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Abstract

For an ordered set W = {w;, ws, -+, wx} of vertices and a ver-
tex v in a connected graph G, the representation of v with
respect to W is the k-vector r(v|W) = (d(v,w1), d(v, w2), -

d(v, wg)), where d(z, y) represents the distance between the ver-
tices z and y. The set W is a resolving set for G if distinct
vertices of G have distinct representations with respect to W.
A resolving set for G containing a minimum number of vertices
is a basis for G. The dimension dim(G) is the number of ver-
tices in a basis for G. A resolving set W of G is connected if
the subgraph (W) induced by W is a connected subgraph of
G. The minimum cardinality of a connected resolving set in
a graph G is its connected resolving number ¢7(G). The rela-
tionship between bases and minimum connected resolving sets
in a graph is studied. A connected resolving set W of G is a
minimal connected resolving set if no proper subset of W is a
connected resolving set. The maximum cardinality of a minimal
connected resolving set is the upper connected resolving number
ert(G). The upper connected resolving numbers of some well-
known graphs are determined. We present a characterization
of nontrivial connected graphs of order n with upper connected
resolving number n — 1. It is shown that for a pair a, b of in-
tegers with 1 < a < b there exists a connected graph G with
cr(G) = a and cr*(G) = b if and only if (a,8) # (1,%) for all
i>2.
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1 Introduction

The distance d(u,v) between two vertices u and v in a connected graph
G is the length of a shortest u — v path in G. For an ordered set W =
{w1,wa, -, wx} C V(G) and a vertex v of G, we refer to the k-vector

r(vIW) = (d(vr wl)) d(v: w2)’ Y d(’U, wk))

as the (metric) representation of v with respect to W. The set W is called
a resolving set for G if distinct vertices have distinct representations with
respect to W. A resolving set for G containing a minimum number of
vertices is a minimum resolving set or a basis for G. The (metric) dimension
dim(G) is the number of vertices in a basis for G. For a connected graph G,
its vertex set V(G) is always a resolving set for G. Moreover, (V(G)) = Gis
a connected graph. Thus, a resolving set W of G is defined to be connected
if the subgraph (W) induced by W is a connected subgraph of G. The
minimum cardinality of a connected resolving set W in a graph G is the
connected resolving number cr(G). A connected resolving set of cardinality
cr(G) is called a cr-set of G. '

" To illustrate these concepts, consider the graph G of Figure 1. The set
W = {u,v} is a basis for G and so dim(G) = 2. The representations for
the vertices of G with respect to W are

r(u|lW) = (0,2) r(v|W) = (2,0) r(w|W) = (1,2)
r(z|W)=(1,1) r(yW) = (2,1)

Since ({u,v}) is disconnected, W is not a connected resolving set. On
the other hand, the set W’ = {u,v,z} is a connected resolving set. The
representations for the vertices of G with respect to W' are

r(u[W’) =(0,2,1) r(v|W’) = (2,0,1) r(wlW’) = (1,2,1)
r(z|W’) = (1,1,0) rW’) =(2,1,1)

Since G contains no 2-element connected resolving set, that is, a resolving
set consisting of two adjacent vertices, ¢r(G) = 3.
u v
G:
w y
Figure 1: A graph G with dim(G) =2 and ¢r(G) =3

The concepts of resolving set and minimum resolving set have previ-
ously appeared in the literature. In [6] and later in [7], Slater introduced



these ideas and used locating set for what we have called resolving set. He
referred to the cardinality of a2 minimum resolving set in a graph G as its
location number. Slater described the usefulness of these ideas when work-
ing with U.S. sonar and coast guard Loran (Long range aids to navigation)
stations. Harary and Melter [3] discovered these concepts independently
as well but used the term metric dimension rather than location number,
the terminology that we have adopted. These concepts were rediscovered
by Johnson [4] of the Pharmacia Company while attempting to develop a
capability of large datasets of chemical graphs. Connected resolving sets in
graphs were introduced and studied in [5]. We refer to [1] for graph theory
notation and terminology not described here.
The following two observations (see [2, 5]) will be useful to us.

Observation 1.1  Let G be a nontrivial connected graph. Then dim(G) =
cr(G) if and only if G contains a connected basis.

Observation 1.2  If S is a set of p > 2 vertices in a connected graph
G such that d(u,z) = d(v,z) for all u,v € S and z € V(G) — {u, v}, then
every resolving set must contain at least p — 1 vertices of S.

2 Comparison of cr-Sets and Bases in Graphs

In this section, we study the relationship between cr-sets and bases in a
nontrivial connected graph G. Certainly, if W is a resolving set of G and
W C W', then W' is also a resolving set of G. Therefore, if W is a basis of
G such that (W) is disconnected, then surely there is a smallest superset
W' of W for which (W’) is connected. This suggests the following question:
For each basis W of a nontrivial connected graph G, does there exist a cr-
set W’ of G such that W C W’? We show that this question has a negative
answer.

Proposition 2.1  There is an infinite class of connected graphs G such
that some cr-sets of G contain a basis of G and others contain no basis of

G.

Proof. Let G be the graph obtained from the 4-cycle u;, ua, us, u4, u; by
adding the k (> 2) new vertices v1, v3, - - -, v and joining each v; (1 < i < k)
to u; and u4. The graph G is shown in Figure 2. Let V = {v1,v2,---, vk }.
Since W = {u2} U(V — {w}) is a basis of G, it follows that dim(G) = k.
Next we show that ¢r(G) = k + 1. By Observation 1.2, every resolving
set of G contains at least k—1 vertices in V. Thus every connected resolving
set must contain at least one vertex from {u;,us}. However, if S is a set of
vertices of G consisting of k—1 vertices from V' and one vertex from {u;, u4},
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Figure 2: The graph G

say S = (V — {vx}) U {u1}, then r(uz | S) = r(vx | S) and so S is not a
resolving set. Therefore, G contains no connected basis and so ¢r(G) > k+1
by Observation 1.1. On the other hand, Sy = {u;,u2} U (V — {v}) is a
connected resolving set of cardinality k+1 and so ¢r(G) < k+1. Therefore,
er(G) =k + 1.

Observe that the cr-set Sy contains the basis W = {us} U(V — {v}) of
G. On the other hand, let S; = {u;}UV. By a similar argument, it can be
verified that S is also a cr-set of G. Since every basis of G contains exactly
k — 1 vertices from V' and exactly one vertex from {uz,us}, it follows that
S, contains no basis of G. .

Proposition 2.1 suggests another question. For each connected graph G,
does there exist some cr-set W' such that there is some basis W of G for
which W C W’? We show that even this question has a negative answer.

Theorem 2.2  There is an infinite class of connected graphs G such that
every cr-set of G is disjoint from every basis of G.

Proof. For two integers p,q > 3, let G be that graph obtained from two
odd cycles Czp+1 S U, UL, UL, 0, up,u;,, u;,_l, ey u'l, Ug and Czq+11 Vo, V1,
V2, -7, Vg, Vg, Vp_y, -+ V], Yo by (1) identifying the vertex ug of Cpi1
with the vertex vp of C2g41, denoting the identified vertex by z, and (2)
adding a pendant edge zy. The graph G is shown in Figure 2.

First we make an observation. Let U = {uy,ua,---,up}, U’ = {uf, u},
oy upl, V= {v1,v2,--,v5}, and V' = {v1,v3,- -, vg}. If S is a resolving
set of G, then S contains at least one vertex from each of U U U’ and
V UV’. Otherwise, if S C UUU’ U {z,y}, then r(v; | S) = r(v} | S). If
SCVUV'U{z,y}, then r(u; | S) = r(u] | S). In either case, S is not a
resolving set, which is a contradiction.

Let W1 = {up,vq}, Wa = {up, v}, Wa = {up, v}, and Wy = {up, vg}-
Since G is not a path (which is the only nontrivial connected graph of
dimension 1) and each of the sets W; (1 < i < 4) is a resolving set, dim(G) =
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Figure 3: The graph G for p=4 and ¢ = 3

2. We show next that the sets W; (1 < i < 4) are the only bases of G.
Assume, to the contrary, that G contains a basis W that is distinct from all
W; for 1 <i < 4. Let W = {s,t}. By the observation above, W contains
exactly one vertex from each of UU U’ and VU V', say s € U UU’ and
t € VUV’ We consider two cases.

Case 1. s = u, or s = uj,. Assume, without loss of generality, that
5 = up. Since W # W; for 1 < i < 4, it follows that t = vj or t = v} for
1<j<Lg-1 lft=uv;forl<j<q-—1, then d(v],t) = d(y,t). Since
d(v},s) = d(y, s), it follows that r(v{ | W) = r(y | W), a contradiction. If
t=wv; for 1 <j<g—1,then d(v1,t) = d(y,t). Since d(v1,s) = d(y, s), it
follows that r(v, | W) = r(y | W), a contradiction.

Case 2. s = u; or s = u}, where 1 < i < p— 1. Assume, without loss of
generality, that s = u; for some i with 1 <i<p-1. Thent=vjort= v}
for1<j<gqg Ift=vjfor1<j<g-1, thenr(vllW)—r | W). it
t=vifor1<j<g-1, thenr(v1|W)_r(y|W) Ift=wvg ort =,
then r(u, | W) = r(y | W). Thus in each case, a contradiction is produced

Therefore, W is not a basis of G and so the sets W; (1 < i < 4) are the
only bases of G.

Next we show that cr(G) = 5. Since Sy = {uy,u},v;,v},z} is a con-
nected resolving set, cr(G) < 5. Assume, to the contrary, that cr(G) < 4.
Since W; (1 < i < 4) are the only bases of G and none of W; (1<i<4)
are connected, G contains no connected basis. Thus cr(G) > 3 by Obser-
vation 1.1. Let S be a cr-set of G. Then |S| =3 or |S]| = 4. We consider
these two cases.

Case 1. |S| = 3. Let N[z] = {u1,ul,v1,v|,z,y} be the closed neigh-
borhood of z. By the observation above, S contains at least one vertex
from each of VUV’ and U U U’. This implies that € S and S C N|[z].
Since (N[z]) = K15 and cr(K;,5) = 5, it follows that S is not a connected



resolving set of G, a contradiction.

Case 2. |S| = 4. Again, S contains at least one vertex from each of
VUV’'and UUU'. An argument similar to that used in Case 1 shows that
if S C N|[z], then S is not a connected resolving set for G. Thus S ¢ N[z].
Since |S| = 4 and S is connected, S must contain z and exactly one vertex
from each of {uj,u}}, {v1,v}}, and {uz,uh, vz, v5}. Assume, without loss
of generality, that S = {u2, u1,z,v1}. However, then r(uj | S) =r(v} | 5),
which is a contradiction.

Therefore, cr(G) = 5. Moreover, we claim that each cr-set S is a subset
of {uy,uf,v1,v],z,y}. Assume, to the contrary, that there is a cr-set S’
such that S’ is not a subset of {u;,u}, v, v}, z,y}. Since S’ is connected,
|S’] = 5, and S’ must contain at least one vertex from each of VUV’ and
U U U, it follows that S’ is a subset of {uy,us, u},us, v1,v2, v}, v, 2,y}.
Assume, without loss of generality, that S’ = {ug,u;,v;,z,y} or &' =
{u2, u1,v1,v2,z}. However, in each case, r(uj | S') = r(v] | S’'), which is a
contradiction. Therefore, each cr-set S is a subset of {u), u}, v1,v],,y}, as
claimed. Since each basis W of G is a subset of {uy, up, vg, v} and p, ¢ > 3,
it follows that every cr-set of G is disjoint from every basis of G. [ ]

The graph G constructed in the proof of Theorem 2.2 can be extended
to show the following result. First we need an additional definition. Let X
and Y be two sets of vertices in a connected graph G. The distance between
X andY is defined as

d(X,Y)=min{d(z,y) |z€ X and y€e Y}.

Corollary 2.3  For each positive integer N, there is an infinite class of
connected graphs G such that d(W,S) > N for every basis W of G and
every cr-set S of G.

Proof. Let G be the graph constructed in the proof of Theorem 2.2 for p >
¢ > max{3, N + 1}. Since each basis W of G is a subset of {up,u,, v, v}
and each cr-set S is a subset of {u1, u}, v1, v}, z,y}, it follows that d(W, S) >
p— 12> N, as desired. n

The following three results give the relationship between cr-sets and
bases in some well-known classes of graphs, namely complete graphs, com-
plete bipartite graphs, cycles, and trees.

Proposition 2.4  If G is a complete graph of order at least 3 or a com-
plete bipartite graph that is not a star, then a set W of vertices of G is a
basis of G if and only if W is a cr-set of G.

Proof. If G = K, for n > 3, every set of n — 1 vertices in G form a basis
and a cr-set of G. Let G = K, , with partite sets V; and V,, where [V}| =7



and |[Va| = s and 2 < r < 5. Then every basis W of G contains exactly
r — 1 vertices from V) and exactly s — 1 vertices from V2. Since (W) is
connected, W is a cr-set. By Observation 1.1, we have dim(G) = er(G),
which implies that every cr-set of G is a basis. [ ]

Proposition 2.5 For a cycle C, of order n > 4, every cr-set of C,, is a
basis of C,,.

Proof. Since dim(C,) = ¢r(Cn) = 2 for n > 4 and every cr-set of C,
consists of two adjacent vertices, every cr-set is also a basis. n

The converse of Proposition 2.5 is not true for n > 5 since some basis
of Cy, consists of two nonadjacent vertices of C and therefore, it is not a
cr-set of C,.

A vertex of degree at least 3 in a tree T is called a major vertez. An
end-vertex u of T is said to be a terminal verter of a magor verter v of
T if d(u,v) < d(u,w) for every other major vertex w of 7. The terminal
degree ter(v) of a major vertex v is the number of terminal vertices of v.
A major vertex v of T is an exterior major verter of T if it has positive
terminal degree. Let o(T’) denote the sum of the terminal degrees of the
major vertices of T and let ex(T') denote the number of exterior major
vertices of T'. Then ¢(T’) is the number of end-vertices of T. The following
lemma is useful (see [2]).

Lemma 2.6 Let T be a nonpath tree of order n > 4 having p exte-
rior major vertices V1,02, Vp. For 1 < i < p, let uiy,uip, -+, ujk, be
the terminal vertices of v;, and let P;; be the v; — u;; path (1< j < k).
Suppose that W is a set of vertices of T. Then W is a resolving set of
T if and only if W contains at least one vertez from each of the paths
Pij —v (1<j<kiand 1< i< p) with at most one exception for each i
with 1 < i < p. Moreover, W is a basis of T if and only if W contains ez-
actly one vertex from each of the paths Pij —v; (1< j < k; and 1 <i<p)
with exactly one exception for each i with 1 <i<p.

By Lemma 2.6, we have the following result whose proof is straightfor-
ward and is therefore omitted.

Proposition 2.7  If T is a tree that is not a path, then every cr-set of
T contains a basis of T as a proper subset.
3 Minimal Connected Resolving Sets in Graphs

A resolving set W of G is a minimal resolving set if no proper subset of
W is a resolving set. The maximum cardinality of a minimal resolving set



is the upper dimension dim*(G) and a minimal resolving set of cardinality
dim*(G) is an upper basis for G. If G is a nontrivial connected graph,
then dim(G) < dim*(G). These concepts were introduced and studied in
[2). Similarly, a connected resolving set W of G is a minimal connected
resolving set if no proper subset of W is a connected resolving set. The
maximum cardinality of a minimal connected resolving set is the upper
connected resolving number cr*(G) and a minimal connected resolving set
of cardinality cr*(G) is called an upper cr-set for G. Certainly, every min-
imum connected resolving set of a graph is a minimal connected resolving
set, but the converse is not true.

To illustrate these concepts, consider the graph G = P3 x P, of Figure
4. Since W = {u;,v;,w;1} is a er-set for G, it follows that ¢r(G) = 3.
Now let W’ = {v1,v2,vs, w3, ws}. The representations for the vertices of
V(G) — W’ with respect to W’ are

r(w|W') =(1,2,3,4,5) r(u2]W’')=1(2,1,2,3,4)
r(us|W') = (3,2,1,2,3)  r(ua|W')=(4,3,2,3,2)
r(valW) = (3,2,1,2,1)  r(w W) = (1,2,3,2,3)
r(we|W') =(2,1,2,1,2)

Thus W' is a connected resolving set as well. Let Wy = W’ — {v,}, Wo =
W' —{vo}, Ws = W' — {v3}, Wy = W' —{ws}, and W5 = W’ — {w,}. Since
r(uz|Wh) = r(v1|Wh), r(us|Ws) = r(va|Ws), and (W;) is not connected in G
for i = 2,3, 4, the sets W; is not a connected resolving set for all 1 < i <5.
Hence W’ is a minimal connected resolving set and so c¢r*(G) > 5. By
a case-by-case analysis, one can show that there is no minimal connected
resolving sets of cardinality 6. Hence W' is an upper cr-set and er*(G) = 5.

Uy U2 U3 Uq

7\ O

v] \W/ \J '04

Figure 4: A er-set and an upper cr-set in G

Thus if G is a nontrivial connected graph of order n, then

1<er(G)<ert(G)<n—-1.

10



The connected resolving numbers of some well-known graphs have been
determined in [5]. Next we show that ¢r*(G) = ¢r(G) for these graphs.

Theorem 3.1  Let G be a nontrivial connected graph. If G is a complete
graph, a cycle, a complete k-partite graph (k > 2), or a tree, then crt(G) =
cr(G).

Proof. We will only verify that ¢r*(T) = cr(T) for all nontrivial trees
T since the proofs for others are routine. If T is a path, then cr*(T) =
er(T) = 1. Thus we may assume that T is not a path. Assume, to the
contrary, that there is a nontrivial tree T that is not a path such that
ert(T) > cr(T). Let T have order n > 4 and p exterior major vertices
v1,v2,---,0p. For 1 < ¢ < p, let ujy,uia, -+, uix, be the terminal ver-
tices of v;, and let P;; be the v; — u;; path (1<j< k). Let S be an
upper cr-set with |S| = ¢r*(T). Since S is a resolving set, it follows by
Lemma 2.6 that S contains at least one vertex from each of the paths
Pij —v; (1<j<kiand 1< i< p) with at most one exception for each i
with 1 < i < p. Let S’ be a subset S such that S’ consists of all those
vertices required by Lemma 2.6. Since (S) is connected, S must contain all
vertices of T' belonging to each z — y path for all z,y € S’. On the other
hand, it was shown in [5] that for a set W of vertices of T, W is a cr-set of
T if and only if (a) W contains exactly one vertex from each of the paths
Pjj —v;, 1 < j<kiand 1< i< p, with exactly one exception for each
¢ with 1 < 4 < p, (b) for each pair 7,j with 1 < j < kjand 1 < i < p,
if z;; € W, then z;; is adjacent to v; in the path P;;, and (c) W contains
all vertices in the paths between any two vertices described in (5). This
implies that if [S| > ¢r(G), then S contains a cr-set as a proper subset,
which is a contradiction. n

By Theorem 3.1 and some known results [5] for the connected resolving
numbers of these graphs, we have the following.

(@) HG=Kpforn>3o0rG = Ky forn > 4,then crt(G) = cr(G) =
n—1.

() If G = P, for n > 2, then cr*(G) = cr(G) = 1.
(¢) f G = C, for n > 4, then crt(G) = er(G) = 2.

(d) For k > 2, let G = Kpn, n,,..n, be a complete k-partite graph that is
not a star. Let n = ny +ns + -+ -+ n; and £ be the number of 1’ in
{ni:1< i<k} Then

ert(G) = C”(G)={n_k+£—1 if

11



(e) Let T be a tree that is not a path, having order n > 4 and p exterior
major vertices vy, vs,--,v. For 1 < i < p, let ujy, uia, - - -, uix; be
the terminal vertices of v; and let P;; be the v; — u;; path of length
&'j (l SJ S k,'). Then

ert(T) = er(T) = n+ o(T) — ex(T) — ZZ,-J-.

i)j

It was shown in [5] that the graphs K, and K;,_; are the only con-
nected graphs of order n > 4 with connected resolving number n — 1. In
fact, this is also true for the upper connected numbers of graphs, as we
show next.

Theorem 3.2  Let G be a connected graph of ordern > 4. Then cr*(G) =
n—1ifandonly if G= K, or G= Ky n-1.

Proof. We have seen that er*(G) =n—-1ifG=K, or G = Kj 5-1. It
remains to verify the converse. We show that if G is a connected graph of
order n > 4 that is neither a complete graph nor a star, then er*(G) < n—2.
To do this, it suffices to show the following stronger statement: If G is a
connected graph of order n > 4 that is neither a complete graph nor a star,
then, for each u € V(G) for which V(G) — u is a connected resolving set,
there exist two distinct vertices v and w in G—u such that (1) V(G)—{u, v}
is a connected resolving set for G and (2) w is adjacent to exactly one of u
and v in G. We proceed by induction on the order n of G. For n = 4, the
graphs G; (1 < i < 4) of Figure 5 are the only connected graphs order 4 that
are different from K4 or K 3. For each ¢ (1 < i < 4), the vertices u,v, w
are shown in Figure 5 and W = V(G;) — {u, v} is a connected resolving set
in G;. Note that for G3 and G4 there are two possible choices (see Figure
5) for u such that V(Gs) — {u} and V(G4) — {u} are connected resolving
sets in G3 and G4, respectively. Moreover, w is adjacent to exactly one of
u and v. Thus the statement is true for n = 4. Assume that the statement
is true for n — 1 > 4.

Let G be a connected graph of order n > 5 that is not K, or K 1,n—1
and let = be vertex of G such that V(G) — z is a connected résolving set of
G. Let G' = G — z . We consider three cases.

Case 1. G' = K,,—;. Since G # K,, there are distinct vertices v, w,y in
G’ such that z is adjacent to y but not to w. Then (V(G) — {v,z}) = K,—2,
dg(z,w) = 2, and dg(v,w) = 1. This implies that V(G) — {v,z} is a
connected resolving set of G. Moreover, w is adjacent to exactly one of v
and z in G.

Case 2. G' = Ky n_3. Since G # Ky n_1, there exist two end-vertices
v and w of G’ such that z is adjacent to at least one of v and w, say

12
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Figure 5: Graphs G; (1<i<4)

z is adjacent to w. Then (V(G) — {v,z}) = Kj -2, dg(z,w) = 1, and
dg(v,w) = 2. This implies that V(G) — {v, z} is a connected resolving set
of G. Moreover, w is adjacent to exactly one of v and z in G.

Case 3. G' # Kn_) and G' # Ky n—3. Let u € V(G') such that G’ — u
is connected. Therefore, V(G’) — {u} is a connected resolving set for G'.
By the induction hypothesis, there exist two distinct vertices v and w in
G’ — u such that (1) V(G’) — {u, v} is a connected resolving set for G’ and
(2) w is adjacent to exactly one of u and v in G’. There are two subcases.

Subcase 3.1. w is adjacent to u. Then w is not adjacent to v. If z is
adjacent to w in G, then dg(z,w) = 1 and dg(v,w) > 2, implying that
V(G) — {v,z} is a resolving set of G. Since V(G’) — {u, v} is a connected
resolving set for G, it follows that (V(G’) — {u, v}) is connected. Moreover,
u is adjacent to w. Hence (V(G) — {v, z}) is connected. Therefore, V(G) —
{v, 2} is a connected resolving set of G. Also, w is adjacent to exactly one of
v and z. If z is not adjacent to w in G, then dg(z, w) > 2 and dg(u, w) = 1,
V(G) —{u,z} is aresolving set of G. Since G—u—z = G’ —u is connected,
it follows that V(G) — {u,z} is a connected resolving set of G. Moreover,
w is adjacent to exactly one of v and z.

Subcase 3.2. w is adjacent to v. Then w is not adjacent to u. If z is
adjacent to w in G, then w is adjacent to exactly one of v and u. Moreover,
an argument similar to one used in Subcase 3.1 shows that V(G) — {u,z} is
a connected resolving set of G. So we may assume that z is not adjacent to
winG. Ifthere is 2 € V(G)—{u, v, w, z} such that uz € E(G), then V(G)—
{v,z} is a connected resolving set of G and w is adjacent to exactly one of

13



v and z. Thus we may assume that there is no vertex in V(G) — {u,v,w, z}
that is adjacent to u. Since G’ is connected, it follows that u must be
adjacent v. If there is w’ € V(G) — {u,v,z} such that zw’ € E(G), then
V(G)—{u, z} is a connected resolving set of G. Moreover, v’ is adjacent to
exactly one of u and z. Hence we may assume that there is no edge between
{u,z} and V(G) - {u,v,z}. If |[V(G) — {u,v,2}| = 1, then G = K4,
which is impossible. If |V(G) — {u,v,z2}| = 2, or |V(G) — {u,v,z}| = 3,
then there exists w” € V(G) — {u,v,z} such that w” is adjacent to w.
Since dg(w",w) = 1 and dg(z,w) > 2, it follows that V(G) — {w"”,z} is
a connected resolving set of G. Moreover, w is adjacent to exactly one of
w" and z in G. Thus, we may assume that |V (G) — {u,v,z}| > 4. By the
induction hypothesis, (V(G’) — {u,v}) = (V(G) — {u,v,z}) is connected
in G'. Then there is u'v’ € V(G) — {u, v, 2} such that (V(G) — {u,v,z,u'})
is connected and v’ is adjacent to v’. Thus (V(G) — {x,u'}) is connected.
Since dg(z,v’) > 2 and dg(u',v') = 1, it follows that V(G) — {z,u'} is a
connected resolving set of G. Moreover, v' is adjacent to exactly one of u’
and z.

Therefore, in all cases, cr*(G) < n — 2, as desired. ]

Note that every graph G encountered thus far has the property that
either er*(G) = ¢r(G) or er*(G)—cr(G) < 2. This might lead one to believe
that crt(G) and cr(G) are close for every connected graph G. However,
this is not the case. Indeed, as we next show, every pair a,b of integers
with 2 < a < b is realizable as the connected resolving number and upper
connected resolving number of some graph.

Theorem 3.3  For every pair a,b of integers with 2 < a < b, there exists
a connected graph G with cr(G) = a and crt(G) = b.

Proof. We consider two cases, according to whether a =2 or a > 3.

Case 1. a =2. Let G = P, x P,, where uj,us,---,up and vy,v9,--, 0
are two copies of P, in G. Since {u;,v1} is a cr-set of G, it follows that
er(G)=2.

We now show that crt(G) = b. If b = 2, then G = C, and er*(Cy) = 2.
Thus we may assume that b > 3. Let U = {uj,u2,---,up}. We show
that U is a minimal connected resolving set of G. Since U is a resolving
set and (U) = P, it follows that U is a connected resolving set of G. It
remains to show that U is minimal. Assume, to the contrary, that U is
not minimal. Then there exists a proper subset S in U such that S is a
connected resolving set of G. Since S is connected, (S) = P, is a subpath
in (U), where s = |S|. This implies that at most one of u; and up belongs
to S, say uy ¢ S and up € S. Then r(u; | S) = r(v2 | S), which is a
contradiction. Therefore, U is a minimal connected resolving set of G and
so ert(G) > |U| =b.
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Next we show that crt(G) < b. Assume, to the contrary, that er*(G) >
b+ 1. Let W be an upper cr-set of G with |W| = cr*(G) > b+ 1. Then
there exists ¢ with 1 < i < b such that {u;,»;} C W. Since {u;,v;} and
{us, v} are cr-sets of G, it follows that 2 < i < b—1. Since W is connected,
at least one vertex in {u;_1, ui41, Yi—1,%i4+1} belong to W, say u;_; € W.
However, the proper subset {u;,u;_i, v;} of W is a connected resolving set
of G, which is a contradiction. Therefore, crt(G) = b, as claimed.

Case 2. a > 3. Let u1,Ug,*, Ub—a42 and V), v3,- -, Vp_aq2 be two
copies of Py_g42 in Po_gya X Py and K, a complete graph with V(K,) =
{w1, w2, -+, ws}. Let G be the graph obtained from the graphs P, x P,
and K, by identifying the vertices u; and w; and denoting the identified
vertex by u;. Since {u;, vy, ws, wy, -, W} is a cr-set of G, it follows that
cr(G) = a.

Next we show that cr*(G) = b. Let

W = {ui,uz, -, tp-aq2, w3, wa," -, w,}.

Then W is a connected resolving set of G. We show, in fact, that W is
minimal. By Observation 1.2, every cr-set contains at least @ — 2 vertices
from {wz, w3, wq, - -, we}. Thus W — {w;} is not a resolving set for all 3 <
i < a. Foreach j with 1 < j <b—a+1, since (W — {u;}) is not connected,
W — {u;} is not a connected resolving set. Moreover, r(Ubeay2 | W —
{ub-a+2}) = r(v6-at1 | W — {tp—at2}), implying that W — {up—at2} is
not a resolving set. Thus no proper subset of W is a connected resolving
set and so W is minimal. Therefore, crt(G) > |W| = b.

We now show that cr*(G) < b. Assume, to the contrary, that ert(G) >
b+ 1. Let W’ be an upper cr-set of G with |[W'| = cr*(G). Since W' is a
resolving set, W’ contains at least a — 2 vertices from {w2, w3, wq, -, w,}.
Assume, without loss of generality, that {ws, wy, -, ws} C W', If W C
V(K,), then r(uz | W') = r(v; | W’), which is impossible. Thus W’ con-
tains at least one vertex from V(Py_a42x P2)—{u;}. Since W' is connected,
it follows that u; € W’. If v; € W/, then the cr-set {w1,v1, w3, wq, - -, wg}
is a proper subset of W', which is a contradiction. Thus v; ¢ W'. Since
IW'| > b+ 1, it follows that W’ contains {u;, v;} for some i with 2 <i<
a—b+2. Let ig be the smallest integer such that {u;,, Vio} € W' and let

S S {UI,Ug,’",U{o,vio,w3,wq,"','an}.

Then S is a connected resolving set. If 2 < 4, <b-a+1, then |S| =
(o+1)+(a—2)<(b—a+2)+(a—2)=b. Thus Sisa proper subset of
W', which is a contradiction. If iy = b—a+2, then S’ = S—{v,}CW'isa
connected resolving set G. Since S’ is a proper subset of W’ , a contradiction
is produced. Therefore, crt(G) < b. =
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Note that nontrivial paths are the only nontrivial connected graphs with
connected resolving number 1. Since the upper connected resolving number
of all nontrivial paths is also 1, the following corollary is an immediate
consequence of Theorem 3.3.

Corollary 3.4  Let a,b be integers with 1 < @ < b. Then there erists a
connected graph G with er(G) = a and cr*(G) = b if and only if (a,b) #
(1,7) foralli > 2.
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