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Abstract

The well-known Marriage Lemma states that a bipartite regular
graph has a perfect matching. We define a bipartite graph G with
bipartition (X,Y) to be semi-regular if both = — degz,z € X and
y > degy,y € Y are constant. The purpose of this note is to show
that if G is bipartite and semi-regular, and if | X| < |Y], then there
is a matching which saturates |[X|. (Actually, we prove this for a
condition weaker than semi-regular.) As an application, we show that
various subgraphs of a hypercube have saturating matchings. We also
exhibit classes of bipartite graphs, some of them semi-regular, whose
vertices are the vertices of various weights in the hypercube Q. but
which are not subgraphs of Q.

1 Introduction

A graph G is regular of degree k (or k-regular) if each vertex has degree .
From now on, G will be a bipartite graph with bipartition (X,Y).

Definition 1 G is semi-regular of bi-degree (k,m) if every vertex in one
member of the bipartition has degree k and every vertez in the other has
degree m.

The Marriage Lemma says that if a bipartite graph is regular then
|X| = |Y| and G has a perfect matching. If G is semi-regular of bi-degree
(k,m) with m < k then, as we shall show, |X| < |Y], so that G has no
perfect matching. However, G does have a matching which saturates X.
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We then use this to show that the subgraph of the hypercube Q,, created
by deleting all vertices of weight < i and all vertices of weight > n — j has
a saturating matching.

2 The Marriage Lemma for semi-regular bi-
partite graphs

Lemma 1 Let G be a bipartite graph with bipartition (X,Y). Assume that
forallz € X and for ally € Y, degz > degy. Then |X| < |Y| and there
exists a matching in G which saturates X.

Proof. 3 cx degz = e(G) = ) cydegy. Let 0x = mm{dega:la: € X}
and let Ay = min{degy|y € Y} Then the first sum is > 6x|X |, while
the second sum is < Ay|Y|. So dx|X| £ Ay|Y]. Thus |X| < -*'—]Yl It
follows from the hypothesis that Ay < dx, and so | X| L [Y].

Now to show the existence of a matching which saturates X we show
that Hall’s condition is satisfied. So let S be any subset of X. We must
show that |S| < |N(S)]. Suppose instead that |S] > |N(S)|. Let H denote
the subgraph of G induced by S U N(S).

Y degp(y) =) degy(x) =) dege(a)

yeN(S) zeS zeS

Thus the average degree, relative to H, of y € N(S) is

2sesdeg
|V (S)|

Now if |N(S)| < |S|, then

Ezes degx > ZzGS deg:z:
IN(S)| |51

Thus the average degree,in H of the y’s in N(S), is greater than the average
degree, in G, of the 2’s in S. But from the hypothesis, the maximum of
{degy|y € N(S)} is less than or equal to the minimum of {degz |z € S}.
Thus the average of {degy|y € N(S)} is less than or equal to the average
of {degz |z € S}, contradicting the strict inequality obtained above. This
contradiction shows that Hall’s condition is satisfied, and hence the desired
matching saturating X exists. [m]

Remark. With the hypotheses of the previous lemma, if for at least one
pair z,y with z € X and y € Y, degz > degy, then | X| < [Y].

98



The next result is an immediate consequence of the preceding lemma
and the remark.

Corollary 1 Let G be a semi-regular bipartite graph of bi-degree (k,m),
(X,Y) a bipartition of G. Assume that for allx € X, degx = k and for all
y €Y, degy = m, withm < k. Then |X| < |Y| and there ezists a matching
in G which saturates X.

3 An Application to Subgraphs of Hypercubes

Denote the n-dimensional hypercube by @,,. We think of the vertices as
the subsets of [n] = {1,2,...,n}. Two subsets are considered adjacent if
one is a subset of the other and their cardinalities differ by 1. By the weight
of a vertex we mean the cardinality of the corresponding subset. We call
the set of vertices of weight j the j*" level of Q,, and denote it by L;.
The bipartition of Q,, is given by (X,Y) where X = the set of vertices
of odd weight and Y = the set of vertices of even weight. Thus X is the
union of the odd levels and Y is the union of the even ones. For i < j
we denote by Ly ;) the subgraph of Q, induced by all vertices z such that
i < weight (2) < 4.

Lemma 2 Let 1 < j < n—1, and let = belong to level j. Then = has j
neighbors in level j — 1 and n — j neighbors in level j + 1.

Proposition 1 Let n = 2k and G be the subgraph of Q,, obtained by delet-
ing all vertices in levels < i and all vertices in levels > 2k — i, wherei < k,
i.e. G = L(iy1,2k-(i41))- Then G has a matching which saturates all ver-
tices whose weight is=1% (mod 2) .

Proof. By Lemma 2, it is easy to see that every vertex in G whose weight
is greater than i + 1 and less than 2k — (i + 1) has degree 2k in G. The
vertices of weight i 4+ 1 and the vertices of weight 2k — (i + 1) have degree
2k—(i+1). Hence by Lemma 1 there is a matching of G which saturates all
the vertices of that member of the bipartition of G of smaller cardinality.
Again by Lemma 1, that member is the one whose vertices have the higher
degrees. Since the only vertices of degree less than 2k are those of weights
i+land2k—(i+1)andi+1=2k—({+1) (mod 2), it follows that the
vertices of weight =i (mod 2) are all saturated by this matching. o

Next we consider the case of odd dimensional hypercubes, and prove a
stronger result which does not use Lemma 1.
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Proposition 2 For 1 < a < k, Q2k41(k — a,k + 1 + a) has a spanning
subgraph which is reguler of degree k+1+a. Hence this graph has a perfect
matching.

Proof. By induction on a. First, let a = 1. Note that if wt(z) = kork +1,
then deg(z) = 2k + 1, while if wt(z) = k — 1ork + 2, then deg(z) = k +2.
Now the subgraph Q2x+1(k, k+1) is k+1-regular. By the Marriage Lemma,
this subgraph has k — 1 pairwise disjoint perfect matchings M;,..., Mi_;.
Deleting these k—1 perfect matchings reduces the degree of each x of weight
k or k+1by k—1, so that its degree in Qar41(k—1, k+2)—U;Z; M; is k+2.
Thus we obtain a k + 2-regular spanning subgraph of Q2x+1(k — 1,k +1).
Now suppose that 2 < a < k — 1 and suppose that Qzr+1(k — a,k +
1+ a) has a (k + 1 + a)-regular spanning subgraph. Let b=a+ 1. In
Q2k+1(k — b,k + 1 + b) all vertices, except those of weight k — b or weight
k+1+b, have degree 2k+1. The vertices of weight k—b and those of weight
k+ 1+ b have degree k + 1+ b. By the Marriage Lemma, the (k + 1 + a)-
regular spanning subgraph of Q2x+1(k—¢,k+1+a) hask—a—1=k-b
pairwise disjoint perfect matchings. Deleting these k — b perfect matchings
from Qgi4+1(k — b,k + 1 + b) reduces the degree of each vertex z with
k—b<wt(zr) <k+1+bby k—b Thus in this spanning subgraph of
Q2k+1(k—b, k+1+b), the degree of the vertices z with non-extreme weight
equals 2k+1— (k—b) = k+1+b. Thus this subgraph is (k+1+b)-regular.
The last statement follows from Hall’s Marriage Lemma. o

4 Some Other Semi-regular Bipartite Graphs

There are a number of graphs which can be defined on the node set V =
{zlz € [n]}.

Example 1. For 0 < t < n—1 define z and y to be adjacent <= |zNy| =t.
To guarantee a bipartite graph, we can simply restrict adjacency to those
pairs (z,y) with |z Ny| = t and with weights of opposite parity. Suppose
weight(v) = a and weight(u) = b. Then

ws= () () ) o

Thus the graph is regular.

Example 2. Same as Example 1, except that we replace the condition
|z Ny| =t with |[zNy| < . If again we restrict to the nodes of weights a
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and b, where a and b have opposite parity, then it follows from Example 1

that .
deg(v) =Y (;) C’) = deg(u).

=0
Once again, the graph is regular.

Example 3. Let 0 < b < a < | 3], let X = {z C [n]|weight(z) = a} and let
Y = {y C [n]|weight(y) = b}. Let G be the bipartite graph with bipartition
(X,Y), where (z,y) is an edge if and only if y C z. Then deg(z) = (3),
deg(y) = (2:: and so G is sem-regular. Note that if e — b = 1 then
G = Ly, and is therefore a subgraph of the hypercube Q,,. However, if
a—b>1,G is not isomorphic to a subgraph of Q,, for any m. For K33 is
not isomorphic to a subgraph of Q,, for any m, so it suffices to show that G
contains a subgraph isomorphic to K2 3. We illustrate this for the special

case ¢ = b+ 2. Now
{1,2,...,b}U{2,3,...,b,b+ 1},u{1,3,...,b,b+1} = {1,2,3,...,b+1}

c{1,2,...,b+1,b+2}U{1,2,...,b+1,b+3}.

Thus we have three b-sets and two b+ 2-sets such that each b-set is a subset
of each of the b+ 2-sets. Hence these five vertices form a copy of K2 3 in G.
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