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Abstract

We use generator matrices G satisfying GGT = aI + bJ over Zx
to obtain linear self-orthogonal and self-dual codes. We give a new
family of linear self-orthogonal codes over GF(3) and Z4 and a new
family of linear self-dual codes over GF(3).
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1 Introduction

A linear code C of length n over Zj (or a Zg-code of length n) is a Z-
submodule of Zy. If k = p is prime then Z, = GF(p) and a linear code
of length n is a subspace of GF(p). An element of C is called a codeword.
We define the inner product on Zyg by -y = z1y1 + -+ + Zn¥n, Where
z = (z1,...,2Zn) and ¥ = (¥1,---,¥n). The dual code CL of C is defined
asCt ={veZ;|v-w=0forall we C}. A code C is self-dual if
C = C+. The Hamming weight (wt(c))of a codeword c is the number of
non-zero components in the codeword. The minimum weight of a code C
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is the smallest weight among all codeswords of C. The minimum distance
of a linear code C is its minimum weight. We say that self-dual codes
with the largest minimum weight among self-dual codes of that length are
optimal. A linear code over GF(p) of length n with k independed rows in its
generator matrix will be denoted as [n, k; p]. Furthermore, if its minimum
distance is d it will be denoted as [n, k, d; p|.

Two codes over Z;, are said to be equivalent if one can be obtained from
the other by permuting the coordinates and (if necessary) changing the
signs of certain coordinates.

There has been a large amount of research recently devoted to self-
orthogonal and self-dual codes over the ring Z,, (1, 3, 5, 7). Patrick
Solé’s remark that the orthogonality of Hadamard matrices can naturally
be interpreted as Zs-orthogonality was investigated in [4]. These self-
orthogonal and self-dual codes over Z, were obtained from equivalence
classes of Hadamard matrices.

2 The constructions
We give a general theorem which will be used later in the paper.

Theorem 1 Suppose A and B are two matrices of order n over Z;. satis-
fying
AAT + BBT =sI +rJ
where s = r = 0(mod k). Then
G =[A B]
generates a linear self-orthogonal code over Zy, of length 2n and withm, m <

3 independed rows in its generator matriz. a

The next corollary is a generalization of a construction given by Geor-
giou and Koukouvinos [6].

Corollary 1 Suppose A and B are two matrices of order n over Z;, satis-

Jying
AAT = a1 + a2J and BBT = b1 + byJ

where ay + by = az + by = 0(mod k). Then
G = [A B]

generates a linear self-orthogonal code of length 2n and with m independed
rows in its generator matriz, over Zy, m < % o
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Theorem 2 Suppose A and B are two matrices of order n over Zj satis-
fying

AAT = ;I + apJ and BBT = b1 + boJ
where az + by = O(mod k) and ay + by + a = 0(mod k) for some a € Zj.

Then
A B
G2 = aI2n
BT _ AT

generates a linear self-dual code of length dn and with 2n independed rows
in its generator matriz, over Zj. ]

Example 1 (i) Set A = B = circ(1,1,1,1,0). We have that AAT =
BBT =] +3J. Then

A B
Gy=| In
BT _AT

generates an [20, 10, 6; 3] extremal self-dual code with weight enumer-
ator

W(z) = 1 + 1202° + 42602° + 2628022 + 257282'° + 25602'°.

(ii) Set A = cire(—2,-2,0,-1,0) and B = cire(-1,-1,-1,-1,1). We
have that AAT = 5] +4J and BBT = 4] + J. Then

A B
Go=| I
BT _AT

generates an [20, 10, 8; 5| extremal self-dual code with weight enumer-
ator

W(z)=1 + 12802z + 32002° + 24848210 + 58560z1! + 248480z!2+
+464960212 4 1175840z1* + 156800021° 4 2267240216+
+1896720217 + 139896028 + 541760219 + 115776220,

(ii) Set A = cire(-2,-2,0,-1,0) and B = cire(~-1,-1,-1,—-1,1). We
have that AAT = 5I +4J and BBT = 4AI + J. Then

G =[A B]
generates an (10,5, 4; 5] self-dual code with weight enumerator

W(z) = 1+402* + 442° + 2202° + 76027 + 94022 + 7402° + 3802'°.
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For the SBIBDs we use in the remainder of this paper, we refer the
reader to the book of Beth, Jungnickel and Lenz [2]. By A = SBIBD(v,
k,)) we denote the v x v (0,1) incidence matrix of the SBIBD(v,k, }).

Example 2 1. There exist A=SBIBD(31,10,3) and B=SBIBD(31,15,7),
so [A B] generates a linear self-orthogonal code of length 62 and with
k, independed rows in its generator matrix, over GF(5) with mini-
mum distance d; as

AAT =71 +3J and BBT =8I +7J.

2. There exist A=SBIBD(71,15,3) and B=SBIBD(71,21,6), so [A B]
generates a linear self-orthogonal code of length 142 and with k2 in-
depended rows in its generator matrix, over GF(3) with minimum
distance d- as

AAT =127 +3J and BBT =151 +6J.

3. There exist A=SBIBD(133,33,8) and B=SBIBD(133,12,1), so (A B]
generates a linear self-orthogonal code of length 266 and with k3 in-
depended rows in its generator matrix, over GF(3) with minimum
distance ds as

AAT =951 +8J and BBT =111 + J.
()

In the next theorems we use specific families to find linear self-orthog-
onal codes. We combine skew-Hadamard matrices or conference matrices
with incidence matrices of projective planes to construct some linear self-
orthogonal codes over Zj.

Details on skew-Hadamard matrices and conference matrices required
for the next theorem can be found in Seberry and Yamada [9]. Appropriate
details of the incidence matrices of projective planes can be found in Ryser
8].

Theorem 3 Let p+ 1 be the order of a skew-Hadamard matriz or a con-
ference matriz. Suppose p = q® + q + 1 for some prime power q. Then
there ezists a self-orthogonal code over Zj of length 2p, with m inde-
pended Tows in its generator matriz and minimum distance d whenever
p+g=(g+1)>=0 ( mod k).

Proof. Write the skew-Hadamard matrix S+, minus its diagonal entries,
or conference matrix as 0
e
[ +el P ]
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where e is the 1 x p matrix of ones. Then P is a p x p matrix satisfying
PPT =pI—1J.

Write Q for an incidence matrix of the projective plane over GF(q). Then
Q, of order p = ¢ + g + 1, is circulant and satisfies

QT =gl +J.

Now G, = [P Q) generates the required self-orthogonal code over Zj of
length 2p and with m, m < p independed rows in its generator matrix as
G\GT = (p+q)I=(g+1)2I=0. ]

Corollary 2 Let p+ 1 be the order of a skew-Hadamard matriz or a con-
ference matriz. Suppose p = ¢*> + q + 1 for some prime power q, and
q = 2(mod 3). Then there exists a self-orthogonal [2p,m,d] ternary code
withm < p—1. Note that m =p iff =1 ( mod 3) and thus G, = [P Q)]
is the generator matriz of a self-dual code.

Proof. Use theorem 3. o

Example 3 Let q = 2, p =7, P = cire(0,1,1,~1,1,—-1,-1) and Q =
cire(1,1,0,1,0,0,0). We consider the matriz [P Q| and we remove its first
row. Then the derived matriz is the generator matriz of a [14,6,6;3] code
with weight enumerator

W (z) = 1+ 842° + 4762° + 168212,
Theorem 4 The codes over GF(3) and Z, we obtain using G, are
(i) [2p,p,d] for ¢ = 1(mod 3)
() [2p,p —1,d] for ¢ = 0,2(mod 3) and ¢ =0, 1,2, 3(mod 4).

Proof. Consider the matrix P of order p = ¢2 + g + 1. Now PPT =
(¢>+q+1)I - J and det PPT = 0(mod 3) and 0(mod 4). Now consider P’
with one row of P removed. Then the matrix P’ has size (g2+q) x (g*+¢+1)
and so P'P'T is of order ¢2 + q and has the following form:

@ +q 2—-1 -1 ... -1
ppr_| "1 FHe -l -1
-1 -1 -1 - q¢®+¢q
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and det P'P'T = (1)(q% + q + 1)¥'+9-1 % 0 for ¢ = 0,2(mod 3) and
g = 0,1,2,3(mod 4). Hence the rank of the matrix P’ is p — 1 for these
cases.

Now the matrix Q satisfies QQT = I +J and det QQT = (q+1)%(q)7 +7 #
0(mod 3) for ¢ = 1(mod 3). Hence the rank of the matrix Q is p for this
case. a

Remark 1 We recall that a self-orthogonal code, C, of length 2p, with p
independed rows in its generator matrix and distance d; with C* a self-
orthogonal code of length 2p and p independed rows in its generator matrix
with distance d; we have that C = CT and so C is in fact self-dual.

Theorem 5 Let p+ 1 be the order of a skew-Hadamard matriz or a con-
ference matriz. Suppose p = q*>+q+1 for some prime power q. Then there
erists a self-orthogonal Zi—code of length 2p, with m independed rows in
its generator matriz and minimum distance d, whenever p+q = 0(mod k).

Proof. Construct the matrices P and Q as in the proof of theorem 3. Set

Ga= [ QBT _%T .

We have that

r_[P @ |[PT @ |_[ PPT+QQ"T  PQ-QP
GiG
33 = QT ~pT QT P QTPT _ PTQT QTQ+PTP

If PQ = QP (for example, this is true if P is circulant, in which case p
is prime) then this matrix generates the required self-orthogonal code of
length 2p with m independed rows in its generator matrix, as G3G3 =
(g + 1)2I, = 0(mod k).

a

Theorem 6 Let p+ 1 be the order of e skew-Hadamard matriz or a con-
ference matriz. Suppose p = q*>+q+1 for some prime power q. Then there
exists a self-dual Zy—code of length 4p, with 2p independed rows in its gen-
erator matriz and minimum distance d, whenever p+q+a = 0(mod k) for
some a € Zy.

Proof. Construct the matrices P,Q and Gj3 as in the proof of theorem 5.
Set G4 = [I3p G3). If PQ = QP (for example, this is true if P is circulant,
in which case p is prime) then the matrix G4 generates the required self-
dual code of length 4p with 2p independed rows in its generator matrix, as
GiG] = (g+p+a)ly,.
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]

We are able to use the considerable literature on the minimum distance
of codes generated by skew-Hadamard matrices, I + S, minus its diagonal
entries, to obtain lower bounds for the minimum distance of codes with
generator matrix [P Q], where P and @ are given in the proof of Theorem
3 via the following lemma:

Lemma 1 Suppose A and B are two matrices of order n with elements
from Zi and det(A) # 0. We denote the minimum weights among all
linear combinations of their rows (over Z;) by da and dg respectively.
Then the code, C, with generator matriz [A B] has minimum Hamming
distance dc > d4 +dp.

Remark 2 There are many pairs (p, ¢) which satisfy the conditions of The-
orem 3. The first few pairs are (7, 2), (13, 3), (31, 5), (73, 8), (91, 9), (183, 13),
(307,17), (757, 27), (1723, 41).

Example 4 1. Let ¢ = 3, p =13, P = circ(0,1,-1,1,1,-1,—-1, -1,
-1,1,1,-1,1) and Q = cire(1,1,0,1,0,0,0,0,0,1,0,0,0). We con-
sider the matrix [P Q] and we remove its first row. Then the derived
matrix is the generator matrix of a self-orthogonal Z4—code of length
26, with 12 independed rows in its generator matrix and minimum
distance 8 with weight enumerator

W(z) =14 390z% + 171621° + 40092212 + 17056213 + 226720214+
+422656215 + 541593216 + 2348320217 + 1012440218+
+40102402° + 2425436220 + 238409622 + 22476482224+
+559104223 + 472680224 + 56160225 + 10868226,

2. Let ¢ =5, p = 31, P = cire(0,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,
1,1,-1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,1,1) and Q = cire(l,
1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0). We
consider the matrix [P Q] and we remove its first row. Then the de-
rived matrix is the generator matrix of a self-orthogonal code over
GF(3) of length 62, with 30 independed rows in its generator matrix
and minimum distance 12. Thus we can obtain a [62, m, d; 3] code for
all m < 30 and with d(m) > 12 by removing rows. o
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