GEOMETRICALLY DISTRIBUTED RANDOM
VARIABLES AND PERMUTATIONS AVOIDING
CONSECUTIVE 3-LETTER PATTERNS
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ABSTRACT. For words of length n, generated by independent geo-
metric random variables, we consider the probability that these
words avoid a given consecutive 3-letter pattern. As a consequence
we count permutations in Sy, avoiding consecutive 3-letter patterns.

1. Introduction

Let X denote a geometrically distributed random variable, i.e. P {X = k}
= pg*~! for k € N and p = 1 — q. We assume that we have n independent
random variables X3, Xs,--- , X, from this distribution.

In this paper we derive recursive formulae for the probabilities of words
of length n avoiding consecutive 3-letter patterns (subwords).

Definition 1. A word s a sequence of characters or letters drawn from
a fized alphabet. That is, an ordered n-tuple of symbols i3 an n-word. The
empty word is denoted by €.

Definition 2. An n-word w, say w = a a3 - - a,, contains a consecutive
123 pattern (subword) if and only if there exists 1 < i < n — 2 such that
a; < @iy1 < ai2. That is, if there is a 3-letter block a; a;41 aiy2 satisfying
a; < @iy < Giy2. Otherwise w is said to avoid a consecutive 123 patiern.

The other five consecutive 3-letter patterns, namely 132, 231, 213, 321,
and 312, are defined in the same manner.

Definition 3. A 3-letter block a; ai+1 @i+2 13 said to satisfy
(i) an up-down pattern if a; < ai41 > Git2;
(i) a down-up pattern if a; > aip1 < Git2.

The other cases, namely up-up and down-down are defined similarly.

Definition 4. A 3-letter block a; ai+1 @itz is said to satisfy an up-down
pattern in the sense of 132 (231) ifa; < Gi+2 < Git1 (Git2 < @i < Gig1)-
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We can also define down-up patterns in the sense of 312 or 213 in the
same manner.

The generating function related to an up, given that the previous ele-
ment was ¢ is given by

¢ > pe e = T2 (ga)’

et —-qz

<J
where the indices i < j show that the pattern of the last two letters is an
up. The factor (gz)* of the term on the right side of (1) means that we
substitute z by gz. The generating function related to a down, given that
the last element was i is given by

2) > opd e = 2 - (),

7 gz l-—gz

where the indices ¢ > j indicate that the pattern of the last two letters is
a down. The first term means that we forget the labelling of the last part
(z := 1) and the second term means that we replace z by (gz).

In order to find the probabilities of words avoiding 3-letter patterns, we
will use a method called adding-a-new-slice. This method was used suc-
cessfully by Flajolet and Prodinger in [2] and Knopfmacher and Prodinger
in [3] and more recently by Prodinger in [7].

The probability that words of length n avoid consecutive 3-letter pat-
tern, say o € S, will be denoted by ¢{*? (g).

In order to obtain the recursions for the probabilities we introduce two
variables u and v, where v labels the last letter and u labels the second
last letter.

In order to count we use the automaton below, where the two states I;
and I, are the nt® down and up step, respectively, in the construction of
a word of length n.

up

up

L, _— T

down l 2

down

Figure 1.
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Let ap, (u,v) (bn (u,v)) be the generating function of words of length n
where u marks the second to last letter and v marks the last letter and the
last step is a down (up) step. Therefore the generating function related
to an up, given that the previous element was ¢ is given by (1) and the
generating function related to a down, given that the last element was ¢
is given by (2). Therefore the automaton above gives rise to the following
counting functions for n > 2

an (u,v) = lfv P (1u) - 7= pric! (1,quv)
3) + 7ot (1) = T2 b (1,qu0)
and
@ b wo) = 7 ane (Lgu) + 77 bt (L qu).

Note carefully that there are no restrictions involved and every possible
word is taken care of. We shall see in Section 2 that a,, (u,v) and by, (u,v)
will be different from the above equations depending on whether they are
restricted or not.

We define a; (u,v) and bs (u,v) as follows:

@) = 3 Y e i

i>1 j<i
pPuv _ p?quv?
(1-gqu)(1—-gqv) (1-qv)(1-q*uwv)

meaning that the pattern of the first two letters is a down and

be(u,0) = YO Pt ulv

(5) =

i>1 j>i
_ p*quv’
) = G- a-cw)’

meaning that the pattern of the first two letters is an up.
The discussion above shows that the probability that words of length
n admit every 3-letter pattern is given by

(M ¢n (@) = an (1,1) + ba (1,1)
where ay, (u,v) and b, (u,v) are given by (3) and (4), respectively, for

n > 1 and ¢; (g) = 1. Since there are no restrictions, ¢, (¢) = 1 for each
g€[0,1].
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2. Words avoiding consecutive 3-letter patterns

In this section we find the probability of words of length n which avoid
3-letter subpatterns. We shall restrict ourselves to consecutive single pat-
terns. Although there are 3! = 6 different 3-letter patterns, we shall only
need to consider 3 cases.

2.1. Consecutive 123 Avoiding Geometrically Distributed Ran-
dom Variables. In this case, we consider words avoiding consecutive 123
subpatterns. That is, words avoiding a 3-letter up-up subpatterns such
that the leftmost letter is the smallest and the last one is the largest. This
leads us to the following theorem:

Theorem 1. The probability that words of length n avoid consecutive 123
patterns is given by c§123) @=1landforn>1

(8) i () = an (1,1) + bs (1,1)

where ag (u,v) and bz (u,v) are given by (5) and (6) respectively, and for
n > 2 we have

an@) = 7T an (o)~ 72 an (1,qu)
pv pv
9 +1 —qv bn-1(1,u) 1—gqu bn-1 (1,quv)
_ i
1) ba(w) = $Ean(qu).

Proof. In order to prove this theorem, we make use of the following au-
tomaton below.

down
Figure 2: Consecutive 128 avoiding patterns

We assume that in trying to construct a word of length n avoiding
consecutive 123, we have moved n — 1 steps. The n*» step can either be
up or down. To arrive at I; and [, either the previous step was a down
or up.
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Case 1. If the nth step is a down, then from (2) we have the generating
function

11 P L LA
(11) Z;qu Y =1 l_qz(q;

If the (n— 1)” step is a down, then adding a new slice means adding a
pair (j,k), thereby replacing ufs’ by u/v*. That is, we replace u by 1
and v by u and provide the factor v*, so that (11) yields

(12) Zn (u,0) =

an-1 (1,u) - Gn-1 (1,quv),

v v
l1-gqu 1-qu
for n > 2. If the (n — 1)® step is an up, then adding a new slice means
adding a pair (j, k), thereby replacing u*v# by u/v*. That is, replacing u
by 1 and v by u and providing the factor v*¥, so that (11) yields

_ __p
(13) Yn (uiv) = 1 ___qv bn—l (lv u) 1— qV
for n > 2. Adding (12) and (13) we obtain (9).
Case 2: If the n®” step is an up, then from (1) we have the generating
function

(14) > pei el = T2 (qa).
i<i

bn-1 (1,quv),

1-gqz

As seen in the figure above, the (n — 1)” step can only be a down, oth-
erwise the word being constructed will not avoid consecutive 123 subpat-
terns. Adding a new slice means adding a pair (j,%), thereby replacing
107 by u/v*, which means that we replace u by 1 and v by u and provide
a factor v*. Hence (14) yields

(15) br (u,v) =

T qva”'l (1,quv),
forn > 2.

The values of as (u,v) and by (u,v) are given by (5) and (6), respec-
tively. We also define c§123) (g) to be equal to 1.

Adding (9) and (10) when both u and v are replaced by 1, we obtain
the desired results. O

Let us now consider words of length n avoiding consecutive 321 subpat-
terns. By left¢+right symmetry (i.e. reading a pattern in reverse order)
this case is the same as the one for avoiding consecutive 123 patterns.
Although the formulae for a, (u,v) and by, (u,v) (see theorem below) look
different, the values of A (g9) and 2 (q) coincide when ¢ € [0,1].
This leads us to the following remark:
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REMARK. The probability that words of length n avoid consecutive

321 patterns is given by cfm) (@) =1land forn>1
(16) e (@) = an (1,1) + b2 (1,1)

where as (u,v) and bs (u,v) are given by (5) and (6) respectively, and for
n > 2 we have

an (u,v) = i%?%;an¢1(l,u)—-(T%¥§;7an-1(1,quv)
pv v
(17) = 'l_—qvbn_l (1, 'u) - (—i-—_q—v)bﬂ_l (l,quv)
0 pv pv
(18) bn (U,U) = man_l (l,quv) =+ mbnﬁl (1, Q‘U'U) i

Below is a graph of values of ¢{™ (g) for ¢ € (0,1], @ € {123,321} and
ni=1,2.3, i4ayl.

1 |

0.6} = Sy

0.2 0.4 0.6 0.8 1

Figure 3: Values of ¢\ (q) for g€ [0,1], a € {123,321} and
n=igiar .ol gl

The first line on Figure 3 corresponds to n = 1,2, the second line to
n = 3, the third line to n = 4 and so on.

The cases for the probabilities that words of length n avoid consecutive
123 and 321 patterns can also be done using only one variable, say u.

2.2. Consecutive 132 Avoiding Geometrically Distributed Ran-

dom Variables. In this case we look at words avoiding consecutive 132
patterns. This leads us to the following theorem:
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Theorem 2. The probability that words of length n avoid consecutive 132
patterns is given by c§132) (g=1land forn>1

(19) %2 (g) = an (1,1) + ba (1,1)

where ag (u,v) and by (u,v) are given by (5) and (6) respectively, and for
n > 2 we have

an(@,v) = 7 ""qva,,-l (1,9) - ””qva,,_l (1, quo)
(20) + 1 b,,_l 1,u) — b,,-l (qu,u)
(21) bn (u,v) = 1- qvan—l (1, quv) + bn—l (1,quv).

Proof. In order to prove this theorem, we make use of the following au-
tomaton below.

up

up

down - restricted

down °
Figure 4: Consecutive 132 avoiding patterns

O

Also, by lefteright symmetry, the probability that words of length
n avoid consecutive 132 subpatterns is the same as the probability that
words of length n avoid consecutive 231 subpattern. Unlike in the previous
case (consecutive 123 and consecutive 321), where a, (u,v) and b, (u,v)
were different, both a, (u,v) and b, (u,v) coincide.

2.3. Consecutive 213 Avoiding Geometrically Distributed Ran-
dom Variables. In this case we look at the probabilities of words avoid-
ing consecutive 213 patterns. These are words avoiding down-up pattern
in the sense of 213.

Theorem 3. The probability that words of length n avoid consecutive 213
patterns is given by c§213) (@=1landforn>1

(22) ' (@) = an (1,1) + bs (1,1)
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where az (u,v) and ba (u,v) are given by (5) and (6) respectively, and for
n > 2 we have

an(9) = 7T an1 (L) = 7o on (1,qw)
pv __pv
(23) oot (L) = 3= oot (L)
- _w i
(249)  ba(uv) = g — ot @)+ - g5 o1 (Lquv)

Proof. The proof of this theorem is similar to the proof of Theorem 3,
and is omitted. The automaton is given below. newline

up

up - restricted '

L

down
Figure 5: Consecutive 213 avoiding patterns

O

Also, by left¢right symmetry, the probability that words of length
n avoid consecutive 213 subpatterns is the same as the probability that

words of length n avoid consecutive 312 subpatterns. Both 12 (¢) and
213 (g) also coincide.

Below (Fig. 6) is a graph of values of ¢! (g) for g € [0, 1}, a = 132 (231)
and n = 1,2,3,---,13. The graph of values of ¢! (q) for q € [0,1],
a=213(312) and n =1,2,3,-- -, 13 looks similar.
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0.2 0.4 0.6 0.8 1

Figure 6: Values of ¢ (q) for g € [0,1], a = 132 (231)and
n=123,-,13.

The first line on Figure 6 corresponds to n = 1,2, the second line to
n = 3, the third line to n = 4 and so on.

3. Applications to Permutations

In this section, we count permutations in S, the symmetric group on
n letters, avoiding consecutive 3-letter patterns. For permutations a and
B, we say that « is order-isomorphic to 8 if the following condition holds:
for all 1 <4,j < n, o; < a; if and only if 8; < ;.

Definition 5. Let a = (a;,0as,... ,ax) € S be a permutation, and let
k < n. We say that p = (p1,P2,... ,Pn) € Sp contains a consecutive
subsequence (or pattern) of type o if and only if there exists 1 <i<n —
k+1 such that (p;,Pit1,--- ,Di+k—1) §8 order-isomorphic to a. Otherwise

we say that p avoids a.

Let a € Sy, be a permutation, and let k¥ < n. The set of all permutations
in S, avoiding consecutive patterns which are order-isomorphic to a will
be denoted by Sy, ({@)). For each a € Sk, where k < n, let 4, ((a)) =

155 ((a))]-

Example 1. S, ((132)) = {4123,4213,4231,4312,4321, 1234, 1342, 3124,
3214, 3241, 3412, 3421, 2314, 2413, 2341, 2134} and therefore Ag ((132)) =
16.

Let us define the bivariate ordinary generating function (OGF) for
the probability that words of length n avoid a given consecutive 3-letter
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pattern a .
P(z,q) =) cf (q) 2™
n>0

Consider now the symmetric group S, and the exponential generating
function (EGF) for permutations in S, avoiding a given consecutive 3-
letter pattern o

N P Al
B(2)= Y 4, (o) 2.
n>0
The following lemma can be found in Flajolet [1].

Lemma 1. [1] The relation between the sequence (words) model and the
permutation model s

P(z)= lim P(z,q),
q-rl
uniformly for any z such that |z| < ro with ro < 1.

Example 2. Considering the probability that words of length n admitting
every 3-letter patterns we have, from Section 1, that ¢, (q) = 1 for all
g € [0,1], so that

P(z,9)=) calg)e"=) 2"=
n20 n>0

which agrees with the number of permutations in a symmetric group S,
as

1
1-2’

n! [z 112 =mnl,

as it should be.

We show in the following lemma that there are only two distinct se-
quences of values that occur.

Lemma 2. For every symmetric group Sy,
(a) A, ((123)) = A, ((321));
(b) A, ((132)) = 4,, ((231)) = 4, ((213)) = 4, ((312)).

Proof. (a) We interchange the smallest and the largest letters using the
transformation

(25) a=n+1-0;,
forn>land1<i<n.
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(b) This is a consequence of (21) above and the transformation

a; = Pnt1-i,
wheren>land1<i<n. O

Table 1
Values of A, ({(a)),fora € Sgand n > 1
A_({a)), a = 123 (321) | 1,2, 5, 17, 70, 349, 2017, 13358,
99377,822041, 7477162, 74207209,
797771521,9236662346, - - -

A (@), 1,2,5,16, 63, 296, 1623, 10176,
a € {213,312,132,231} | 71793, 562848, 4853949, 45664896,
465403791, - - -

One may also look at the number of permutations of n elements which
contain no increasing subsequence of length 3 (not necessarily consecu-
tive). Permutations with restrictions of this type can be approached from
the Computer Sciences standpoint of sorting problems [4], [8], as well as
part of the combinatorial topic of strings with forbidden subwords (5], [6].
The number of permutations of n elements which contain no increasing
subsequence of length 3 (not necessarily consecutive) is known [4] to be
Cn = 747(%), where C, denotes the n‘* Catalan number. It is also
known [9] that given any pattern of length 3, the number of permutations
avoiding that pattern is C,.
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