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Abstract

Given integers k > 2 and n > k, let c(n,k) denote the maxi-
mum possible number of edges in an n-vertex graph which has no
k-connected subgraph. It is immediate that ¢(n,2) = n — 1. Mader
[2] conjectured that for every k > 2, if n is sufficiently large then
e(n, k) < (1.5k — 2)(n — k + 1), where equality holds whenever k — 1
divides n. In this note we prove that when 7 is sufficiently large then
c(n, k) < 18(k —1)(n— k + 1) < 1.61(k ~ 1)(n — k + 1), thereby
coming rather close to the conjectured bound.

1 Introduction

All graphs considered here are finite, undirected and have no loops or mul-
tiple edges. For the standard terminology used the reader is referred to
[1]. This paper is about a classical extremal problem in graph connectivity,
raised by Mader in [3]. Let k¥ > 2 be an integer. Recall that a graph with
n > k + 1 vertices is k-connected if the removal of any set of k¥ — 1 ver-
tices from the graph results in a connected subgraph (graphs with n < k
vertices are considered non k-connected). For n > k, let ¢(n,k) denote
the maximum possible number of edges in an n-vertex graph which has
no k-connected subgraph. It is easy to see that ¢(n,2) = n — 1 since any
tree does not have a 2-connected subgraph, and any n-vertex graph with n
edges contains a cycle, which is a 2-connected subgraph. For the rest of this
paper we shall assume k > 3, whenever necessary. Trivially, c(k, k) = ';)
Since the complete graph Kj..; is the only k-connected graph with k41
vertices, one has c(k + 1,k) = (*3!) — 1 where the unique extremal graph
is K, (the complete graph missing one edge).
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In [2], Mader gave a construction of an n-vertex graph with no k-
connected subgraph, and with a rather large number of edges. Let Gn x
be defined as follows. Assume n = (k—1)g+r where 1 <r < k- 1.
The vertices of G, 1 are arranged in ¢ + 1 classes Vg, ..., V,, where each
class contains exactly k — 1 vertices, except for the final class V, which
contains 7 vertices. V is an independent set, and V; is a complete graph
for i = 1,...,q. Furthermore, there is an edge between each vertex of Vp
and each vertex of V; for ¢ > 1. Note that V} is a disconnecting set of size
k —1. It is thus easy to check that G, ; has.no k-connected subgraph. Let
e(n, k) denote the number of edges of Gn x. We have:

e(n, k) = (g—1) ("; 1)+ (;)+(k—1)(n—k+1) < Gh-2m—k+1), (1

and equality is obtained whenever n is a multiple of £ — 1. It follows that
c(n, k) > e(n, k). Mader [2] has conjectured the following:

Conjecture 1.1 (Mader [2]) For n sufficiently large, c(n, k) < (3k —
2)(n — k +1). Consequently, if n is a multiple of k — 1 then c(n,k) =
(3k —2)(n — k+1), and Gp ;. is an estremal graph.

Mader [3] has proved Conjecture 1.1 for all ¥ < 7. The reason that n needs
to be sufficiently large in Conjecture 1.1 follows from the fact that there
exist n-vertex graphs with more than (3k — 2)(n — k + 1) edges, and with
no k-connected subgraph, for n = ©(k?).

A simple upper bound showing that c(n, k) < (2k—3)(n—k+-1) whenever
n > 2k — 1 is presented in [1], p. 45. Mader showed that for n sufficiently
large, c(n,k) < (1 4+ v2/2)(k — 1)(n — k + 1). In this note we present a
further improvement which is about halfway between Mader’s bound and
the bound in Conjecture 1.1:

Theorem 1.2 For k > 3 and for n > 3(k — 1), c¢(n,k) < Bk - 1)(n -
k+1).

2 Proof of Theorem 1.2

An (S, A, B)-partition of a non k-connected graph G is a partition of the
vertex set of G into three parts S, A and B, where |S| = k—1, |A| < | B| and
there is no edge connecting a vertex of A and a vertex of B. Clearly, every
non k-connected graph with at least k-+1 vertices has an (S, A, B)-partition.
Given an (S, A, B)-partition, let G4 and Gp denote the subgraphs of G
induced by S U A and S U B respectively.

Proof of Theorem 1.2: Matula has proved [4] that

- 2 _
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We shall use this fact. For completeness, we reprove (2). This is done
by induction on n. For n = k, (2) is obvious. For n = k + 1 we have
e(k+1,k) = (*3') — 1, so (2) holds. Assume it holds for all k < a < n.
Let G be an n-vertex graph without a k-connected subgraph. Consider an
(S, A, B)-partition of G. Clearly, G misses at least the | A||B| possible edges
between A and B, and by the induction hypothesis, Gg, as a subgraph of
G with |B| + k — 1 < n vertices, misses at least (|BJ? — 1)/3 additional
edges. Hence, since |A| < |B|:

() < () - 14lIBI - (BF - /3 <

(vzz) _ (|A|+Ifl)2—1 _ (;z) _ (n—k;l)—l.

This proves (2) for all n > k.

Now let n > %(k— 1), and let G be an n-vertex graph without a k-connected
subgraph. Put n = 4(k — 1) and assume first that v < 4. According to
(1) we have:

e(G) < 72(16 - 1)22_ 7(’9 - 1) _ (’7— 1)2({;_ 1)2 -1 <

—1)% 193 193
(e-02% - O <280y 1p = 2B ym k.
Now assume that v > %. We use induction once again, and assume the
theorem holds for each value smaller than n. Consider an (S, A, B)-partition
of G, put a = |A| and b = | B|, and recall that @ < b. Let a and 3 be defined
by @ = ak — 1) and b = B(k — 1). Notice that a +b+k—1=n and so
a+ B =y—1. Consider first the case @ < 1. In this case, 8+ 1 > -132-, so
the induction hypothesis holds for Gg. Hence, the number of edges of G is
at most

a(a—1) 193 193

5 +a(k — 1)+m(k—1)b< 1.5(k—1)a+ ﬁ(k_ 1)b<
193 193
m(k - 1)(a +b)= m‘(k - 1)(n ~k+1).

Now consider the case where a > %. Since f > a we also have 8 > %.
In this case, both G4 and Gp have at least 3(k — 1) edges, and since
e(G) < e(G4) + e(Gp) we have by the induction hypothesis that:

L1903 103 193

(k=1)a+—=(k—1)b= —(k—1)(n — k+1).

e(G) = 19 120 120
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We remain with the case where 1 < a < %. A useful observation is the
following: For every 1 < a < %:

a2 (a-1)? 193
- - -224<0.
2 3 +a- e s 0 (3)

Furthermore, the Lh.s. of (3) is monotone increasing in the range [1, %]
Since there are at most a(k — 1) edges between S and A we have that
e(G) < e(A) + a(k — 1) +e(Gp). If B > 2 then, according to (2) applied
to e(A) and the induction hypothesis applied to e(Gg), and using (3) we
have:

e(G) < (‘2") -(i_'c—+1)2——1+a(lc—1)+ﬁb(k—l)=

3 120
ok — 1)(agc -1)-1) (- 1)2(1;- 1)2 - 1+a(k—1)2+—ig—gﬁ(k—1)2 <
2 —1\2
(-2 - o By < -1y (a4 ) =
193

k- D —k+1).

Finally, if 8 < § then we can use (2) also for e(G'5) and obtain:

@) < (k- 175 - @ L0y 4 e(m) <

3
o (a-1)? B+1)* B
1\ N ) wr _ 2
(k—1)%( 5 3 +a+ 5 3 )-
We therefore need to show that:
& (e—1)

- +a+

(B+1)? p* _193
2 3 2

3 < m(a+ﬁ).

Since the Lh.s. of (3) is monotone increasing in the selected range, and
since a < 3, the worst case in the last inequality occurs when a = (. It
therefore suffices to show that:

of 8 .1 198,
3 73%76=T60

which, in turn, is true for l < a < i’. 0
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