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Abstract

Let G = (V,E) be an n-vertex graph and f : V — {1,2,...,n} be a
bijection. The additive bandwidth of G, denoted B*(G), is given by
B*(G) = miny maxyyeg | f(¢) + f(v) — (n+1)|, where the minimum ranges
over all possible bijections f. The additive bandwidth cannot decrease
when an edge is added, but it can increase to a value which is as much as
three times the original additive bandwidth. The actual increase depends
on B*(G) and n and is completely determined.

1 Introduction

The general problem of determining how the values of graphical invariants
can change when an edge or vertex is added or deleted from a given graph
has been studied for a variety of parameters. Harary [7] categorizes all such
research under the heading “changing and unchanging” of invariants.
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One such invariant, the bandwidth of a graph, is a measure of how close
the ones in the graph’s adjacency matrix can be placed to the main diag-
onal, which is relevant to the storage requirements of the graph. Wang,
West, and Yao [9] showed that the addition of an edge can, in the worst
case, double the bandwidth of a graph. They further established the largest
possible increase in all cases. In particular, they proved the following the-
orem.

Bandwidth Theorem: [Wang, West, and Yao] Let G be an n-vertex
graph whose bandwidth is given by B(G) = b, and let g(n,b) denote the
maximum value of B(G + e), where e is an edge in the complement of G.
Then

b+1 if n<3b+4
g(n,b) = { [25] if 3b+5<n<6b-—2
2b if n>6b—1

This paper studies the analogous problem for an invariant called additive
bandwidth, which measures how close the ones can be placed to the main
contradiagonal. This concept was first introduced by Bascuiidn, Ruiz, and
Slater [1], and later examined by Bascufidn, Brigham, Caron, Carrington,
Dutton, Hackett, Rogers, Ruiz, Slater, Vitray, and Vogt [2, 3, 4, 5, 6, 8].

A (vertez) labeling of an n-vertex graph G = (V, E) is a bijection f :
V = {1,2,...n}. For a given labeling f of G, the additive bandwidth with
respect to f of G, denoted B}" (G), is given by B}" (G) = maxyyek | f(u) +
f(v) = (n + 1)|. The additive bandwidth of G is B*(G) = miny B}"(G),
where the minimum is taken over all possible labelings f of G.

Our paper concerns the relationship, for any graph G, between B*(G)
and the maximum possible value of B (G + ¢), where e is an edge joining
any pair of non-adjacent vertices of G. For integers b and n, let h(n,b)
denote max.gr B¥ (G + ¢), taken over all n-vertex graphs G with additive
bandwidth B+(G) = b.

The main purpose of this paper is to prove the following theorem, which
expresses h(n, b) as a function of b. Notice that the function is considerably
more complicated than its ordinary bandwidth counterpart. For reasons
of clarity, it is presented as three cases according to the value of 7b + 2
mod 3. The bracketed numbers in bold indicate the assertions that show
the corresponding result. These are presented only for Case 1 but apply
analogously to the other cases.

Additive Bandwidth Theorem: Let G be an n-vertex graph whose
additive bandwidth is given by BY(G) = b, b > 2, and let h(n,b) denote
the maximum value of B¥(G + €), where e is an edge in the complement
of G. Then
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Case I: Tb+2 =0 (mod 3)

(b if n=b+2 [8]
b+1 if b+3<n<b+5 [9]
b+2 if 5+6<n<3b+6 [11]
(2] if 364+7<n<7—4 [10,30]
ol if H-3<n<Th—lorn=Tb+1
[10,30,36]
h(n,b) = { 52 if n=Tbor7b+2<n<7+6
[10,35,36]
o5 4 24 if To+7+12i<n<Th+11+12i,
i=0,...,%% [35,36]
45 4 2i+1 if Th+12+12i <n <7b+ 18412
i=0,...,%57 [35,36]
L 3b if n>11b—-4 [6,35,36]
Case 2: Tb+2 =1 (mod 3)
(b if n=0+2
b+1 if b+3<n<b+5
b+2 if b+6<n<3b+6
e if 3b+7<n<7b—2
okl if h-1<n<7h+3
hn,8) =1 7844 49, if Th+4+12i <n<Th+ 10412,
i=0,...,!’—:;—5
44 4 2i4+1 if Tb+11412i<n < Th+15+ 127,
i=0,...,9§—5
 3b if n>116—4
Case 3: Tb+2 =2 (mod 3)
(b if n=>0+42
b+1 if b+3<n<b+5
b+2 if b+6<n<3b+6
2 if 3b+7<n< 763
75

if h—2<n<Thb+2
h(n,0) = 213 , o . ; .
’ o3 4 24 if 764+34+12i<n<Tb+7+12i,

i=0,...,5%32
43 4 2i+1 if Tb+8+12i <n < Tb+14+12,
i=0,...,%¢

vy T3

\ 3b if n>116-4

Section 2 presents preliminary results, Section 3 establishes a universal
upper bound for h(n,b), which is shown to be best possible, Section 4
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presents some special cases, and Section 5 determines lower bounds, which
are then used to establish exact values of k(n,b) for all n and b.

We assume throughout that G is an n-vertex simple graph with vertex-
set V = {v1,v2...,v,} and edge-set E.

2 Preliminaries

For a nonnegative integer b, a labeling f of graph G is called a b-labeling if
B}*(G) < b. Thus, if f is a b-labeling, then n+1—b < f(u)+f(v) < n+14+b
for any edge uv of G. We refer to the quantity f(u) + f(v) as the endpoint
sum of edge uv.

If f is a labeling of graph G, the complementary labeling f is defined by
f(v) =n+1— f(v) for 1 <i< n. Since B}'—'(G) = B}"(G), it follows that
f is a b-labeling if and only if its complementary labeling f is a b-labeling.
Referring to the complementary labeling will make it easier in later sections
to dispose of certain symmetric arguments.

Observe that, in computing h(n,b), we need consider only the edge-
mazimum n-vertex graphs having additive bandwidth 5. Moreover, these
edge-maximum graphs are unique up to isomorphism because, if bijection
f is a b-labeling of such a graph, then vertices u and v are adjacent if and
onlyifn+1—56< f(u) + f(v) £ n+1+b. The edge-maximum n-vertex
graph with additive bandwidth b is denoted G 5, and accordingly,

— +
h(n,b) = eegzg)’c.'b) BT (Gap+e)

It will be convenient to subscript the vertices of Gy, p according to some
b-labeling f, that is, f(v;) =i,%=1,...,n. Also, we partition the vertices
into sets L = {v1,v2,. "'"l%l}’ R = {v[%].,_l,v[a].*.g,...,v,,}, and C,
where C = 0 if n is even, and C = {v[z} if n is odd.

Figure 1 shows graphs G153 and G16,3. Typically, as in the figure, only
the subscripts of the vertices are displayed.

For i = 1,2,...,| 2], vertex v; (in L) and vertex vn41-; (in R) are
called partner vertices. For the case n odd, the lone vertex vfay € C'is
regarded as its own partner. For a given labeling g, the labels g(x) and
g(y) are said to be complementary if g(x) + g(y) = n + 1. A labeling g of
the graph Gy, » + € is balanced if all partner vertices receive complementary
labels, that is, g(v;) + g(vnt1-i) = n+ 1 for 1 <4 < [3]. Arguments
involving the additive bandwidth with respect to a given labeling tend to
be simpler if that labeling is balanced.

The first proposition establishes the value of h(n,b) when b = 0.

Proposition 1 h(n,0) =1 forn > 3.
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Figure 1: The edge-maximum graphs G153 and Gig,3

Proof: Figure 2 shows a 1-labeling for each of the three isomorphically
distinct possibilities for Gnp +e. O

1 n-1n2n3 n/2+1

e
n 2 3 4 n/2

1 n-1n-2n3 (n+3)/2 1 n-1n2 n3 n+3)/2
LITT-T oo 1TTT- foem
e e

n 2 3 4 (n1)/2 n 2 3 4 ()2
Figure 2: A 1-labeling for each of the three possibilities for G, g + e

We close this section with a monotonicity result for h(n,b), which will
be used in subsequent sections. The result hinges on the fact that Gn 4
appears as an induced subgraph of Gni24. In particular, if the vertex-set
of Gpy2, is {v1,v2,...,Vnt2}, then the subgraph induced on the vertices
¥2,¥3,...,Unt1 is Gy . To avoid confusion when referring to this embed-
ded version of G, in the argument that follows, we let its vertices be
Wy, ..., Wn, where w; = viyq fori=1,...,n.

Lemma 2 Let e be an edge joining non-adjacent vertices of the embedded
version of graph G, p within Gni2p, and let g be any labeling of Gniyap +
e. Then there exists a labeling § of Gnp + € such that Bg'(Gn,b +e) <
B} (Gni2p +e).

Proof. Let ! = g(v1) and m = g(vn42), and assume without loss of

generality that { < m. We construct a labeling § of G,  + e as follows: for
i=1,...,n, let
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g(viqr) -1 if I+1<g(vip) Sm—1

9(vit1) if g(vig1) <1-1
§(wi) =
g(vig1) =2 if g(viq1) 2m+1

Let B;‘(G,,+2,b +e) = k, and let wyw; (= vi41vj41) be any edge of
Gn b +e (and hence, of Gni25+¢). We must show that the endpoint sum
g(wi) + §(w;) is between n +1 -k and n+ 1+ k.

Since g is a k-labeling of Gn 42,5 +e¢, it follows that n+3—k < g(viy1)+
9(vj+1) £ n+ 3+ k. Also, since v1vn42 is an edge of Gni2,6 + €, we have
n+3—k <l4+m < n+3+k. Weassume g(vi4+1) < g(vj4+1). The argument
in the opposite case is analogous.

Case 1I: g(v;+1),g(vj+1) S l-1.
Then §(wi) + §(w;) = 9(vit1) + 9(vj41), and
n+l—-k<n+3-k < gw)+dlw;)<2A-3<l4+m-2

< n+34+k-2=n+1+k

Case 2: I +1 < g(vi41),9(vj4+1) <m—1 or g(viy1) <I—1and g(vj41) >
m+ 1.

Then §(w;) + §(w;) = g(vig1) + 9(vj+1) — 2, and
n+l—k=n+3-k-2<g(wi)+d(wj) <n+3+k—-2=n+1+k

Case 3: g(vit1),9(vj+1) 2m+ L.

Then §(wi) + §(w;) = 9(vit1) + 9(vj41) — 4, and

n+l—-k=n+3-k-2 < l4+m-2<2m-2< §(w)+ §(w;)
< n+3+k—-4<n+l+k

Case §: g(viy1) <!—-1landl+1< g(vjy1) Sm—1.

Then §(wi) + §(w;) = g(vi41) + 9(vj41) - 1, and

n+l—k <n+3—k-1<§(w)+g(w;) <l+m-3 <n+3+k-3<n+l+k

Case 5: 1+ 1< g(vi41) <m—-1and g(vj1) > m+1.

Then §(w:) + §(w;) = 9(vit1) + 9(vj41) — 3, and

n+l-k<(+1)+(m+1)-3 < §(wi)+§(w;) <n+3+k-3<n+1+k
0

Corollary 3 [2-step monotonicity] For any n and b such that n > b+ 2,

h(n,b) < h(n +2,b)
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Proof. As before, let G be embedded in Gp425. Let e be an edge
between non-adjacent vertices of this embedded version of Gy such that
h(n,b) = B*(Gnp + €), and let g be a labeling of Gp42,5 + € such that
B} (Gni2,p +€) = B¥(Gny2,6 + €). By Lemma 2, there exists a labeling §
of Gnp+ € such that Bf (Gnp+€) < Bf (Gny2,6+e€). The following chain
of inequalities completes the proof.

h(n,b) = B*(Gap+e) < BF(Gnp+e) < B} (Gnyap+e)
= B*(Gny25+¢€) < h(n+2,b)

3 A Universal Upper Bound

In this section we show that adding an edge to a graph with additive band-
width b can increase the additive bandwidth significantly, to a maximum
of at most 3b, that is, h(n,b) < 3b.

Lemma 4 Let g be a balanced labeling of graph Gnp such that |g(v;) —
9(vig1)| <38 fori=1,2,...,[2]. Then g is a 3b-labeling of Gn .

Proof. Observe that the premises imply that |g(vi) — g(vi41)| < 3 for all
i=1,...,n—1. Let vertices v; and v; be adjacent in G, We must
show |n + 1 — (g(v:) + g(v;))| < 3b. We know [n+1— (i +j)| < b, or
equivalently, j = n+1—i+k, where |k| < b. Since g is a balanced labeling,
9(vn41-i) + 9(v;) = n + 1. The following chain establishes the desired
inequality.

In+1— (g(vi) + g(vi))l l9(vat1~:i) + g(v:) — (9(vi) + g(v;))|
|9(vn+1-i) — g(v;)|

l9(vnt1-i) = g(vnt1-itx)| < 3|k| < 3b

(]

It will be convenient to call vertex v, larger than vertex v, if s > .

Lemma 5 Let! and m be positive integers withl < m < [%]|. Then there
ezists a balanced 3b-labeling g of Gn b such that g(wi) = m, g(vm)=m—1,
and g(v;) =t form<t<n+1l-m.

Proof. The construction of g begins with the assignments:

glw)=m; g(vm)=m-—1
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Labels are then assigned iteratively in descending order, starting with m—2.
In each complete iteration, three labels are assigned in the order (1) to the
largest unlabeled vertex in the set {vi,vs,...,v-1}; (2) to the smallest
unlabeled vertex in the set {vi11,v42,...,¥m-1}; and (3) to the largest
unlabeled vertex in the set {vj41,vi42,..., Um—1}. When one of these two
sets has all its vertices labeled, the scheme continues until the vertices in
the other set have all been labeled. The kth full iteration, k¥ > 1, consists
of:

g(vi—k) =m+1-3k; g(v4x) =m—3k; g(vm_i)=m—1-3k

It is easy to see that the g-labels that have been assigned to vertices
v1,V2,...,Unm satisfy |g(v;) — g(vig1)| < 3 fori=1,2,...,m — 1. Further-
more, since g has simply permuted the labels 1,2, ..., m among the vertices
V1,v2,...,VYm, the complementary labels n,n—1, ..., n4+1—m are still avail-
able for the partner vertices. Thus, we can let g(vp41-;) =n+1— g(v),
i=1,2,...,m. Clearly, these assignments also satisfy |g(v;) —g(vi4+1)| < 3.

To complete the construction of labeling g, we let g(v;) = i fori = m+
1) m+2r ey —m. Then lg(vM) “9(vm+1)| = |g(vn+1—m) "g("’n—m)l = 21
and all other newly assigned g-labels satisfy |g(v;) — g(vi41)| = 1. Since
g is a balanced labeling, it follows by Lemma 4 that g is a 3b-labeling of
Gn,b- O

The construction outlined in the proof of Lemma 5 for the case n = 17,
[ =5, and m = 8 is shown in Figure 3.

g 17 16 15 12 10 13 14 1"
17 16 15 14 13 12 1 10
® o o o o o o o
| m 9
e o o o ®e O o o 9
1 2 3 4 5 6 7 8
g 1 2 3 6 8 5 4 7

Figure 3: Construction illustrating Lemma 5 withn = 17,1 = 5,and m = 8

Proposition 6 Forb > 1, h(n,b) < 3b.

Proof. Let e be an edge between non-adjacent vertices v, and v, of Ghn,p,
and assume r < s. We must show that B+ (G, 5 + €) < 3b. There are two
essentially different cases to consider, according to where vertices v, and
vs lie. We may assume that » < n + 1 — s since, otherwise, we can work
with the complementary labeling of G, » and reverse the roles of r and s.

Case I: vy € Land v; E RUC (1<r<|2]and [2E] <s<n—3s)
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...

If nis odd and s = &%) then apply Lemma 5 with ! = and m =
(as in Figure 3). The balanced 3b-labeling g of G, satisfies g(v,) =
and g(v,) = s = 2}L. Hence, the endpoint sum g(vr) + g(vs) of the ed
e equals n. Otherw1se, apply Lemma 5 withl = rand m =n+1-s
(as in Figure 4 appearing at the end of the proof). For this situation,
g(vr) = n+1— 5 and g(vp41-s) = n — 5. Since g is balanced, g(v;) =
n+1—-(n—s) = s+ 1. Hence, the endpoint sum g(v;) + g(v,) of edge e
equals n + 2, and g is a 3b-labeling of G + e.

2

g 1 11 14 16 15 12 10 9
16 15 14 13 12 11 10 9
e 6 o o o - e O
4
[ ] e &6 o o o o
1 2 3 4 5 ] 7 8
g 4 [] 3 1 2 5 7 8

Figure 4: Case 1 of Proposition 6 withn=16,6=2,r=2,s5s=11

Case 2: v.,v, €L (1<r<|% j—landr+1<s<[ 20

If n is odd, then set g(v_g._) 24l and for n even, set g(%) = 3 +2
and g(3+1) = 2 —1. The remainder of the construction of the 3b-labeling
g depends on whlch of the two quantities s — | =42 | and § — s is larger.
Subcase a. 3 —s>s— |2

Let z = | 242 |. We start with the assignments:

g(vx) = %J and g(vn+1-z) =n+4+1- I_gJ

Then g assigns labels iteratively, using the labels described below, in order
(see Figure 5), (1) to the smallest unlabeled vertex greater than v, (2)
to the largest unlabeled vertex less than v, (3) to the largest unlabeled
vertex less than vrzy, and (4) to the partner vertices in set R. When the
vertices less than v; or the vertices between v, and V|2 have all been
assigned g-labels, the labeling scheme continues until all the vertices in the
other range (and their partners in R) have been labeled. Each full iteration
consists of:

(i) 9(vz4:) = | 3] + 3¢ and I(Vnt1-(z4i)) = [2] = 3i+1

(1) g(vz—i) = [ %] — 3¢ and g(vns1-(2—i)) = [3] + 3i + 1

(iii) g(vy31-) = [3] +8i+ 1+ (n — 1) mod 2 and
9(v|aj+14i) = [2] = 3i — (n — 1) mod 2

A straightforward induction argument can be used to show that after &

full iterations the set of consecutive integers {[%3]-3k—1,...,[%],..., 5]+
3k + 14 (n — 1) mod 2} have been assigned to the vertices in the set
{Vo—ky Vaoka1y oy Vay ooy Voak } U V)2 ) ks ¥ 3 =kt - - ,,vr%]} and their
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g 16 15 9 6 a 4 7
16 15 14 13 12 11 10 9
® & o o o o o o
o o ] e o o
1 2 8 4 5 6 7 8

g 1 2 5 8 1t 14 13 10

Figure 5: Case 2a of Proposition 6 withn =16,6=2,r=3,s=5

partner vertices in R, and that this partial labeling is balanced. Clearly,
the pattern of assigning consecutive integers to the vertices in each iter-
ation continues even after the vertices in one of the ranges have all been
labeled. At that point, consecutive vertices receive either consecutive labels
or labels that differ by 2. Thus, the labeling g satisfies |g(v;) — g(vi41)] < 3
foralli=1,...,n—1, and hence, by Lemma 4, g is a balanced 3b-labeling
of Gn,b-
Since z is the midpoint between » and s (or “near midpoint” if r + s is
odd), we have, because of the condition for this subcase, that v, and v,
receive labels in the same iteration or in consecutive interations. Therefore,
|2+ 1—(g(v:) + g(vs))| < 3, and hence, g is a 3b-labeling of G, » + e.
Subcase b. 3 —s<s— |32

Let z = 25 — | 3], and let ¥ = %] — s. By the condition defining
this subcase, we can perform k — 1 full iterations of the labeling scheme
used in Subcase a. Moreover, at the end of the kth iteration, g(vz—x) =
| 3]—3k = z—k. Observe by the condition for this case that z = 25— | %] >
"+[—+—j (3] > |22 ),s02> |2 +1. Thus,z—r > [-—‘1'—j+1—r>
s— |- ’j > -’l—-s-l-l >13]-s+1=k+1,implyingz —k—1 > r, where
equahty is poss1ble In the case of equality, the vertices vy, vs,...,v, and
their partners retain the standard labeling. If z — k-1 > r, apply Lemma
5 with l = r and m = ¢ — k — 1 and restrict the labeling obtained to v,
through vy_x_ and their partners (see Figure 6).

Arguing as in Subcase a, it is not hard to show that the resulting labeling
g is a balanced 3b-labeling of G, p. Furthermore, g(v,) = |3]—3k—1 and
9(vs) = | 3 )+3k, from which it follows that {n+1—(g(v,)+g(vs))] < 3 < 3b.
Therefore, g is a 3b-labeling of G, » + €, which completes the proof. O

9 15 13 16 14 12 9 6 7

186 15 14 13 12 11 10 9

e 6 o6 o o o o o
KF—N

L] e o e O [}

1 2 3 4 5 6 7 8

g 2 4 1 3 H 8 1 10

Figure 6: Case 2b of Proposition 6 withn=16,6=2,r=2,s=7
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4 Special Cases

Part of the strategy for establishing lower bounds is based on the restric-
tions that three mutually adjacent vertices impose on the labels they can
be assigned. Such vertices are called triangle vertices.

We begin this section by determining the value of h(n,b) when b = 1.

Proposition 7 For all n > 4,

_[2 if nisevenorn=5
h("’l)‘{a if n>7 and odd

Proof: Case I: n is even or n = 5. .
The 2-labeling of Gs,; + e shown in Figure 7 establishes £(5,1) = 2.

Figure 7: A 2-labeling showing h(5,1) = 2

To complete Case 1, we construct a 2-labeling of G, ; +e for n even and at
least 4. The labeling depends on whether one or both of v, and v,, r < s,
are L-vertices or are R-vertices. By symmetry, we need consider only the
following two subcases.

Subcase a. vp,v; € L

Let ¢ = | k2], g(vz) = 3, and label the remaining L-vertices iteratively
by g(vz—i) = % — 2¢ and g(vz4¢) = § + 2i until either (i) all L-vertices
smaller than v, have been labeled or (ii) all those larger than v, have been
labeled, whichever occurs first (see Figure 8). Let ¢ be the value of i when
this occurs. At that point, the remaining unlabeled L-vertices are assigned
consecutive labels as follows: in case (i), g(ve4e4s) = 5 + 26+ 5 + 1),
i=12,...,2~(z+t), and in case (ii), g(v;) = 4,7 =1,2,...,z~t-1. It
is straightforward to show that no pair of L-vertices receive complementary
labels. Therefore, a balanced 2-labeling is completed by assigning for each
L-vertex v;, the complementary label n 4+ 1 — g(v;) to vn4+1-1, the partner
of vy in R.

Subcase b. v, € Land v; € R

The labeling scheme is similar to the one in Subcase a. Here, we let 2
be the midpoint between r and the partner of s, that is, z = [f—ﬂ"—;'l—_‘lj,
and let g(v;) = 3. Proceed iteratively to label the L-vertices smaller

_than v, and the R-vertices smaller than v,4;_, as follows (see Figure
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g-2 19 117 115 18 11 9 7 S 3
20 19 18 17 16 15 14 13 12 N
e o o o o

X S

m e o
4 5 6 7 8 9 10
6 8 10 12 14 16 18

aa®
@
» 0@

[+ B

Figure 8: Subcase a of Proposition 7 with n =20, r=5,and s =8

9): g(vz-i) = % — 27 and g(Vn41-2-i) = 5 + 2¢ until either (i) all L-
vertices smaller than v, have been labeled or (ii) all R-vertices smaller
than vp41—, have been labeled, whichever occurs first. Again, let ¢ be the
value of ¢ when this occurs. In case (i), the remaining unlabeled R-vertices
smaller than v, 41— are assigned by letting g(va41-z—¢—j) = 3+2t+5+1,
i=12,...,5—(z+t), and in case (ii), the remaining unlabeled L-vertices
smaller than v, are assigned by letting g(v;) = j, j = 1,2,..., 2 =t — 1.
It is straightforward to show that no pair of vertices labeled so far receive
complementary labels. Therefore, a balanced 2-labeling is completed by
letting g(vn41-¢) = n + 1 — g(v.) for each labeled vertex v;.

g1 13 N1 12 14 16 17 18 19 20
2.0 19 18 17 16 15 14 13 12 11

o O o o e & o o o
r X
[ ) e 6 o6 o o o o o
1 2 3 4 5 6 7 8 9 10
g 6 8 100 9 7 5 4 3 2 1

Figure 9: Subcase b of Proposition 7 with n =20, r = 2, and s = 16

Case 2: n > 7 and odd.

We first show h(7,1) > 2. Suppose that g is a 2-labeling of G7,1 + v1v2.
Observe that every vertex of G7,1+v1v2 is a triangle vertex. Let z = g~1(1),
and let z, y, and z be mutually adjacent vertices. Then g(y) > 5 and
g(2) > 5, which implies, since g(y) # g(z), that g(y) + g(z) > 10. This
exceeds the upper range for an endpoint sum in a 2-labeling and shows
that no such 2-labeling exists. Thus, k(7,1) > 3 and hence, by Corollary
3, h(n,1) > 3. Equality follows by Proposition 6. O

The remainder of this section determines the conditions for which
h(n,b) =b,b+ 1,0+ 2.

Proposition 8 For allb> 1, h(n,b) =b if and only if n=b+ 2.

Proof: The graph G, is the complete graph K, if and only if n = b+ 2.
a
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We assume throughout the rest of the paper that b > 2.

Proposition 9 For allb > 2, h(n,b) = b+1 if and only ifb+3 < n < b-+5.

Proof: Suppose b+3 < n < b+5. The endpoint sums in a (b4 1)-labeling
of Gpys,6 + € must lie in [5,2b + 7). By symmetry, the only new edges we
need to consider are ¢ = vyv2 and e = v v3 since the standard labeling
suffices for all other added edges. In the first case, let g be the standard
labeling except for g(v2) = 4 and g(v4) = 2. In the second case, let g be the
standard labeling except for g(vs) = 4 and g(v4) = 3. In either case, it is
straightforward to check that g is a (b+1)-labeling. Thus, h(b+5,b) < b+1
and hence, by Proposition 8, h(b+5,b) = b+1. Corollary 3 and Proposition
8 imply h(b+ 3,b) = b+ 1. It remains to show h(b+4,5) = b+ 1. Observe
that the only case we need to consider for Gpya,p + € is € = v1v2. In this
case, let g be the (b + 1)-labeling obtained by using the standard labeling
except for g(vz) = 3 and g(v3) = 2.

Next suppose that h(n,b) = b+ 1. By Corollary 3, Proposition 8, and
the fact that h(b+5,b) = b+1, it suffices to show that h(b+6,5) > b+1 and
h(b+7,b) > b+ 1. The individual cases b = 2 and b = 3 require separate,
straightforward arguments, so we assume that b > 4. The range of the
endpoint sums for a (b + 1)-labeling of Gy16,6 + v1v2 is [6,2b + 8]. Since
b > 4, every L-vertex is adjacent to every R-vertex. Moreover, the vertices
assigned labels 1, 2, and 3 must be independent, so we may assume without
loss of generality that they are assigned to L-vertices. However, there is
no independent set of size three in L of Gbi6,s + v1v2, which shows that
h(b+6,b) > b+1. A similar argument may be used to show h(b+7,6) > b+1.
a

Proposition 10 Let b, k, and n be positive integers such that b+2 < k <
3b and n < 3k. Then h(n,b) < k.

Proof: It suffices to show that each of the following bijections, g, is a
k-labeling of the graph Gn + e for any edge e = vrvs, 7 < 5.

Case : n+1—k<r+s<n+1+k.
Then the standard labeling, g(vi) = ¢, is a k-labeling.

Case 2 r+s<n+1-k
Subcase 2a. s > | 2H=£| 4+ 1.

Then let
i if 1<i<r-1
N_)n+l—k—-s ifi=r
glw) =19 ;4 if r41<i<n+l—k-—s
i if n42—-k-s<i<n
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To show that the bijection g is a k-labeling, consider any edge viv; of
Gn b + ¢, where 7 < j.
(i) if ¢ # r, then, since n+1 -0 < i+j < n+1+b, we have

n+l—k <nt+l1-b0-2<i+j-2 < g(v;)+g(v;) <i+j < n+l+b<n+l+k

(ii) if = r and j = s, we have g(v;)+g(v;) = n+1—ksince s > 242=k
thatis,s >n+2-k—s.

(iii) if ¢ = r and j # s, the following chain of inequalities demonstrates
the result, where the last inequality follows because n < 3k.

n+l—k < n+l1-b<r+j=r+1+j-1<n+1-k-s+j-1
< g(vr)+g(vj)=n+1-k—s+g(v;)

< n+1—k—(Fi%:£J+Q4w@ﬁ

n+1—k
= [T]—l+g(vj)
< [ﬁi%:£1—1+n§n+l+k
Subcase 2b: s < | BH=k|
Let
) if 1<i<r-1
I_L‘ ;'kJ if i=r
i-1 if rel<i<s—1
9(vi) = | |2tl=k| 41 if i=s
i-2 if s+1<i<|24=k] 41
i if [2tl=k|4+2<i<n

Let v;v; € E(Gnp), i < j. Then (j—1)+j=2j-1>i+j>n4+1=-b=
n+1-b=2+2 > n+1-k+2, which implies j > [24=k] = [—’*‘—j+2
implying g(v;) = j.

(i) for i # r, s, we have
n+l-k < n+1-b-2<i+j-2 < g(vi)+9(v;) <i+j<n+l+b< ntl+k

(ii) for ¢ =7 and j # s, or ¢ = s, we have, using n < 3k,

. 1-k| .
n+l-k<n+l1-b<i+j < IZig——J+JSg@O+NW)

n+l—-k
2

IN

J+1+n5n+1+k
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(iii) for = r and j = s, we have g(v;) +g(v;) = ['—‘-'5'21,;"] +|2t=k] 41,
which is n+ 1 — k or n 4+ 2 — k, depending on the parities of n and k.

Case $: r+s>n+1+k.
Use the complementary labeling and interchange the roles of L and R
and of r and s to transform this case into Case 2. O

Corollary 11 Ifb+6 <n < 3b+ 6, then h(n,b) = b+ 2.

Proof: Since n > b+ 6, it follows from Propositions 8 and 9 that h(n,b) >
b+ 2. But Proposition 10 with k¥ = b+ 2 implies h(n,b) < b+ 2. O

5 Lower Bounds for A(n,b)

We know from earlier results that & < h(n,b) < 3b. In this section we
establish sharp lower bounds that lead eventually to exact values for h(n, b).

5.1 On the Structure of G,

It will be important to understand which vertices of Gy 4 lie in triangles.
The first result of this analysis is straightforward, and its proof is omitted.

Lemma 12 Let v; and v; be adjacent vertices of RUC of G, where
i < j. Then v; is adjacent to vertez v for all k, i < k < j. In particular,
v; is adjacent o viy1.

Lemma 13 Let v; and vj, i < j, be adjacent vertices of set L of Gnp.
Then each is adjacent to at least one pair of adjacent vertices of set R (and
hence, are triangle vertices).

Proof: Recall that b > 2. By the symmetry of Gp 3, Vn41-i and vn41-; are
adjacent vertices of R. Moreover, v; is adjacent to vp41—j sincen+1—-b <
i+j<it+n+l—j<n+l<n+1l4b, and, by symmetry, v; is adjacent to
¥n4+1-i- The result follows since each vertex in L is adjacent to its partner
inR O

The following proposition is an immmediate consequence of Lemmas 12
and 13.

Proposition 14 An L-vertez z is a iriangle vertez of G, if and only if
z is adjacent to a pair of consecutive, adjacent non-L-vertices.

Proposition 15 The smallest triangle verter of L in Gp is adjacent to
the largest pair of consecutive, adjacent non-L-vertices.
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Proof: Let v be the smallest triangle vertex in L, and let » be the largest
integer such that v, and v,4; are adjacent non-L-vertices that are both
adjacent to v (v, exists by Proposition 14). Since the assertion is trivially
true if | = 1, we assume that [ > 2. Then v;_; is adjacent to v,41 and v,42,
and hence, vy4) is not adjacent to vr4+2 (by definitions of = and {). Thus,

v, and v,.4; form the largest pair of consecutive, adjacent non-L-vertices.
a

Proposition 16 Let b and n be integers such that n > 3b — 1. Then the
index of the smallest triangle vertex of L equals n+4+1—b— ["—"2'—"], and the
inder of the largest triangle vertez (in R) equals b+ ["—12'—b-j

Proof: By Proposition 15, it suffices to determine the largest » such that
vy and vr4; are adjacent non-L-vertices. If v, and v,y are adjacent, then
n+41-5b<2r+1<n+1+b, which implies that r < |22|. Thus, we
seek the smallest index ! such that ! + 22| > n + 1— b. It follows that
I=n+1-b— 2], which is positive since n > 3b — 1. The index of the
largest triangle vertex is the complement of this, that is, b+ | 22). O

It is now possible to count the number of triangle vertices and to deduce
how many are in at least two triangles.

Corollary 17 Let b and n be integers such that n > 3b — 1. Then the
number of triangle vertices in set L equals [32—"] if n is even, and equals
|255L] if n is odd.

Proof: By Proposition 16, the number of triangle vertices in L equals
2] - (n+1-b—|22)) +1, from which a parity argument yields the
result. DO

Proposition 18 Let b and n be integers such that n > 3b— 1. If n and
b have opposite parity, then every triangle vertez in Gnp is in at least two
triangles. If n and b have the same parity, then the smallest triangle verter
(in L) and the largest triangle vertez (in R) are the only triangle vertices
that are in exactly one triangle.

Proof: As in the proof of Proposition 16, if v; is the smallest triangle vertex
in L, and vy, v,41 1s the largest pair of consecutive, adjacent non-L vertices
that are adjacent to v, then r = [—’LJ It follows that v, is adjacent to
vr42 if and only if n and b have opposite parity. Thus, vertex v is in a
second triangle {vi, v,, vr42} if and only if n and b have opposite parity.
It is not hard to show that each of the other triangle vertices in L is in
at least two triangles, regardless of the parities of n and . A symmetric
argument may be applied to the triangle vertices of R. O
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Corollary 19 Let b and n be integers such that n > 3b — 1. Then the
number of vertices in set L that are in at least two triangles equals [ 3551 |
if n is even, and equals | 252| if n is odd.

Proof: Follows directly from Corollary 17 and Proposition 18. O

The final result of this subsection is fundamental to subsequent analysis.

Corollary 20 Let b and n be integers such that n > 3b— 1. Then there
are at least b vertices in each of the sets L and R that are in at least two
triangles.

5.2 Properties of c-Labelings of n-Vertex Graphs

In this subsection, we establish various properties of c-labelings, which will
be necessary in order to determine exact values for h(n,b). Throughout, G
is an n-vertex graph and ¢ > b.

Proposition 21 Let g be a c-labeling of a graph, and let z, u, v, and y be
vertices such that (z,u,v,y) is a path from x to y. Then

n+1-3c<g(x)+g9(y) <n+1+4+3c
Proof: Since g is a c-labeling, we have

n+l-c < g(z)+g(u)<n+l+c
n+l-—c < g(v)+g(y) <n+l+ec
n+l-c < g(u)+g(v)<n+l+c

Subtracting the third chain of inequalities from the sum of the first two
yields the result. O

Proposition 22 Let g be a c-labeling of graph G, and let t be an integer
satisfying either 1 < t < Btl=8¢ op ntlidc <4 < n. Then g~'(t) is not a
triangle vertezr of G.

Proof: Suppose that z, y, and z are mutually adjacent vertices of G, and
that 1 < g(z) < "—"4;—3“ Since y and z are both adjacent to z and g is a c-
labeling, we have g(y) > 2+}+€ and g(z) > 244<. But g(y) # g(2), which
implies that g(y) +g(z) > n+1+ ¢, which contradicts the definition of a c-
labeling and shows that g~ (t) is not a triangle vertex when 1 < ¢ < 2+1=3¢,

A similar argument shows that g~!(f) cannot be a triangle vertex when
adlide <t<n. O
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Proposition 23 Let g be a c-labeling of graph G, where n and ¢ have the
same parity. Then g~1(2+2=3¢) cannot be in two triangles.

Proof: Suppose that {z,y, z} is a set of three mutually adjacent vertices
and that g(z) = 242=3¢ Then g(y) > 2} and g(z) > 2. But g(y) +
9(z) <n+1+c, implying {g(y), 9(2)} = {2f<, 2424<}. This precludes =
from being in another triangle. O

Corollary 24 Let n, b, and c be integers such that n > 3b— 1 and b has
parity opposite to the parities of n and c. Let g be a c-labeling of graph
G = Gnp. Then g~!(22=3¢) {5 not a triangle vertez of G.

Proof: This follows directly from Propositions 18 and 23. O

Lemma 25 Let g be a c-labeling of graph G, and let u and v be vertices
that are both adjacent to a vertex z. Then |g(u) — g(v)| < 2¢.

Proof: Subtract the two chains of inequalities n + 1 — ¢ < g(u) + g(z) <
n+l+candn+1-—c<g(v)+g(z) <n+1+ctoobtain the result. O

For subsets U and W of vertices in a graph G, let N(W) denote the set
of vertices adjacent to at least one vertex in W, and Ny(W) denotes the
set N(W)NU.

Proposition 26 Let g be a c-labeling of graph G, and let t be an integer
satisfying 1 <t < ﬂﬂz;"’—c- Then

N(9—1{1,2,--~,t})nN(y_1{n+1—t,n+2—t,...,n})=@

Proof: Suppose z € N(g~{1,2...,t)NN (g~ {n+1—t,n+2—1,...,n}).
Then there exist vertices ¢ and v that are both adjacent to x such that
g(u) < tand g(v) > n+1—1t. But then |g(u) —g(v)| >n+1-2t >
n+l1-2. %""c = 2¢, which contradicts Lemma 25. O

The next result shows that for sufficiently small u, the vertices of Gy
that are assigned the u smallest labels are either all in set L or all in set
R, and likewise for the vertices assigned the u largest labels.

Proposition 27 Let g be a c-labeling of Gy b, where n > 3b—1 and ¢ <
3b. Let u = |2t2=3¢| Then g='{1,2,...,u} is a subset of L or R, and
g Hn+1—-u,n+2—u,...,n} is a subset of L or R.

Proof: Observe that when n is odd, the lone C-vertex v a1 is in at least
two triangles (since b > 2). Thus, in all cases, g~*{1,2,...,u} C RUL by
Propositions 22 and 23. Since the assertion is trivially true for u < 1, we
assume that u > 2.
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Suppose that the sets P = g~'{1,2,...,u}NLand @ = g~ {1,2,...,u}
MR are both nonempty, and let pmin, Pmaz, ¢min, and gmaes be the smallest
and largest indices of vertices in each of the sets P and Q,.respectively.
Then by Propositions 22 and 23, none of these four vertices can be in more
than one triangle. By Corollary 20, there are at least b triangle vertices in
L whose indices are larger than pmas, and at least b triangle vertices in R
whose indices are smaller than gmin. Thus, Ng(vp,...) contains at least b
vertices that are not partners of any vertex in P, and N (v,,;,) contains
at least b vertices that are not partners of any vertex in Q.

Moreover, vp,,,, is not adjacent to v,,,,., since g(vp,.;.) + 9(Vgn..) <
2u—1<n+1-3c< n+1-c. Hence, at least one of the inequalities
Pmin = b+ 1 and g¢nar < n — b must hold. Thus, there are at least
3b neighbors of P U Q that are not partners of any vertices in PU Q. In
addition, each partner of a vertex in P and each partner of a vertex in Q are
elements of Np(P) and N (Q), respectively. It follows that |N(PU Q)| >
[Nr(P)|+|NL(Q)] > u+3b. But a neighbor of a vertex in PUQ must receive
a label between n+ 1 — u — ¢ and n, of which there are only u+c < u+3b
different values, showing such a labeling is impossible. A similar argument
demonstrates that g='{n+1—u,...,n}is asubset of Lor R. O

Corollary 28 Let g be a c-labeling of Gnp, where n > 3b—1, ¢ < 3b,
andn > 6c—Tb+ 1. Let u = |24+2=3¢] Theng‘l{l 2,. ,u}gLand
gHn+l-un+2—-u,.. ,n}gR or vice versa.

Proof: We may assume that u > 1. Let $ = ¢71{1,2,...,u} and T =
g Y{n+1—u,n+2~u,...,n}. By Proposition 27, it sufﬁces to show that
SUTis nelther a subset of L nor a subset of R.

Suppose SUT C L. Since ¢ > b > 2, Proposition 26 implies that
N(S)N N(T) = 0, and hence, there must be at least 2b vertices between
any vertex in S and any vertex in T'. The argument proceeds by considering
the number of non-triangle vertices in SUT.

Case I: n and c have opposite parity (and hence, u = 2+l=3¢)

By Proposition 22, all of the vertices in SUT are non-triangle vertices.
Moreover, no vertex between an S-vertex and a T-vertex can be a triangle
vertex. Hence, there must be at least 2u + 2b non-triangle vertices in L.
Thus, by Proposition 16, n —b— 22| > 2u+2b =n+1—3c+2b. It
follows that

< 6c—7b—2 if n and b have same parity
6c—T7b—1 if n and b have opposite parity

which contradicts the lower bound on n.
Case 2: n and c have the same parity
If n and b have opposite parity, then by Proposition 16 and Corollary
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24, n—b— |23} > 2u+2b=n+2-3c+2b. If n and b have the same
parity, Proposition 22 implies that all but at most two of the vertices in
SUT are non-triangle vertices (g~!(u) and g~!(n + 1 — u) can be triangle
vertices). Thus, n —b— [24%] > 2u — 2+ 2b = n — 3¢+ 2b. It follows that

n< 6c—Tb if n and b have same parity
=1 6c—T7b—3 if n and b have opposite parity

which again contradicts the lower bound on n.
A symmetric argument can be used to show that SUT Z R. O

Given a labeling g, two vertices v; and v; are said to be successive
verticesin g~*{1,2,...,w} if v, & g~ *{1,2,..., w} for all ¢ strictly between
 and j.

Proposition 29 Let g be a c-labeling of G », wheren > 3b—1 and ¢ < 3b.
Let w < [M’—zf:’—cj Then for every pair of successive vertices vi,v; €
g~ H1,2,...,w}, |i — j| < 2b. The same inequality holds for successive
verticesin g~ {n+1—w,n+2—-w,...,n}.

Proof: By Proposition 27 and the symmetry of G, , we may assume
without loss of generality that ¢~1{1,2,...,w} C R. Suppose v;, v; are
successive verticesin g~1{1,2,...,w} such that j—i > 2b+1. Let P = {v; €
g {1,2,...,w} |t < i} and Q = {v. € g71{1,2,...,w} | t > j}. Then
Np(P)N NL(Q) = 0, and hence, arguing in a manner similar to the proof
of Proposition 27, |[NL(PUQ)| > w+3b > w+ ¢, which is greater than the
number of labels available for N(P U Q). A similar argument establishes
the inequality for successive vertices in g"'{n+1—-w,n+2—-w,...,n}.
(]

5.3 Establishing Lower Bounds for h(n,b)

Proposition 30 Let n, b, and c be integers such that 3c+1 < n < 7b and
¢ < 3b. Then h(n,b) > c.

Proof: Since n < 7b, Corollary 17 implies that there are at most 2b non-
triangle vertices in each of the sets L and R in Gn . By Proposition 16,
the indices of the non-triangle L-vertices are 1,2,...,(n —b— [ 2$2]). Let
e = vyUp41. Each of the non-triangle vertices of R is adjacent to both v, and
vp41. It follows that every R-vertex in Gy p + e is now a triangle vertex.
Suppose g is a c-labeling of G, + €. Since n > 3c + 1, Proposition 22
implies that g—!(1) and g~!(n) are both non-triangle vertices, and hence
are two of the L-vertices with indices between 1 and n — b — | 2¥2|. Thus,
there is an R-vertex, v, adjacent to both of these vertices. It follows that
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z+1>n+1—-band z+n < n+1+4b. Subtracting these inequalities
shows n < 2b + 1, which contradicts n > 3¢+ 1. O

For the remainder of this section, we assume that n > 7b.

Proposition 31 Let n, b, and ¢ be integers such that ¢ < 3b and n >
6c—Tb+ 1. Let z = ["12—‘1'—:ﬁj, and let e be an edge joining a pair of
non-adjacent consecutive L-vertices in Gnp. If 2b new triangle vertices
of set R in Gnp + e are created so that the remaining non-triangle R-
vertices are separated into two nonempty sets, each of size < z — 1, then
B+(Gn,b + e) >c.

Proof: Let RT be the set of non-triangle R-vertices whose indices are
larger than those of the new triangle vertices in G + €, and let R~
be those vertices whose indices are smaller. Suppose Gnp + € has a c¢-
labeling g. Corollary 28 implies that g=1{1,2,...,z} C Ror g~'{n +
l1-—2z,n+2—2z...,n} C R. Assume, without loss of generality, that
g-'{1,2,...,2} C R. Then, by Proposition 22, g=1{1,2,...,2} C RYUR".
But both sets Rtand R~ have size at most z — 1, which implies that the
sets Rt Ng=1{1,2,...,2} and R~ Ng~{1,2,..., 2} are both nonempty. It
follows that the indices of the smallest vertex in R*¥ Nng=—1{1,2,...,2} and
the largest vertex in R~ Ng~1{1,2,...,2} differ by at least 2b + 1, which
contradicts Proposition 29. O

Corollary 32 Let n, b, and ¢ be integers such that ¢ < 36, n > 6c—Tb+1,
atd
and [2=25EL ] < |a=1=3¢) Then h(n,b) > c.

Proof: By Proposition 16, there are n — b — ['ﬁz‘ﬁj non-triangle R-vertices
in Gy p, so the indices of their partner vertices in L range from 1 to n —

—b—| 2kt
b— |232|. Thus, if e = v,v,41, where s = %J, then Gnp+ €

contains 2b new triangle vertices in R. Moreover, these vertices separate
the remaining n — 3b — | 22| non-triangle R-vertices into two sets of sizes

[#_ﬂj and [ "—_3—6;2'*—%_1] Since n > 7b+1 if n and b have opposite

parity and n > 7b+2 if they have the same parity, these sets are nonempty
and, by hypothesis, no larger than z — 1, where z = |2+1=3¢|  Hence, by
Proposition 31, B¥*(Gnp+€) >c. O

Proposition 33 Let n, b, and ¢ be integers such that b has parity opposite
to the parities of n and ¢, ¢ < 3b, "—'@ >3, andn>06c—Tb+1. Let
u = 2t2=3¢ and let e be an edge joining non-adjacent L-vertices v, and
Vs42 in Gnp. Suppose that Gnp + € contains 2b — 1 new triangle vertices
in set R, and that these vertices separate the remaining non-triangle R-
vertices into two sels, each of size <u—~1. Then B¥(Gnp+e¢) > c.
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Proof: Let R* and R~ be defined as in the proof of Proposition 31, and
assume that g is a c-labeling of Gy + €. By Proposition 22 and Corollary
28, we may assume without loss of generality that ¢g='{1,2,...,u—1} C
R* U R~. The rest of the proof hinges on the observation that the two
smallest vertices in Rt are adjacent to v,, and the two largest vertices in
R~ are adjacent to vs42. Figure 10 illustrates this for G292 and s = 3.
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Figure 10: Illustrating Proposition 33 for G2 and s = 3

There are two cases to consider, according to where the vertices of
g~ 1,2,...,u—1} lie.

Case I: g~'{1,2,...,u—1} =Rt or g7 1{1,2,...,u— 1} = R~

Assume that the first equality holds. Then at least one of the two vertices
of R* that are adjacent to v, was assigned a label < u—2 (since u > 3). It
follows by Proposition 21 that g~!(u) could not be either of the two largest
vertices of R™, nor could it be any of the new triangle vertices (since they
too are adjacent to v,4+2). Thus, the difference between the index of the
smallest vertex in g~1{1,2,...,u — 1} and the index of g~!(u) is greater
than 2b, which contradicts Proposition 29. A contradiction is similarly
derived under the assumption that g={1,2,...,u—1} = R~.

Case 2: g-1{1,2,...,u—1}NRT* #0and g~ 1{1,2,...,u—=1}NR-#0
Let St = ¢71{1,2,...,u—=1}N Rt and S~ =¢~1{1,2,...,u -1} NR".
By Proposition 21, either the two smallest vertices in R* are not in St or
the two largest vertices in R~ are not in S™. In either case, the difference
between the indices of the smallest vertex in S+ and the largest vertex in

S~ is greater than 2b, which contradicts Proposition 29 (taking w = u—1).
]

Corollary 34 Let n, b, and ¢ be integers such that b has parity opposite

to the parities of n and ¢, ¢ < 3b, n > 3c+4, n > 6c—-Tb+ 1, and
[2=Te+3] < 2=3¢ Then h(n,b) > c.
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Proof: The proof is similar to that of Corollary 32, although now we let the
edge e = v,v,42. Then G, + € contains 2b — 1 new triangle vertices in R,
and these vertices separate the remaining n—3b— | 248] 41 = 2=7043 pop.

triangle R-vertices into two nonempty sets of sizes | 2=2+3 | and ["‘Z”"‘a]

which, by hypothesis, are no larger than u—1, where u = ﬁi‘-""—a— > 3. The
conclusion follows by Proposition 33. O

Observe that the values of n for which Corollary 34 implies hA(n,b) > ¢
include all those satisfying the hypotheses of Corollary 32.

Proposition 35 Let n, b, and ¢ be integers such that ¢ < 3b, and suppose
that one of the following conditions holds:

(1) n, b, and ¢ have the same parity, and n > 6¢c — Th+ 4.

(2) n has opposite parity to b and ¢, and n > 6¢ — T+ 3.

(8) ¢ has opposite parity to b and n, and n > 6¢c — 7b+ 2.

(4) b has opposite parity ton and ¢, n < 3c+ 2, and n > 6¢c— Tb+ 5.

(5) b has opposite parity ton and ¢, n > 3c+ 4, and n > 6¢c— Tb+ 3.

Then h(n,b) > c

Proof: If any one of Conditions (1) through (4) holds, then the result fol-

lows by a straightforward parity argument applied to Corollary 32. For Jin-

stance, if 7, b, and ¢ have the same parity, then the inequality [”'3b‘ ]

< | 2=4=3¢| of Corollary 32 reduces to n > 6c — 7b+4 if n — 7b = 0 (mod
4), and it reduces to n > 6¢c — 7o+ 6 if n — 7b = 2 (mod 4). But if n, b,
and c have the same parity and n — 7b = 2 (mod 4), then n # 6¢ — 7b + 4.
Thus, Condition (1) implies that the hypothesis of Corollary 32 is satisfied.
A similar argument can be used to show that if Condition (5) holds, the
result follows by Corollary 34. O

6 Sharpness of the Lower Bound

In this section, we show that the lower bound for h(n, b) for each of the five
cases in Proposition 35 is sharp. In particular, we prove the following.

Proposition 36 Letn, b, and ¢ be integers such thatn > 3b—1, n > 3c+1,
b>2, and%gc<3b.

Assume further that one of the following conditions holds:

(1) n, b, and ¢ have the same parity, and n = 6¢c — Tb + 2.

(2) n has opposite parity to b and ¢, and n = 6¢c — Tb+ 1.

(8) ¢ has opposite parity to b and n, and n = 6¢ — 7b.

(4) b has opposite parity ton and ¢, n =3¢+ 2, and n = 6¢c — Tb+ 3.
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(5) b-has opposite parity ton and ¢, n > 3c+2, and n = 6¢c — T+ 1.

Then h(n,b) <c.

There is no loss of generality in including the condition n > 3¢c4-1 in the
hypothesis of Proposition 36, since otherwise, h(n,b) < ¢ by Proposition
10.

The proof of Proposition 36 consists of several cases, each of which is
presented in a separate subsection. In each case our task is to construct a
c-labeling g of Gn » + e, where e is any edge joining non-adjacent vertices
v, and v, of Gn . The construction of ¢ depends on the intervals in which
r and s lie. We assume that r4+1<s<n—b-17r and v, € L. If these
conditions are not satisfied, we may interchange the roles of r and s and/or
of R and L accordingly. There are six cases to consider. In each case, the
c-labeling g must be shown to satisfy n +1—c¢ < g(vi) + g(v;) <n+1+¢
for each edge v;v; of Gnp + €.

The following lemma is convenient for the arguments which follow.

Lemma 37 The hypothesis of Proposition 36 implies ¢ > b+ 3.

Proof: We have ¢ > [Z51] = b+ 2 + [257] > b + 3, where the last
inequality follows because b > 2. O
We now present the various cases.

6.1 n—2c+1<s<n-b-r

Subcase a: > c+ 1. Then the standard labeling g(v:) = t may be used
since

nt+l—c=c+(n—2¢c+1l)<r+s<r+n—-b-r<n+l+c
Subcase b: r < ¢. Then define the labeling g by

c+1 ift=r
glve)=< t—1 ifr+1<t<c+1
t otherwise

Verification of the endpoint sum of each edge v;v; follows:
L vy ntl—c=(c+ 1)+ (n—20) < g(v,) + (s — 1) < g(vr) +g(0s) <
ct+l+s<n+l+ec

2. vy, L jErnt+l—c<n+l=b-2<i+j—2<g(w)+g(v) <
t+j<n+l+b<n+l+4ec

. vt ntl—c<n+l-b<r+jij<c+j=(c+1)+(G-1) <
g(vr) +g(vj) Sc+l+j<n+l+e
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6.2 [2=<|<r<s<n-2c

The following chain of inequalities shows that the standard labeling suffices.
The last inequality in the chain holds because n < 6¢ — 76+ 3 and ¢ < 3b.

ntloc = [n+1—cJ+[n+l—c]

2 2
n+l-c n+l-c
< | [

< r+s<(n-2c-1)+(n—2)<n+1+c

6.3 [2=%tl| 1p<r< |2t and s<n—2

Subcase a: s > |2=+3|. Define the labeling g by

|2=gtl| ifti=r
glv)={ t-1 ifr+1<t<|2=gtl
t otherwise

Subcase b: s < |2=gtL|. Define g by

|=gtl] ift=r
|2=e43] ift=s

glve)=< t-1 ifr+1<t<s-1
t—2 ifs+1<t< =gt
t otherwise

The following arguments, which show that the endpoint sums satisfy
the requirements of a c-labeling, apply to both subcases.

1. wv.vs: Clearly, in either subcase, g(v.) + g(v;) > n—c + 1. Also,
9(vr) +g(vs) < [2=gH |+ (n=2¢) =n+14c+[2=0=1| <n41+
¢+ |===P%2| < n + 1 + c, where the second to the last inequality follows
because n < 6¢c — 7b + 3.

2. vzvg, ¢ € {r,s} and t &€ {r,s}: Observe that g(v;) > = and g(v,) = s <
g(ve) —r < | B=gt| — (| 2=3tL| +b). It follows from the first inequality
that g(vz)+g(v:) > 24+t—2 > (n+1-58)—2 > n+1—c. The second inequal-
ity shows that g(vy) +g(v:) < t+[z+|2=gH | — (|2=3etL| + b)) < n+1+
bt [ 2=gEl | — (| 2=t | 4+0) = nt 1+ [ 2ot | (2= | —¢) = nt1+4e.
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3. vvj, i,j # r,5: Observe that t = |2=¢+23] is the largest ¢ such that
g(v) < t. It follows that any two vertices whose labels have been reduced
cannot be adjacent in G, ; since lﬂ;gtéj.;. |_"—7-§-'-*'-§J -1 < n—c+2 < n+1-b.
Thus,

n+l-c<n+1-0-2<i+j—-2 < g(vi)+g(v;) <i+j < n+l+b< ntl+e

6.4 ISrSl"'iLIJ+b,s§n—2c, and n > 3c+2

To simplify the notation when referring to a vertex v;, we frequently use its
index ¢, for instance, g(t) means g(v:). Also, since a labeling g often assigns
labels sequentially to various subsets of consecutive vertices, we let the ex-
pression g(t1,%2,...,4) = {(a1,42,...,a) mean g(¢;) = a;, ¢ = 1,2,...,1.
Moreover, the indices %;,19,...,% will always be consecutive and increas-
ing, whereas the assigned labels a,as,...,a; are consecutive but may
be increasing or decreasing. Also, (ai,az,...,q,...,ay,) denotes the se-
quence (a1, az,...,8¢—1,8t+1,...,am). The set notation g{t;,ts,...,4i} =
{a1,a2,...,a;} hasits usual meaning: g(¢;) € {a1,a2,...,a1},i=1,2,...,1.

6.4.1 Specifying the c-Labeling g

The labeling g is a piecewise-defined function on six subintervals of
(1,2,...,n), determined by partition points dy, ds, ds, d4, ds, where

dy=[2=8¢=3|+3b, dy=di+(c+2), dz=dy+(n—3c—2),
dy =d3+ (9¢c — 56— 2n + 4) — [(n — ¢) mod 2], ds=ds+ (n—3c—1)

The following lemma shows that the d;’s do indeed partition the interval
(1,2,...,n) into six subintervals (one of which is empty when n = 3¢+ 2).

Lemma 38 Let integers n, b, and c satisfy the hypothesis of Proposition
86 and the inequality n > 3c+ 2. Then the d;’s defined above satisfy
0<di<dy<dg<dsy<ds <n.

Proof: (a) d; > 0: If n and ¢ have opposite parity, then d; = "—‘5“;—3'@
and one of Conditions (2) or (3) of Proposition 36 hold. Thus, d; >
(Be—7b)~ 5°"3+6b = °‘b 2 > 0 by Lemma 37. Butifc = b+ 3, 3¢ =
349 > 75—~ 1, which would imply b = 2, ¢ = 5, and n = 16, contradicting
our assumption that n > 3¢+ 2. Thus, ¢ # b+ 3 and d; > 0. Similar
arguments may be used when n and c have the same parity to complete
the proof that d; > 0.

(b) d3 < d4: If n and ¢ have opposite parity, then n < 6¢ — 7b+ 1 and
dy—d3=9¢—5b—2n+3 > 9¢c—5b—2(6c—Tb+1)+3=3(3b—c)+1> 0.
If n and ¢ have the same parity, then n < 6¢c — 7b+ 3 and dy — d3 =
9c—5b—2n+4>9c—5b—~2(6c—Tb+3)+4=3(3b—-1—-¢c)+1>0.
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(c) ds < n: Since ds = dy + 4¢c — 5b + 3 — [(n — c) mod 2], we have
n—ds = n—d;—4c+5b—3+[(n—c) mod 2] > n— | 2=8¢=2|_3p—4c+5b—3 >
n — n=5c=3 5c—3 —4c+2-3= —3c+4b—3 > LGc—7b)-23c+4b- 3(c—2b—l) >0

where the last inequality follows from Lemma 37.
(d) The remaining inequalities are obvious consequences of ¢ > 0 or n >
3c+2. 0O

Although there are only five non-empty subintervals when n = 3¢ + 2,
the numbering (1) through (6) of the six subintervals will be retained. We
now completely specify the action of ¢ on all but the second subinterval:

Subinterval (1): g¢(1,2,...,d1) =(d3,d3—1,...,n—2c+1)
Subinterval (2): g{di +1,...,d2} ={1,2,...,c+1}U{n—2¢}
Subinterval (3) (ifn > 3c+2): g(d2+1,...,d3) =(c+2,¢+3,...,n—
2c-1)

Subinterval (4): g{dz+1,...,ds) =(ds+1,d3+2,...,d4)
Subinterval (5): g¢(ds+1,...,ds5) = (3c+2,3¢+3,...,n)
Subinterval (6): g(ds+1,...,n) =(3c+1,3¢,...,ds + 1)

6.4.2 Specifying the Action of g on Subinterval (2)

Except for one, two, or three special assignments that depend on the subin-
tervals in which r and s lie, the vertices in Subinterval (2) are labeled with
1,2,...,c+1in increasing order if d4 > n—c—1, and are labeled in two seg-
ments, both consecutive, one increasing and one decreasing, if d; < n—c—2.
The labeling of the two segments also depends on the comparison of s with
the value of d; + (n — 3¢ + 2), which we denote by p. Observe that the
conditions 3¢ +2 < n < 6c—Tb+ 3 and ¢ > 7" =1 ensure that d; < p < ds.
Also note that the t upper bound on r for Case 4 |_" 3°"1_| +b=dy—2b-1.
Subinterval (2) - Case i: dy>n—c—1.
Subcase a: 1 < r < dy and (s <dyors>dy+1).
g(dy + )=n—2¢, g{d+2,d; +3,...,d2)=(1,2,...,¢c+1)
Subcase b: 1<r<dyandd;+1<s<dy~-2b—-1.
g(s)=n—-2¢, g(d+1,d1+2,...,5,...,d3) =(1,2,...,c+1)
Subcase ¢: 1 < r<dyand dy —2b<s<ds.
g(di+1)=n—-2¢, g(s)=c+1,
g(d1 +2,d1+3,...,§,...,d2) = (1,2,. ..,C)
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Subcase d: dy +1<r <s<ds.
g(ry=n—-2¢, g(s)=c+1,
g(dl+l,dl+2,...,F,...,§,...,d2)=(1,2,...,0)
Subcase e: dj+1<r<dy—2b—1lands>ds;+1.
g(r):n—2c, g(d1+1,d1+2,...,T,...,d2)=(1,2,...,c+1)
Subinterval (2) - Case ii: dy<n—c—2ands<p.
Subcase a: 1 <r<s<d;.
gdi+1)=n—-2¢, g(di+2,d1+3,...,p)={(n—-3c+1,n-3c,...,1),
glp+1,p+2,...,d2)=(n—-3c+2,n—3c+3,...,c+ 1)
Subcase b: 1<r<dyandd)+1<s<dy—2b—-1.
g(s)=n—-2¢, g{di+1,d1+2,...,5,...,p)=(n—-3c+1,n-3¢,..., 1),
glp+1,p+2,...,d2)=(n—3c+2,n—3c+3,...,c+1)
Subcase ¢: 1 <r<dj;anddy—2b<s<ds.
gdi+1)=n—-2¢c, g(s)=c+1,
g{dy +2,d1+3,...,5,...,p)=(n—-3¢,n—3c—-1,...,1),
glp+1,p+2,...,d2y={(n-3c+1,n—-3c+2,...,¢)
Subcase d: di +1<r <s<ds.
g(r)=n—2c, g(s)=c+1,
gldi+1,d1+2,...,7,...,5,...,p)=(n—-3¢,n—3c—1,...,1),
gp+1L,p+2,...,d2)={(n—-3c+1,n-3c+2,...,¢)
Subinterval (2) - Case iii: dy<n—c—2ands>p+1.
Subcase a: 1 <r <dj and s > dy + 1.
g(di+1)=n—-2¢, g{di+2,d1+3,...,p)=(n—3c+1,n—3¢,...,1),
gp+1,p+2,...,d2) =(n—-3c+2,n—3¢c+3,...,c+1)
Subcase b: 1<r<djanddi+1<s<ds—2b-1.
g(s)=n—2¢, g{di+1,d1+2,...,p)=(n—-3c+2,n-3c+1,...,1),
gp+1,p+2,...,5,...,d2) =(n—3c+3,n—3c+4,...,c+1)
Subcase ¢: 1 <r <dj and da —2b < 5 < ds.
gdi+1)=n-2c, g(s)=c+1,
g{di+2,d1+3,....p)=(n—3c+1,n-3¢,..., 1),
gp+1,p+2,...,5,...,d2)=(n—-3c+2,n—3c+3,...,¢)
Subcase d: d; +1<r <s<ds.
g(r)=n-2¢, g(s)=c+1,
gldi+1,di+2,...,7,...,p)=(n—-3¢c+1,n—-3¢,...,1),
glp+1,p+2,...,5,...,d2)=(n—3c+2,n—3c+3,...,¢)
Subcase e: dy +1<r<dy—2b—1and s > ds + 1.
g(ry=n—-2¢, g{di+1,d1+2,...,7...,p)=(n-3c+1,n—3c..., 1),
gp+1,p+2,...,d2)=(n—3c+2,n-3c+3,...,c+1)

310



6.4.3 Lemmas Used for the Verification that g is a c-Labeling

The following lemmas help determine the subintervals in which adjacent
vertices of G, » may lie.

Lemma 39 Letdi,dy,...,ds be defined as above. Then the following three
equations hold:

(a) dz +d3 =2n—6c+6b—2+[(n—c) mod 2)

(b)dz+ds=n+b

(c)d2+ds=n+1+b

Proof: These are all immediate consequences of the definitions of the d;’s
together with parity arguments involving n and ¢. For instance, for (b) we
observe that d3 = dy+(n—2c) and dy = d; —n+7c—5b+4—[(n—c) mod 2],
from which it follows that dz+ds = 2 [@J +b+5¢+4—[(n—c) mod 2].
This last quantity equals n + b in both cases for the relative parities of n
ande. O

Lemma 40 Let dy,d>,...,ds be defined as above, and let v;v; be an edge
of Gnp such that i < j and 1 < ¢ < d2 —2b~ 1. Then index j is in
Subinterval (6).

Proof: Since v;v; € E(Gnp), wehave j > n+1—-b—i>n+1-b—(dy—
2b-1)=n+1+4+b—dy+1=ds+1by Lemma39(c). O

Lemma 41 Let dy,d3,...,ds be defined as above, let v;v; be an edge of
Gn such that i < j and i < da, and let n, b, and c satisfy the hypotheses
of Proposition 86. Then j > dg+ 1.

Proof: Since v;v; is an edge of Gn 3, we have the following chain of in-
equalities, the first equality of which follows from Lemma 39(a).

Jj 2 n4+l=-b—-i>n+l1-b—-dy
= n+1-b—(2n—6¢c+6b—2+ [(n—c) mod 2] —d3)
= d3+1+4(6c—Tb+2—n—[(n—c) mod 2])

If » and ¢ have the same parity and n > 3¢+2, then n < 6¢—7b+2, in which
case the last expression in the chain is no smaller than d3 + 1. If n and ¢
have opposite parity, then n < 6¢c — 7b+ 1 and again, the last expression is
at least ds + 1. The remaining possibility is n = 3¢ + 2 with d; = d3. By
way of contradiction, suppose j < d2. Since ¢ < j, we have i+j < 2da~1 =
2(dy+c+2)—1=2|2=5=3| 4 6b+2c+4—1=6b+1=Tb+1—-b< n—b,
where the last inequality follows from n = 3¢+2 > 7b—1+2 = 7b+1. This
contradicts the premise v;v; € E(Gn ), and the proof is complete. O
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6.4.4 Verification that g is a c-labeling

We now verify for any edge v;v; in Gn 5+v,v; that n+1—c < g(v;)+g(v;) <
n <+ 1+ ¢. Assume without loss of generality that i < j.
1. v.vs: Since r < dy and s < n— 2¢ < d3, we have n — 2¢ < g(r) < ds
and c+ 1 < g(s) < d3. By Lemma 39(b), n+1—c < g(r) + g(s) < 2d3 <
d3+dy=n+b<n+l+4ec
2. v, 1 < i < dy: Index j is in Subinterval (6) by Lemma 40. Among
the edges incident on vertex vy, v3vn—p is the one with the largest endpoint
sum of value g(1) + g(n — b) = d3 + ds + 1 + b, according to the action of g
on Subintervals (1) and (6) and the fact that Subinterval (6) has at least
b + 1 elements. Moreover, since {(g(1),9(2),-..,9(d1)) is a consecutive and
decreasing sequence, and (g(n),g(n — 1),...,g(ds + 1)) is consecutive and
increasing, we have g(1)+g(n—b) = g(2)+g(n—b-1) = g(3)+g(n—-6-2)...,
as long as the larger vertex remains in Subinterval (6). It follows that
d3+d4+1+bis the largest possible endpoint sum of an edge joining vertices
with one index in Subinterval (1) and the other index in Subinterval (6).
Hence, by Lemma 39(b), ¢(7) +9(j) L da+ds+1+b=n+2b+1< n+1+c
since ¢ > L. Similar reasoning shows that g(di) + g(n) is the smallest
possible endpoint sum involving Subintervals (1) and (6), from which it
follows that g(i) + g(j) > g(di) +9(n) =n—-2c+1+ds+1=n+1-c+
(ds+1-¢c)>n+l-—c
3. vvj,di +1<7<dy—2b—1 and j # s: We have g(r) = n — 2c by the
action of g on Subinterval (2), and, by Lemma 40, index j is in Subinterval
(6). Thus, n+1—c< n+l—c+(ds—c) = (n—2c)+ds+1< g(r)+9(j) <
(m=2c)+Bc+1)=n+1+c
4. v,vj,d1+1 < s < dy: Then g(s) =n—2cor c+1. If g(s) = n—2c, then
s < dy —2b—1, and again, index j is in Subinterval (6). Hence, n+1—c <
nt+l—c+(da—c)=(n—2c)+ds+1<g(s)+9(j) < (n—2¢)+(3c+1) =
n+1+c. If g(s) = ¢+ 1, then clearly g(s) +g(j) < n+c+1. It remains to
show g(s) + g(j) > n+ 1 —c, or equivalently g(j) > n —2c. By Lemma 41,
index j is in Subinterval (4), (5), or (6), and hence, by the action of g on
these three subintervals, g(j) > ds + 1. But d3 = dy + (n — 2¢) > n — 2c.
5. vivj, 1,j &€ {r,s}, di+1 < i < da. The case references below correspond
to those in Section 6.4.2.

Casei: dy>n—c—1.

If g(i) = n— 2c, then i = dy + 1 < d3 — 2b — 1 and hence by Lemma
40, index j is in Subinterval (6). As in paragraph 4 above, n +1—c¢ <
g(i) + 9(j) £ n+ 1+ c. Thus we may assume that 1 < g(¢) < ¢+ 1. By
Lemma 41, index j lies in Subinterval (4), (5), or (6). If j is in Subinterval
(5) or (6), then g(j) > ds +1, and hence g(3) + g(j) 2 ds+22>n+1—c.
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If j is in Subinterval (4), then, using Lemma 39b, we have i > n+ 1 —
b—di=(n+b—dy)—26+1=d3—2b+1=d1+(n—2)—2b+1=
di+44+n—-2c-20—-3>dy+4+c+2—2b—3 > d; +4, where the last
two inequalities follow since n > 3¢+ 2 and ¢ > 2b+ 1. Thus, vy, 44 is the
smallest possible vertex that could be adjacent to a vertex in Subinterval
(4). Moreover, 2 < g(d; +4) < 4 depending on the values of  and s.

It follows that, if j = dy, g(5) + 9(j) > 2+ds > n+1—c Ifj =
d4 —t is any other index in Subinterval (4), it can be shown similarly that
9(i) + g(§j) > da+2 > n+ 1 — ¢, which shows that the endpoint sum
9(?) + g(j) satisfies the lower bound for a c-labeling. Since g() < ¢+ 1,
9(¢) + g(j) < n+ 1+ ¢, which shows that the upper bound is satisfied.

Cases ¢i and éii: dy <n—c—2.

The following two lemmas are useful in this case. The first makes use
of the easily shown assertion that dq = | 2e=p+4| _ 9

Lemma 42 Ifc=2b+1, thendy > n—c— 2.

Proof: f n =3c+2=6c—7b+3, then 3¢ = 76— 1 = 6b + 3. It follows
that b=4, ¢ =9, n = 29, and d4 = 20, and hence the desired inequality is
satisfied. Otherwise, since b and c have opposite parity, the conditions of
Proposition 36 imply that n < 6¢—7b+1. Then n—c—2 < 6c—Tb+1—c—2=
9cic—2106—2 — 9= 9ci2bi;-1nb-2 —9%= 9c—§8l;+4)+3 _9b< 9c—(5!;+72+3 _
2Db — 9c—(126+62-7b+1)+3 — 9 = 9c—(6c—27b+1)+3 —%< 9c—2n:t3 —2% < dy.

Lemma 43 The conditions of Proposition 36 imply that n < 4c + 1.

Proof: Wehaven < 6¢c—7b+3 = 4c+1+2¢—Tb+2 < 4e+14+6b—2—7b+2 =
4c+1-b<4e+1. O

If g(i) =1, then i = p—2, p— 1, or p. Then the following chain of
inequalities shows that index j is in Subinterval (5) or (6): j > n+1—b—p =
n+l-b—(n—=3c+2+d)=3c—b-1-d;=3c—b—-1+(n—-2c)—ds=
c—b—14n+b—d3z—b = dy+1+c—(26+2) > ds+1, where the last inequality
follows by Lemma 42. By the action of g on Subintervals (5) and (6) and by
Lemmas 39(c) and 43, the smallest endpoint sum involving g(i) = 1 satisfies
9()+9() 2 1+g(n+14b—(p=2) = 1+ g(n+1+b (n—3c+dy)) =
l+g(n+14b—(d2+n—3c—2)+¢) =1+g(n+1+b—dy —n+4c+2) =
1+gds+(4c+2-mn)) =14+3c+2-(4c+2-n)=n—-c+1. It
follows by an argument similar to those used previously that for any i < p,
9@ +9(i)2n+1-c

We now establish that the endpoints sums involving i > p + 1 are
sufficiently large. The action of g shows that the smallest value of g(3)
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occurs when i = p+1 or p+ 2 and this value equals n — 3¢+ 1, n —3c+2,
or n—3c+ 3. From earlier comments, the smallest possible vertex adjacent
to v; is vg,—1. We may assume that n # 3¢+ 2 since otherwise, it is easy to
show that dy > n—c—2. It follows that n < 6¢—7b+2. For this value of 7,
9()+9(f) > (n—3c+1)+(da—1) > 2=2E3_9b4n—3c = n—c+142-pE -
26—2¢ > n_c+1+9c— 6c—27b+2 +1 —2%—2¢ =n—c+1— Ej:‘;b_—ll > n—c+1,
where the last inequality follows since ¢ < 3b — 1. Again, as in previous
arguments, it can be shown that g(i) + g(j) > n+1—cforp+1<i < da.
In all cases, since g(i) < c+1, g(i) + 9(j) <n+1l+ec

6. vivj,d2+1 < i < d3 (and hence n > 3c+2): Since j > i, index j cannot
lie in Subinterval (1) or (2). Moreover, by Lemma 39(c), j Sn+b—d2 =
ds — 1, and hence is not in Subinterval (6). The index ¢ for which g(i) is
smallest is i = d3 + 1. For this i, g(i) =c+2andn—-b—-dy <j<ds—1.
Thus, by the action of g on Subintervals (3), (4), and (5), the smallest value
of g(4), for j in this range, occurs when j = n — b — dy. By Lemma 39(a),
wehaven—b—dy=n—b— (2n—6¢c+6b— 2+ [(n — ¢) mod 2] — d3) =
d3+ (6c—T7b+2—n)—[(n—c) mod 2]. But this last expression is no smaller
than d3 (since Condition (4) of Proposition 36 does not apply and n and ¢
have the same parity when n = 6¢—7b+2). This shows that g(d2+1)-+g(d3)
is the smallest possible endpoint sum for which ¢ = dz + 1. Moreover,
since ¢ is consecutive and increasing on Subintervals (3), (4), and (5),
g(da+1)+g(ds) < g(d2+2)+g(ds—1) < ---. It follows that g(dz+1)+g(ds)
is the smallest endpoint sum involving any index ¢ in Subinterval (3). Thus,
9(@) +9(j) 2 g(d2+1) +g(ds) = (c+2)+(n—2c-1)=n+1-c It
remains to show that g(i) + g(j) < n+ 1+ c. The largest value of g(i)
occurs when i = dg. For this i, we have dg+1 < j<n+1+b—d3 =ds+1,
where the last equality follows from Lemma 39(b). Using an argument
similar to the one for the smallest endpoint sum, the largest endpoint sum
isg(ds) +9(da+1)=n—-2c—1+4+3c+2=n+1+c

7. vvj, d3+1 < i < dg: Theni+1 < j < nt+l+b—(ds+1) = dy, by Lemma
39(b). Thus, indices i and j are both in Subinterval (4), on which g(z) = z.
It follows that n+1—c<n+1-0<g(i) +9(j) <n+l+b<n+l+tec

8. viv;, i > d4q + 1: There are no such edges since i+j > da+1+ds+2>
ds +ds + 3> n+1+b by Lemmas 38 and 39(b), and the verification for
the Case 4 labeling is complete.

65 1<r< l"‘:’—;—"lj+bandr<s§n—2c; and n = 3c+1

It follows that 1 < r < b.
The labeling g is a piecewise-defined function on four subintervals of
(1,2,...,n), determined by partition points a1, as, as, where
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ay=3h-c—-1, az =3b+1, az =3c—2b

Lemma 44 Let n, b, and ¢ satisfy n = 3c+1 and the hypotheses of Propo-
sition 36, and let a1, as, a3 be defined as above. Then0 < a; <b<n-—-2c=
ct+l<az<az<n.

Proof: These inequalities follow directly from the definitions and condi-
tions on n, b, and c. For instance, az =3¢ —2b=n—-1-2b<n. O

We can immediately specify the action of g on all but the second subin-
terval:

Subinterval (1) (ifc < 3b—1): ¢(1,2,...,a1) = (az,a2—1,...,c+3)
Subinterval (2): g{a1 +1,a1+2,...,a2} ={1,2,...,¢+2}

Subinterval (3): g(az +1,a2+2,...,a3) = (a2 + 1,82+ 2,...,0a3)
Subinterval (4): g{az+1,e3+2,...,n)=(n,n—1,...,n—2b=az+1)

Specifying the action of g on Subinterval (2)
The action of g on Subinterval (2) depends on which one of the following

four subcases occurs. Observe that if ¢ = 3b—1, then a; = 0 and Subinterval
(1) is empty. In that special case, only Subcase 4 applies.

Subcase 1. 1<r<s<a
glag+1)=c+2 glar+2,a1+3,...,a2) =(1,2,...,c+1)
Subcase 2. 1<r<ayanda;+1<s<b
g(s)=c+2, glay+1l,a1+2,...,5...,e2) =(1,2,...,c+1)
Subcase 3. 1<r<a;andb+1<s<n-2
ga+1)=c+2, g(s)=c+1,
g{a1 +2,a:+3,...,5,...,a2) = (1,2,...,¢)
Subcase 4. a1 +1<r<bandr+1<s<n-—-2
g(ry=c+2, g(s)=c+1,
g(a1+1,a1+2,...,7“,...,§,...,a2)=(1,2,...,0)

The following lemmas are analogous to Lemmas 40 and 41.

Lemma 45 Letn, b, and c satisfy n = 3¢+ 1 and the hypotheses of Propo-
sition 86. Let ay, az, and a3 be defined as above, and let v;v; be an edge of
Gnp such that 1 <i < b. Then j > a3+ 2.

Proof: Since v;v; EGpp, j2n+1=-b—-i>2n+1=-b-b=n+1-2b=
3c+2—-2b=a3+2. O
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Lemma 46 Let n, b, and ¢ satisfy n = 3c+1 and the hypotheses of Propo-
sition 36. Let ay, az, and a3 be defined as above, and let v;v; be an edge of
Gnp such that b+1<i<az. Thenj>az2+1.

Proof: Suppose not. Then i+j < 2as—1 = 2(3b+1)—1=Tb+1-b < n—b,
which contradicts the premise that v; is adjacent to v;. O

Verification that g is a c-labeling

We show for any edge v;v; in Gap + vrvs, 1 < j, that n +1—-¢ <
g(vi) +9(v;) <n+1l+c

1. i=randj =s: Wehavec+2 < g(r) < a2 = 3b+1and c+1 < g(s) < 3b.
It follows that n+1—c=2c+2 < g(r) +9(s) <60 +1<Tb—-1<3c=
n—1<n+l+ec

2. i#rorj#s,1<i<b By Lemma 45, index j is in Subinterval (4).
Let z = g~!(1) and let y be smallest index such that vy is adjacent to vs.
Then z = a1+1,a,+2, or a;+3;and y = n+1-b—z > n+1—-b—(a;+3) =
3¢+2-b—a; -3 =38c—2b+1+(c—2b—1) =az+1+(c—2b—1). Since g
is decreasing on Subinterval (4), g(z) +g(y) 2 1+g(az+1+c—2b-1) =
14+[n—(c—2b-1)] = n+1—c+2b+1 > n+1—c. Moreover, for1 < d < bz,
we have g(z+d) > 1+d and g(y—d) = g(y) +d, and g(x —d) > 1+d and
g(y+d) = g(y)—d. It follows that g(i)+g(j) > g(z)+g(y) > n+1—c. Since
g is decreasing and consecutive on both Subintervals (1) and (4), we have
g()+g(n—b) =g(2)+g(n—-b-1)=---=g(a1) +9(n—b— (a1 - 1)), and
this common value is the largest possible endpoint sum of an edge joining
vertices in Subintervals (1) and (4). Clearly, the values of g on Subinterval
(2) are all smaller than those on Subinterval (1), and hence, the largest
endpoint sum is g(1)+g(n—>5) = (3b+1)+(n—2b+b) = n+1+2b < n+1+ec.

3. b+1 < i < ag: We have that g(i) < c+1, which implies that g(é)+g(j) <
n+1+c. By Lemma 46, index j is in Subinterval (3) or (4). Observe that
vp41 is adjacent to v;, where ¢ ranges from n —2b = a3 + 1 to n. It
follows that g(b+ 1) + g(n) is the smallest possible endpoint sum involving
vp4+1- Using arguments similar to those employed previously, it can be
shown that as index i increases from b + 1, the endpoint sums involving
v; are no smaller than g(b + 1) + g(n). By the definitions of e¢; and g,
gb+1) = g(as +2+c—2b) > 1+c¢—2band g(n) = n—2b. Thus,
g9(1)+9() > (1+c—2b)+(n—2b) =n—4b+c+1=n+1—c+(2c—4b) >
n+1l-—c.

4. as+1 < i< as: Wehave j < n+1+b—(a2+1) = n+b—3b—1 = 3c—2b =
az. Thus, since j > %, index j is in Subinterval (3) and g(¢) + g(j) = i+ J.
Hence, n+1—c<n+1-5<g(@)+g(j) <n+l+b<n+1l+tec
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5. i>ag+1: Since i < j,wehave i +j > 2a3+3 =23c—-2b)+3 =
6c—4b+3=n+1+b+(3¢—5b+1) > n+1+b, which contradicts the
premise that vertices v; and v; are adjacent in Gnp. This completes the
verification that g is a c-labeling and completes the proof of Proposition
36. O
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