure 1: A 3;-critical graph G with diam G = 2.

Observation 3 Any graph G with 1(G) = 3 has A(G) < n -3, or more
generally, if v(G) > 3, then A(G) £ n — %(G).

We make a distinction between two types of 3;-critical graphs with di-
ameter two. For such a graph G, we say that G is of

Type 1 if every pair of nonadjacent vertices dominates G, and of
Type 2 otherwise.

In [4] the authors showed that any 3;-critical graph G with a cutvertex
has exactly one cutvertex and it is adjacent to an endvertex. Moreover, they
proved that such graphs G have diam G = 3 and are the only 3,-critical
graphs with an endvertex. Thus, the 3;-critical graphs G with diameter
two have §(G) > 2 and are 2-connected.

In Section 2 we characterise the 3;-critical graphs G with diam G = 2
and 8(G) = 2. In Section 3 the Type 1 graphs are characterised and results
concerning the Type 2 graphs are presented in Section 4.

Throughout we make use of the following observation.

Observation 4 For any 3;-critical graph G and non-adjacent vertices u
and v, either
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Figure 2: A 3;-critical graph G with an diam G = 3.

(1) {u,v} dominates G
or

(2) (without loss of generality) {u,w} dominates G—v, but not v,
for some w € N(u). In this case, we write uw +— v.

2 3,-Critical Graphs G with §(G) = diam G = 2

To characterise the 3,-critical graphs G having both diameter and minimum
degree equal to two, we use the following notation. Let v be a vertex of
minimum degree with N(v) = {z,y} and define

A = N@)nN@)- (o),

B N(z) - N(y),
c N(y) - N(z).

Note that since diam G = 2, {N[v}, A, B,C} is a partition of V(G).

Theorem 5 A graph G with diam G = 2 and §(G) = 2 is 3s-critical if and
only if for each vertez v of degree two and N(v) = {z,y},

(1) zy ¢ E(G),
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(2) either A =0 or (A) is complete,
(3) (BUC) is complete, and

(4) if A # 0, then every vertez in A is adjacent to |B| — 1 vertices in
B and to |C| — 1 vertices in C, and |B| 2 2 and |C| > 2. If A =0, then
|Bl| 21 and |C] 2 1.

Proof. Let G be a 3;-critical graph with diem G =2 and §(G) = 2. Let v
be a vertex of degree two with N(v) = {z,y}. Since diam G = 2, the set
{z,y} dominates G. But v:(G) = 3, so = and y are not adjacent. Assume
that (B U C) is not complete and let d,e € B U C with de ¢ E(G). Then
{d,e} ¥ G since neither d nor e is adjacent to v. Thus, we can assume
without loss of generality that dz +— e, implying that d € A (to dominate
y), which contradicts the fact that d € B U C. Therefore, (B U C’) is
complete.

Now we show that if A # @, then (A4) is complete. Let a,d € A and
suppose that ad ¢ E(G). Since neither a nor d dominates v, we may assume,
without loss of generality, that az — d. But d € N(z), a contradiction.

Next we prove that (4) holds. If A = @, then it is easy to see that |B| > 1
and |C| > 1. On the other hand, let @ € A and suppose there are two
vertices b,d € B not adjacent to a. Neither a nor b dominates v, so {a, b}
does not dominate G. Since {b,z} does not dominate y, it follows that
az — b or ay — b to dominate v. But az > b and ay does not dominate
d, a contradiction in both cases. Therefore a is adjacent to at least |B| —1
vertices in B. If a > B, then ay is a dominating edge of G, contradicting
that 4(G) = 3. Thus, a is adjacent to exactly |B| — 1 vertices in B.
Similarly, a is adjacent to exactly |[C| — 1 vertices in C.

We also show that if A # @, then, without losing generality, there is at
least one edge from A to B. Suppose there is no edge from A to B. Since
a € A is adjacent to |B|—1 vertices in B, we know that |[B]=1. If |C]| =1,
then 7(G + va) = 3, contradicting the fact that G is 3;-critical. Hence
|C| > 2. Thus there is a vertex in C that is not in N(a). It is easy to check
that v:(G + va) = 3, again a contradiction. Thus there is at least one edge
from A to B and similarly at least one edge from A to C and we conclude
that if A ## 0, then |B| > 2 and |C| > 2.

Conversely, by the construction, G is a 3;-critical graph. O

We note that the graphs characterised by Theorem 5 are of Type 1 if
A = 0 and of Type 2 otherwise.
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3 Characterisation of Type 1 Graphs

Our next lemma follows directly from the definition of Type 1 graphs.

Lemma 6 If G is a Type 1 graph, then
() G— Np)=K;, t > 2, for any v € V(G);

(b) for each edge wv € E(G), X = V(G) — (N[u]UN|[v]) #0 and (X) is
complete.

Lemma 7 If G is a Type 1 graph, then G has no vertex v such that N(v]
is complete.

Proof. Let G bea Type 1 graph with v € V(G) such that N|[v] is complete.
By Lemma 6, G — N|[v] is complete, and so the connectedness of G implies
that v(G) = 2, a contradiction. O

We now characterise the graphs of Type 1.

Theorem 8 A graph G is of Type 1 if and only if
(1) (V(G) — N[v]) = K¢, t > 2, for every v € V(G),
and

(2) X =V(G) — (N[u]UNT[v]) # 0 and (X) is complete for every uv €
E(G). ‘

Proof. The sufficiency follows from Lemma 6. Conversely, let G be a graph
such that (1) and (2) hold. We first show that diam G = 2 and 1.(G) = 3.
Let v € V(G). By Lemma 7, N(v) is not complete. Let a,b € N(v) be
nonadjacent vertices. By (1), (V(G) — Nla]) is complete, implying that
b > V(G) — Nla). Hence {a,b,v} is a total dominating set of G and so
7(G) < 3. By (2), no edge dominates G. Thus 4(G) = 3. Furthermore,
d(v,z) < 2 for any z € V(G). Since v is an arbitrary vertex, diam G < 2.
Since G has no dominating edge, diam G = 2. That G is v;-critical and of
Type 1 follows from (1). O

We note that if G is a Type 1 graph, then we may increase the order of
G by successively adding a vertex adjacent to every vertex of G — H, where
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(H) is any maximal clique of order k£ > 2. The resulting graph is a Type 1
graph.

We conclude this section with properties of Type 1 graphs. The following
theorem is due to Fraisse [2, p. 109)].

Theorem 9 If G is a 2-connected graph of order n such that for all distinct
nonadjacent vertices u and v,

N@ UN@) 2 222,

then G is hamiltonian.

A simple corollary to Theorem 9 affirms the hamiltonicity of Type 1
graphs.

Corollary 10 If G is a Type 1 graph, then G is hamiltonian.

Proof. Since G is 2-connected and every pair of nonadjacent vertices u,v €
V(G) dominates G, the result follows. O

Recall that the (vertex) independence number of G is denoted by Go(G).
Observation 11 If G is a graph of Type 1, then Bo(G) = 2.

A claw is an induced Kj,3. Obviously, Observation 11 implies that a
Type 1 graph is claw-free.

4 Type 2 Graphs

Although we have not been able to characterise the Type 2 graphs, in this
section we present characterisations of several subclasses of this family. We
begin with some properties of Type 2 graphs.

Since a Type 2 graph G has a pair of nonadjacent vertices that does not
dominate G, the following result is immediate.

Observation 12 If G is a graph of Type 2, then Bo(G) > 3.
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We note that a vertex in a Type 2 graph may or may not have a neigh-
bourhood that induces a complete subgraph. For example, there is no
vertex v in the graph G in Figure 1 such that (N(v)) is complete. On the
other hand, the graph in Figure 3 is an example of a Type 2 graph with a
vertex v such that {N(v)) is complete.

Figure 3: A Type 2 graph with a vertex v such that (N(v)) complete.

4.1 Characterisation where (N (v)) is Complete

The first family of Type 2 graphs that we characterise are the graphs with a
vertex v such that (N(v)) is complete. Let A = N(v) and B = V(G)—N|[v].
It is obvious that deg(v) > 3, otherwise 7:(G) = 2.

Theorem 13 A graph G with a vertez v such that (A) is complete is a
Type 2 graph if and only if the following conditions hold:

(1) No pair of adjacent vertices dominates G.

(2) There is no b € B such that b = B and for every b; € B there exists
bj € B such that bibj — .

(3) For every pair of nonadjacent vertices b,b’ € B, without loss of gen-
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erality, there erists a € A such that ab— V.

(4) For every pair of nonadjacent vertices a € A and b € B, {a,b} » G
or there ezxists w € AU B such that aw — b.

(5) Every vertez in A (B, respectively) has a neighbour in B (A, respec-
tively).

Proof. Let G be a Type 2 graph with a vertex v such that (N(v)) is
complete. Condition (1) follows directly from the fact that v(G) = 3. To
prove (2), we first prove part of (5). If b € B has no neighbour in A, then
d(v,b) > 3, contradicting diam G = 2. Thus each b € B is adjacent to some
vertex in A. Now if b > B for some b € B, then {a,b} ~; G, where a € A
is a vertex adjacent to b. This contradicts v,(G) = 3. Hence no vertex in
B dominates B. Suppose there exists a € A and b € B such that va+— b.
Then e = B — {b}, hence deg(a) = n — 2, contradicting Observation 3.
Condition (2) now follows from the criticality of G.

Condition (3) follows from the fact that no vertex in B dominates v. For
a € A and b € B, if {a,b} > G, then Condition (4) holds. If {a,bd} ¥ G,
then since G is 3;-critical, there exists a vertex w such that aw — b or
bw — a. If bw — a, then w € A to dominate v. But since (A) is complete,
w € N(a), contradicting that bw + a. Hence aw ~— b for some w € AU B
and Condition (4) holds.

To prove the remainder of (5), suppose ¢ € A is not adjacent to any
vertex in B. Then for any b € B, {a,b} ¥ G, for b ¥ B and a is not
adjacent to any vertex in B. Thus by (4) there exists w € AU B such
that aw —— b. Since a is not adjacent to any vertex in B, w € A and
w > B — {b}, hence deg(w) = n — 2, contradicting Observation 3.

Conversely, let G be a graph such that the stated properties hold. We
first show that diam G = 2. By Condition (5) every b € B is adjacent to
some a € A. Therefore d(v,u) < 2 for every u € AU B and d(a,b) < 2
for every a € A and b € B. By Condition (2) every b; € B is adjacent to
some b; € B such that {b;,b;} > B, so d(b,b’) < 2 for every pair b,¥ € B.
Obviously, every pair of vertices in A are adjacent and hence diam G = 2.

Condition (1) implies that 7(G) > 3. Consider nonadjacent vertices
b, € B. Let a € A be a vertex (which exists by Condition (3)) such that
ab+— b, and let @’ € A be adjacent to b’ (see (5)). Then {a,a’,b} »: G
and thus v7,(G) = 3.

87



Next we show that there is a pair of nonadjacent vertices that does not
dominate G. From Condition (2) we know that no b; € B dominates
B. Thus if b; and b; are nonadjacent vertices in B, then {b;,b;,v} is an
independent set of vertices, that is, {b;,b;} ¥ G. Finally, the fact that G
is 3;-critical follows from Conditions (3)-(5). O

4.2 Type 2 Crown Graphs

We say that a graph G is a Type 2 crown graph if for every pair of nonad-
jacent vertices u,v € V(G), there exist vertices z and y such that uz — v
and vy — u. Figure 4 gives an example of a Type 2 crown graph. Note
that not all Type 2 graphs are crown graphs. For example, the graph G
in Figure 5 is a Type 2 graph where {u,v} ¥ G but uw — v and there is
no z € N(v) such that vz — u. In this section we characterise the Type 2
crown graphs.

Figure 4: A Type 2 crown graph.

First we determine some properties of Type 2 crown graphs.

Proposition 14 If G is a Type 2 crown graph, then every pair of nonad-
jacent vertices of G lies on an induced Cs.

Proof. Let G be a Type 2 crown graph and consider nonadjacent vertices
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Figure 5: A Type 2 graph G with vw — v.

u and v. Then uz — v and vy — u for some z,y € V(G), where necessarily
zy € E(G). Furthermore, there is at least one vertex z not adjacent to =
and y. Clearly, z is adjacent to u and v. Hence {u, z,v,y,z} induces a Cs.
O

Proposition 15 Every Type 2 crown graph contains a claw.

Proof. Let G be a Type 2 crown graph with an independent set § =
{z1,22,23}. Let yo be a vertex such that zoy, — z, and consider {z1,y2}.
There exists a vertex z such that z;z — y2. Then z > S and the result
follows. O

The proof of Proposition 15 also shows that every independent set S of
vertices of a Type 2 crown graph satisfies § C N(v) for some v € V(G).
We state this as a corollary.

Corollary 16 If G is a Type 2 crown graph with an independent set S,
then S C N(v) for some v € V(G).

The following corollary is now also immediate.

Corollary 17 If G is a Type 2 crown graph, then 3 < Bo(G) < A(G).
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We now characterise the Type 2 crown graphs. Let G be a Type 2
crown graph and let v € V(G) be an arbitrary vertex with A = N(v) and
B=V(G)— N).

Theorem 18 A graph G is a Type 2 crown graph if and only if the follow-
ing conditions hold for every vertex v:

(1) Po(G) = 3 and for every independent set of vertices S, S C N(u) for
some u € V(G).

(2) Every vertez in A (B, respectively) has at least one neighbour in B
(A, respectively). Furthermore, no pair of adjacent vertices dominates G.

(3) For every b € B there ezists a € A such that va — b and b’ € B such
that bb' — v.

Proof. Let G be a graph such that the stated properties hold. For any
y,2 € V(G), if yz ¢ E(G), then by (1), {y, 2} C N(u) for some vertex u and
so d(y, z) = 2. Hence diam G = 2. Condition (2) implies that v(G) > 3.
Let S be a maximum independent set of vertices. Since Go(G) > 3, we may
assume that {z;,z2,z3} C S. From Condition (1) we have that S C N(u)
for some u € V(G). Consider {z;,z3}. By Condition (3) there exists
w € N(zy) such that z;w — z3. Thus {u,z;,w} >: G and hence v;(G) = 3.
Since the vertex v of the theorem is arbitrary, it also follows from Condition
(3) that G is 3;-critical and of Type 2.

Conversely, let G be a Type 2 crown graph and consider arbitrary v €
V(G). That B5(G) > 3 follows from Observation 12. By Corollary 16,
for every independent set of vertices S, the vertices of S share a common
neighbour in G. Hence Condition (1) holds. Every @ € A dominates at most
|B| — 1 vertices in B, otherwise v;(G) = 2. Consider {v,b;}, b; € B. Since
bib; +— v for some b; € B, every a € A is adjacent to some b € B. Also,
every b € B is adjacent to some a € A since diam G = 2. Furthermore,
since 7;(G) = 3, there is no edge of G that dominates. Hence Condition (2)
holds. Condition (3) follows from the fact that G is a Type 2 crown graph.
0

Although Theorem 18 characterises the Type 2 crown graphs, we are
able to give more descriptive characterisations for several subclasses of this
family. First we determine more properties of these graphs beginning with
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two propositions that give lower and upper bounds on their order.

Proposition 19 If G is a Type 2 crown graph, then G has order n > 7
and this bound is sharp.

Proof. Let G be a Type 2 crown graph. By Corollary 16, G has a vertex
v such that N(v) contains an independent set of cardinality at least three.
Let B = V(G) — N[v]. If there exists a vertex a € N(v) such that a > B
(as is the case if |B| = 1), then {a,v} >: G, a contradiction. This implies
that |B| > 2, i.e., G has order n > 7 unless |N(v)| = 3 and |B| = 2.
Let N(v) = {v1,v2,v3} and B = {u3,u2}. Recall that no vertex in N(v)
dominates both u; and up. Hence, in order to ensure that d(u;,us) < 2,
wup € E(G). Also, to ensure that d(v;,u;) < 2 for each 1 < i < 3 and
1 < j <2, every v; is adjacent to some u;. Thus we may assume that u, is
adjacent to v; and vy, and uy is adjacent to vs. Then {v1,v2} ¥ G and so,
without loss of generality, v1z — v2 for some vertex z. But z € N(vz) for
all z € N(v,), a contradiction.

The graph in Figure 4 has order 7. O

An interesting upper bound on the order of G is given in terms of the
minimum degree 6(G).

Proposition 20 IfG is a Type 2 crown graph of order n, thenn < 26(G)+
1 and this bound is sharp.

Proof. Let G be a Type 2 crown graph. For a vertex v with deg (v) =6 (G),
let D = V(G) — N[v). Then, for every d € D, there is a vertex u € N(v)
such that vu — d. Hence |N(v)| > |D| and it follows that

n

IN ()| + D] + 1
< 2|N(v)|+1
= 2(G)+1.

Hence n < 26(G) + 1.

That the bound is sharp can be seen by a family of graphs G generalizing
the graph in Figure 4 described as follows. Let v € V(G), A = N(v) and
B = V(G) — N[v] such that A is independent, |A| = |B|, (B) is complete
and G contains all edges between A and B except for a 1-factor. O
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Since n > 7 and n < 26(G) + 1, we have the following corollary.
Corollary 21 If G is a Type 2 crown graph, then 6(G) > 3.

Not all Type 2 crown graphs G have order n = 26(G) + 1. For instance,
strict inequality is achieved by the graph in Figure 6. We characterise the
Type 2 crown graphs G having this maximum order. Let G be a graph
with n = 26(G) + 1, let v be a vertex of minimum degree and A = N(v) =
{ei,..,ax}, B = V(G) — N[v] = {b1,...,bx}. There is no zy € E((A4))
such that {z,y} > A. Furthermore, (A) = (B) under the isomorphism
a; — b;, i=1,...,k, and G contains all possible edges from A to B except
for the 1-factor {a;b; : ¢ = 1,...,k}. Let G be the family of all such graphs
G.

Theorem 22 A graph G with n = 26(G) + 1 is a Type 2 crown graph if
and only if G € G.

Proof. Let G be a Type 2 crown graph with a vertex v of minimum
degree and n = 26(G) + 1. Let A = N(v) and B = V(G) — N[v], say
A={ay,...,ar} and B = {by,...,bx}. First consider {v,b;},for1 <i< k.
Without loss of generality we assume that va; — b;. Thus, G contains
all edges between A and B except for the 1-factor {a;b; : i = 1,...,k}.
Furthermore, there is no edge zy € (A) such that {z,y} > A, for otherwise
’Yt(G) =2

We next show that {A) = (B) under the isomorphism a; — b;, i =
1,...,k. Without losing any generality, suppose aja; € E(G) and bybs €
E(G). But then {a3,b } »: G and {a;,b2} >; G, contradicting v:(G) = 3.
On the other hand, suppose {a1a3,b,b2} N E(G) = 0. Consider {b,b2} and
let = be a vertex such that byx — bs. Then = € A to dominate v. The only
vertex in A not adjacent to by is as, but since va; — by, neither b; nor as
dominates a;, a contradiction.

Conversely, it is a simple exercise to check that G is a Type 2 crown
graph. O

From Corollary 21 and Observation 3 we see that Type 2 crown graphs
G have 3 < §(G) < A(G) £ n— 3. The final two subfamilies that we
characterise are the ones obtaining these lower and upper bounds. The
following lemma will be used to characterise the Type 2 crown graphs with
minimum degree 3.
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Figure 6: A Type 2 crown graph G with n < 26(G) + 1.
Lemma 23 For each vertez v of a Type 2 crown graph, v({(N(v))) > 2.

Proof. Let G be a Type 2 crown graph and suppose G has a vertex v
such that y(N(v)) = 1. Let z € N(v) be a vertex that dominates N(v).
Let y € V(G) — N[v] be a vertex that is not dominated by z and consider
{z,y}. It is easy to see that there is no vertex w such that wy— z. O

Theorem 24 A graph G with §(G) = 3 is a Type 2 crown graph if and
only if G is the graph in Figure 4.

Proof. Let G be a Type 2 crown graph and let v be a vertex of G with
degree three. Let B = V(G)—N|v]. We know by the proof of Proposition 20
that |B| < 3 and Proposition 19 implies that |B| = 3. Let B = {b;, b2, b3}
and N(v) = {v1,v2,v3}. Since we know from Lemma 23 that no vertex in
N(v) dominates N(v), it follows that N(v) is either independent or induces
a graph with a single edge, say v v;. First assume that N(v) is independent
and consider {v,b;}. Without loss of generality, vv; — b, and v, is adjacent
to bz and bs (and v1b; ¢ E(G)). Similarly, vva — bz and vbz + bs.

Suppose that (B) is not complete. We may assume that b1b2 € E(G).
Then bz — by for some vertex . However, N (b)) C {v2,vs, b3}, but
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{b1,v2} ¥ v1, {b1,vs} > by and {by, b3} ¥ v, a contradiction. Hence (B) is
complete.

Next, let (N(v)) have a single edge v,v2. Again when we consider {v, b;},
1 £ j £ 3, each v; dominates B — {b;}. If b1b2 € E (G), then {v;,b2} >; G,
a contradiction. It is now easily checked that (B) = K3 — by b and that the
graph thus obtained is isomorphic to the graph G in Figure 4.

Conversely, it is a simple exercise to see that G is a Type 2 crown graph
with 6(G) =3.0

We next consider the Type 2 crown graphs G with A(G) =n - 3.

Lemma 25 IfG is a Type 2 crown graph with a vertez v such that deg(v) =
n—3, then G — N[v] = Ka.

Proof. Let V(G) — N[v] = {z,y}. If z and y have a common neighbour
in N(v), say 2, then {v,z} »: G, contradicting the fact that v:(G) = 3.
Hence z and y have no common neighbour in N(v), and since diam G = 2
it follows that zy € E(G). O

Let F be the family of graphs G with A (G) = n— 3 described as follows.
Let v be a vertex with deg(v) = n — 3 and V(G) — N[v] = {z,y}, where
zy € E(G), and let N(v) = AU B (disjoint union), where A = N(z) N
N(v) = {a1,...,ar} and B = N(y)NN(v) = {by, ..., bx} such that (4) = (B)
under the isomorphism a; — b;, ¢ = 1,...,k. Also, G contains all edges
from A to B except for the 1-factor {a;b; : i =1,...,k}.

Theorem 26 A graph G with A(G) = n — 3 is a Type 2 crown graph if
and only if G € F.

Proof. Let G be a Type 2 crown graph with deg(v) = n—3. By Lemma 25,
V(G) — N[v] = {z,y} where zy € E(G). First consider {v,z}. Since G
is a Type 2 crown graph, zy — v, implying that every vertex in N(v) is
adjacent to z or y. We also know that no vertex in N(v) is adjacent to
both = and y. Hence {4, B} is a partition of N(v). Let A = {ay,...,ax}
and B = {by,...,b}. Next consider {a;,y}, for every 1 < ¢ < k. Note that
|B| = |A| since for every a; there is a distinct b; € B such that yb; — a;.
Similarly, by considering {b;,z} for every 1 < j < I, we see that for every
b; there exists a distinct vertex a; such that za; — b;, so that |A| > |BJ.
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Hence |A| = | B| with all the edges between A and B minus a 1-factor; say
abj€ E(G)foralli#j,1<4,j<k.

By Proposition 19, k > 2. Now suppose without losing generality that
a1a2 € E(G) and b1b, € E(G). Here both a;bs and bya; totally dominate
G, contradicting 7;(G) = 3. Therefore at most one of a;a; and b b; is an
edge of G. Since aja; and biby are arbitrary, in general at most one of
a;a; and b;b; is an edge of G. Assume that neither of a;az and bybs is an
edge of G. Consider {a;,az} and note that {a,,b2} ¥ by, {a1,2} # b1 and
{ay,v} ¥ y. Therefore, without losing generality, let ajb3 +— az. But then
aia3 and b1bs are edges of G, contradicting that at most one of ;a3 and
b1b3 is an edge of G. Thus, exactly one of a;a; and b;b; is an edge of G,
implying that (4) = (B) .

Conversely, it is easily checked that G is a Type 2 crown graph. D
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