Some results in step domination of graphs

Y. Caro * A. Lev † Y. Roditty ‡

Abstract

The step domination number of all graphs of diameter two, is determined.

1 Introduction: Definitions and Notation

In this paper we shall refer to graphs as connected graphs. We follow the notation and terminology of [2] and [4]. However, in order to simplify the reading of the paper we shall introduce some of the necessary definitions and notation we are using throughout the paper.

The distance between two vertices u, v in a graph G, denoted d(u, v), is the length of a shortest simple path u - v in G. When d(u, v) = 1 we say that u and v are adjacent. The eccentricity of a vertex u, denoted ecc(u), is the distance of the furthest vertex from u, i.e.,

$$ecc(u) = \max\{d(u, x)|x \in V(G)\}.$$

The diameter of G, d(G), is the maximum eccentricity.

The set of vertices at distance k from a vertex v in G is called the k-neighborhood of v and is denoted by $N_k(v)$. That is,

$$N_k(v) = \{u \in V(G) | d(v,u) = k\}.$$

^{*}Department of Mathematics School of Education University of Haifa - ORANIM Tivon ISRAEL 36910

1 Department of Computer Sciences The Academic College of Tel-Aviv-Yaffo Tel-Aviv 61161, Israel and
Department of Mathematics School of Mathematical Sciences Tel Aviv University, Tel Aviv 69978, Israel

¹Department of Computer Science, School of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Department of Computer Science, The Academic College of Tel-Aviv-Yaffo, Tel-Aviv 61161, Israel. email: jr@post.tau.ac.il

In case k=1 we shall refer to it as the neighborhood of v or open neighborhood. In this case we shall denote it, as usual, N(v), while $N[v] = N(v) \cup \{v\}$.

A vertex v in G is said to *dominate* itself and each of its neighbors. A set $S \subseteq V(G)$ is a domination set if every vertex of G is dominated by some vertex of S.

The notion of step domination and results along this line are given in [1] and [3].

A set $S = \{v_1, v_2, \cdots, v_t\}$ of vertices in a graph G is defined as a step domination set for G if there exist nonnegative integers k_1, k_2, \cdots, k_t such that the set $\{N_{k_i}(v_i)\}$ forms a partition of V(G). This partition is called the step domination partition associated with S. The sequence k_1, k_2, \cdots, k_t , $(k_1 \leq k_2 \leq \cdots \leq k_t)$ is called a distance domination sequence associated with S, while k_i is called the step of v_i and denoted $st(v_i) = k_i$. Each vertex v_i in $N_{k_i}(v_i)$ is said to be step dominated by v_i , and v_i step dominates v_i . We assume that in the above definitions v_i is nonempty. Thus, $v_i \leq v_i$ for each integer v_i in a distance domination sequence associated with v_i . Since a vertex in a step domination set v_i cannot step dominate both itself and other vertices, the cardinality of a step domination set for v_i is at least 2 unless v_i . On the other hand, v_i is v_i definition of v_i and v_i is at least 2 unless v_i . On the other hand, v_i is defined as a step domination set v_i is at least 2 unless v_i . On the other hand, v_i is defined as a step domination set v_i is at least 2 unless v_i . On the other hand, v_i is defined as a step domination set v_i .

Let G be a graph with $V(G) = \{v_1, v_2, \dots, v_n\}$. Then the set $\{N_0(v_i)\}_{i=1}^n$ is obviously a step domination partition of V(G) corresponding to the step domination set S = V(G). Thus, every graph has some step domination set. This leads us to the *step domination number* $\gamma_S(G)$ of a graph G (defined in [1]) to be the minimum cardinality of a step domination set for G. As a consequence of the above, $\gamma_S(G)$ is well defined and satisfies,

$$2 \le \gamma_S(G) \le |V(G)|,\tag{1}$$

with $\gamma_S(K_1) = 1$.

However, that concept can be extended to a sequential step domination number of a graph G, denoted $\gamma_S(G; k_1, k_2, \dots, k_t)$, to be the minimum cardinality of a step domination set for G using all values of the sequence k_1, k_2, \dots, k_t . As a consequence of the above, $\gamma_S(G) \leq \gamma_S(G; k_1, k_2, \dots, k_t)$.

The value ∞ will be given in case there is not a partition of V(G) associated to a particular sequence.

In this paper we deal with graphs having d(G) = 2. We determine the values of $\gamma_S(G;1), \gamma_S(G;0,1), \gamma_S(G;0,1,2)$ and $\gamma_S(G;1,2)$. Bounds on the remaining numbers, namely, $\gamma_S(G;0,2), \gamma_S(G;2)$, are given, with exact values of some particular graphs defined in the sequel. We end our paper with a slightly more general result concerning k-regular graphs $k \geq 3$, whose girth is at least four, but their diameter is not bounded.

2 Results

Let G be a simple graph. Denote $t(G) = max\{d(u) + d(v) | (u, v) \in E(G)\}$. The girth of a graph G is denoted g(G). We say that G has a *strong* spanning double star if G has a spanning double star with centers, say, at u, v such that $N(u) \cap N(v) = \emptyset$.

For other Graph Theoretical concepts we use [2] and [4].

For convenience we define the following sets.

Definition 2.1 Let G be a graph with d(G) = 2 and $g(G) \ge 4$, where $V(G) = N[u] \cup N[v]$, $(u, v) \notin E(G)$, and u, v are certain vertices.

We shall denote in this case:

$$A = N(u) \cap N(v)$$
, $B = N(u) \setminus A$, $C = N(v) \setminus A$.

So that,

$$|V(G)| = |A| + |B| + |C| + 2.$$

Observe that since d(G) = 2 and $g(G) \ge 4$ the induced subgraphs A > 0, B > 0, C > 0 are empty graphs, and each vertex of B is adjacent to at least one vertex of C, and vise-versa.

Theorem 2.2 Let G be a connected graph such that d(G) = 2 and $g(G) \ge 4$.

- 1. If G has a spanning double star then, $\gamma_S(G) = \gamma_S(G; 1) = 2$.
- 2. If G does not have a spanning double star then,
 - (a) either $\gamma_S(G) = \gamma_S(G; 0, 1) = n t(G) + 2$,
 - (b) or, $\gamma_S(G) = \gamma_S(G; 0, 2) = 2 + |A|$, where G is the graph defined in definition 2.1.
- 3. $\gamma_S(G; 2) = \gamma_S(G; 0, 1, 2) = \infty$

Proof: Observe first that since $g(G) \ge 4$ then, if G has a spanning double star it should be a strong spanning double star. So, suppose G has a spanning double star with centers at u, v. Then, the label st(u) = st(v) = 1 yields a domination set of size 2, so that item 1 of the theorem is proved. Thus, to the end of the proof of the theorem we assume that G has no strong spanning double star (in particular $G \ne K_{m,n}$).

Let S be a minimal dominating set in G.

Case 1: $\exists u \in S$, st(u) = 2.

Now in order to dominate u we can do it by either one of its neighbors or by a vertex at distance two from it. Let $v \in N(u)$ such that st(v) = 1. Since $g(G) \ge 4$ it follows that $N(v) \cap N(u) = \emptyset$ (since otherwise a triangle is created). On the other hand, it follows that $N(v) \subseteq N_2(u)$, which is also impossible since then the vertices in $N(v) \setminus \{u\}$ are dominated by both u and v. Hence, $N(v) \setminus \{u\} = \emptyset$, which is d(v) = 1. But this situation is also impossible since it yields $d(v, x) \ge 3$ for all $x \in N_2(u)$ (where $N_2(u) \ne \emptyset$ since st(u) = 2). A contradiction.

So we may assume that there exists $v \in N_2(u)$ with st(v) = 2. In that case we shall see that the graph G is the graph defined in definition 2.1. Indeed, suppose that the set

$$Y = V \setminus (N[u] \cup N[v]), \tag{2}$$

is not empty. Then each vertex of Y is dominated by both u and v, which is impossible. Hence $Y=\emptyset$ and G is indeed the graph defined in definition 2.1. In that case it is easily observed that a label 1 to any vertex of A leads a domination of both u and v. Suppose st(x)=2 for some vertex $x\in A$. Then x dominates all vertices of $B\cup C$, which are already dominated by u and v, unless, $B=C=\emptyset$. But then, since A> is the empty graph, it follows that $G=K_{2,|A|}$, which has a spanning double star, and this is impossible by our assumption. Hence, since $|A|\neq 0$ (indeed if |A|=0 it would imply that $d(u,v)\geq 3$) it must be that for all $a\in A$, st(a)=0 so that $\gamma_S(G;0,2)\geq 2+|A|$.

To obtain the upper bound, just label u and v by 2 and the vertices of A by 0.

Hence, we may assume that there are no vertices in S with label 2.

Case 2: $\exists u \in S$, st(u) = 1.

In this case the domination of u must be done by one of its neighbors, say, v. Namely, st(v) = 1. Hence, $N(u) \cap N(v) = \emptyset$ and let Y be as in (2).

Assume first that $Y \neq \emptyset$. By the diameter of G every vertex of Y must be adjacent to at least one vertex of N(u) and one of N(v). This yields that for all $y \in Y$, st(y) = 0. Indeed, a label 1 given to some vertex of Y yields a domination of vertices in $N(u) \cup N(v)$.

Hence,
$$\gamma_S(G) = \gamma_S(G; 0, 1) = n - t(G) + 2$$
.

The case $Y = \emptyset$ is impossible since then G will have a strong spanning double star.

Following the previous cases we obtain , $\gamma_S(G;2) = \gamma_S(G;0,1,2) = \infty$.

Corollary 2.3 (Theorem 2 in [3])

If G is a k-regular $(k \ge 2)$ graph with d(G) = 2 and $g(G) \ge 5$, then,

$$\gamma_S(G) = \gamma_S(G; 0, 1) = 2 + (k - 1)^2.$$

Proof: In [3] it was proved that $\gamma_S(G) = 2 + (k-1)^2$. On the other hand, the properties required for the graph in the corollary, meet with those of Theorem 2.2 (case 2(a)), with t(G) = 2k and $n = k^2 + 1$, so that $\gamma_S(G; 0, 1) = 2 + (k-1)^2$ and the result follows immediately.

In the next theorem we extend our treatment to graphs having d(G) = 2 by extending the girth condition to be $g(G) \ge 3$.

For convenience we shall denote $E_{\emptyset} = \{(u, v) \in E(G) | N(u) \cap N(v) = \emptyset\}$. If $E_{\emptyset} \neq \emptyset$ we define,

$$t_1(G) = \max\{d(u) + d(v) | (u,v) \in E_{\emptyset}\}.$$

Theorem 2.4 Let G be a connected graph such that d(G) = 2 and $g(G) \ge 3$. then,

1.
$$\gamma_S(G;0,1) = \begin{cases} n - t_1(G) + 2, E_\emptyset \neq \emptyset \\ \infty, E_\emptyset = \emptyset \end{cases}$$

2.
$$\gamma_S(G; 0, 1, 2) = \gamma_S(G; 1, 2) = \infty$$
.

3.
$$\gamma_S(G;1) = \left\{ \begin{array}{l} 2 = \gamma_S(G) & \text{, If G has a strong spanning double} - star \\ \infty & \text{, otherwise.} \end{array} \right.$$

Proof: Let S be a minimal step-domination set. Obviously if $E_{\emptyset} = \emptyset$, then $\gamma_S(G; 0, 1) = \infty$ (and also $\gamma_S(G; 1) = \infty$), since there is a triangle for each adjacent vertices, so that a label 1 is not possible. Indeed, if st(u) = 1 then there exists $v \in N(u)$ such that st(v) = 1. But then u and v dominate a mutual vertex of $N(u) \cap N(v)$.

Hence we may assume $E_\emptyset \neq \emptyset$. This yields $u, v \in V(G)$, $(u, v) \in E(G)$ and $N(u) \cap N(v) = \emptyset$.

Assume, then, that $u, v \in S$ and st(u) = st(v) = 1. Let Y be as in (2). We claim that if $Y \neq \emptyset$, then for all $y \in Y$, st(y) = 0. Indeed, since d(G) = 2, it follows that each $y \in Y$ should be adjacent to at least one vertex of N(u) and N(v). So that any label rather than 0 yields a domination of u or v or a member from $N(u) \cup N(v)$. Hence, $\gamma s(G; 0, 1) \geq |Y| + 2 = n - t_1(G) + 2$. To obtain the upper bound just use the same labeling mentioned above.

If $Y=\emptyset$, then G has a strong spanning double star and thus, $\gamma_S(G;1)=2$. If G has no strong spanning double star then, $Y\neq\emptyset$ and by the same arguments mentioned in the previous paragraph st(y)=0 for all $y\in Y$, which yields that $\gamma_S(G;1)=\infty$, in this case.

Next we determine the values of $\gamma_S(G; 1, 2)$ and $\gamma_S(G; 0, 1, 2)$. Since the label 2 must occur, let $u \in S$ such that st(u) = 2. In order to dominate u (by a vertex v), we can do it in one of the following ways:

Case 1: st(v) = 2.

Let, $A = N(u) \cap N(v)$, $B = N(u) \setminus A$, $C = N(v) \setminus A$. Since d(G) = 2, $A \neq \emptyset$. But then none of the vertices of A can have the label 1 since it will dominate both u and v. On the other hand, $Y = \emptyset$ (Y defined in (2)), since otherwise the vertices of Y will be dominated by both u and v. This yields that $V(G) = N[u] \cup N[v]$ and none of the vertices of G has a label 1. Thus, $\gamma_S(G; 1, 2) = \gamma_S(G; 0, 1, 2) = \infty$, in this case.

Case 2: st(v) = 1.

In that case $N(v) \subseteq N(u)$, since otherwise v will dominate vertices which are dominated by u. Now, in order to dominate v, one can easily observe that no vertex with a label 1 can do it, since such a vertex will dominate u, as well. So that there exists $w \in S$, st(w) = 2. It follows than that $N(v) \subseteq N(w)$, for otherwise vertices of N(v) will be dominated by w, as well. In order to dominate w we can do it with a vertex $x \in N(w)$, st(x) = 1. This yields that $x \notin N(u)$, otherwise x dominates u, as well. Since $N(v) \subseteq N(u)$, d(x, v) = 2 and then there exists $v \in N(x) \cap N(v)$. But than v is dominated by both v and v. Hence, v should

be dominated by w_1 such that $st(w_1) = 2$. But this case is exactly the above case 1 (with w and w_1), which is impossible. Thus, $\gamma_S(G; 1, 2) = \gamma_S(G; 0, 1, 2) = \infty$, in this case.

This completes the proof of the theorem.

Remark 2.5 There are families of infinite graphs G for which $\gamma_S(G;1) = \gamma_S(G;0,1) = \infty$. The first example is the n-spoke wheel $(n \geq 3)$ (obtained by taking a simple cycle C_n , $n \geq 3$ with a vertex u inside it adjacent to all vertices of C_n). The second family is obtained from the n-spoke wheel $(n \geq 3)$ by adding a new vertex, say, v which is adjacent to all vertices of C_n only.

It is easily checked that $\gamma_S(G;1) = \gamma_S(G;0,1) = \infty$.

For some more accurate values of the size of a minimum step-domination set, in graphs with d(G) = 2, we present a straightforward corollary concerning k-regular graphs. The only thing we point out is that $t_1(G) = 2k$ in that case.

Corollary 2.6 Let G be a k-regular graph with d(G) = 2. Then,

1.
$$\gamma_S(G;0,1) = \begin{cases} n-2k+2, E_{\emptyset} \neq \emptyset \\ \infty, E_{\emptyset} = \emptyset \end{cases}.$$

2. $\gamma_S(G; 0, 1, 2) = \gamma_S(G; 1, 2) = \infty$.

3. $\gamma_S(G;1) = \left\{ \begin{array}{l} 2 = \gamma_S(G) & \text{, If G has a strong spanning double} - star \\ \infty & \text{, otherwise.} \end{array} \right.$

Remark 2.7 Again, there exist k-regular graphs in which $\gamma_S(G;1) = \gamma_S(G;0,1) = \infty$. First K_4 is a 3-regular such graph. While for k=4 just take the second graph defined in Remark 2.5 with n=4.

Next we investigate the graphs in which $\gamma_S(G;2), \gamma_S(G;0,2) \neq \infty$. First we define the following set of graphs.

Definition 2.8 sequential graphs of diameter two are defined as follows:

$$H_m = H_m(m_0; x_m, y_m, x_{m-1}, y_{m-1}, \dots, x_1, y_1), m_0 \in \mathbb{N} \cup \{0\},\$$

where.

1. $H_0 = H_0(m_0)$ is a complete graph K_{m_0} . If $m_0 = 0$ then we put $H_0(m_0) = \emptyset$.

- 2. H₁ = H₁(m₀; x₁, y₁) is defined as follows:
 V(H₁) = N[x₁] ∪ N[y₁] , (x₁, y₁) ∉ E(H₁), |N(x₁) ∩ N(y₁)| = m₀, and < A₁ = N[x₁] ∩ N[y₁] > is either a graph of type H₀(m₀) (which is exactly Km₀), called hereafter Type 1, or for each pair of non-adjacent vertices u, v ∈ A₁ at least one of them is not connected to at least one member of (N[x₁] \ A₁) ∪ (N[y₁] \ A₁). In this case we call it Type 2.
- 3. For $m \ge 2$ we define H_m as follows:
 - (a) $V(H_m) = N[x_m] \cup N[y_m]$
 - (b) For all $1 \le i \le m$, $(x_i, y_i) \notin E(H_m)$
 - $(c) < A_m = N(x_m) \cap N(y_m) >= H_{m-1}(m_0; x_{m-1}, y_{m-1}, \dots, x_1, y_1)$
 - (d) For all $1 \le i \le m$ the sets $N(x_i)$ and $N(y_i)$ contain $(N[x_j] \cup N[y_j]) \setminus (N[x_j] \cap N[y_j])$ for all $i \le j \le m$, as a subset.
 - (e) For all $1 \leq i \leq m$ we define $B_i = N(x_i) \setminus (N(x_i) \cap N(y_i))$ and $C_i = N(y_i) \setminus (N(x_i) \cap N(y_i))$.
 - (f) For all $1 \leq i \leq m$ we define $A_i = (N(x_i) \cap N(y_i)) \setminus \bigcup_{j=i+1}^m (B_j \cup C_j \cup \{x_j, y_j\})$.

Remark 2.9 The value of m is calculated according to the fact that $A_2 = H_1$.

Theorem 2.10 Let G be a graph with d(G) = 2. Assume, $\gamma_S(G; 0, 2) \neq \infty$ or $\gamma_S(G; 2) \neq \infty$. Then,

- 1. There exist vertices x, y, $(x, y) \notin E(G)$, such that $V(G) = N[x] \cup N[y]$.
- 2. There exist vertices $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_m$ and $m_0 \in N \cup \{0\}$ such that $G = H_m(m_0; x_m, y_m, x_{m-1}, y_{m-1}, \dots, x_1, y_1)$, where H_m is the graph defined in definition 2.8.

Proof: Let x be a vertex such that st(x) = 2. Then in order to dominate x we have a vertex y with st(y) = 2. Let $Y = V(G) \setminus N[x] \cup N[y]$. Then if $Y \neq \emptyset$ each vertex in Y is dominated by both x and y, which is impossible. Hence, $V(G) = N[x] \cup N[y]$.

Now the vertices of $N[x] \cap N[y]$ are not dominated. If $N[x] \cap N[y] \neq \emptyset$ and G is of Type H_1 , then only a label 0 is possible to each of its vertices. Otherwise, we shall have a sequence (of pairs) of non-adjacent vertices $\{x_i, y_i\}_{i=1}^m$ (defined, say, by induction) such that $st(x_i) = st(y_i) = 2$, $i = 1, 2, \dots, m$ where m is determined by the condition $A_2 = H_1$.

Then, we label the vertices of A_1 by 0, and the obtained graph G is the graph H_m defined in definition 2.8.

As a consequence of Theorems 2.4 and 2.10 we have the following result.

Theorem 2.11 Let G be a connected graph such that d(G) = 2. Then,

- 1. If $\gamma_S(G;2) \neq \infty$ there exist vertices, $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_m$ such that, $G = H_m(0; x_m, y_m, \dots, x_1, y_1)$ and $\gamma_S(G) \leq \gamma_S(G;2) = 2m$.
- 2. If $\gamma_S(G; 0, 2) \neq \infty$ there exist vertices, $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_m$ and $m_0 \in N$ such that, $G = H_m(m_0; x_m, y_m, \dots, x_1, y_1)$ and $\gamma_S(G) \leq \gamma_S(G; 0, 2) = 2m + m_0$.

Proof: Let S be a minimal step domination set. Then one can see that for each $x \in S$, st(x) = 2 there exists $y \in S$, st(y) = 2 such that x dominates y and vise-versa (and both dominate possibly some other vertices of G). Furthermore, we have $V(G) = N[x] \cup N[y]$. Indeed, if there exists $z \in V(G) \setminus N[x] \cup N[y]$, then, z is dominated by both x and y (since d(G) = 2). In addition, for each such $x \in S$ there exists a unique such $y \in S$ (by the definition of the step domination). Hence, the vertices of S, with label 2, can be ordered into such pairs $\{x_i, y_i\}_{i=1}^m$, $(m \ge 1)$ which yields $G = H_m$. If $m_0 = 0$ then item 1 of the theorem is achieved. If $m_0 \ne 0$ then the vertices of the set A_1 are labeled by 0 and we get item 2 of the theorem.

This completes the proof of the theorem.

We compute now the values of $\gamma_S(G; 0, 2)$ and $\gamma_S(G; 2)$ for a particular case of k-regular graphs, the almost (k, t)-strongly regular graphs, defined below.

Definition 2.12 A graph G is called almost (k,t)-strongly regular with the parameters k,t, if it is k-regular and every pair of non-adjacent vertices have exactly t common neighbors.

In the following we assume $k \geq 3$.

Observation 2.13 1. As a consequence of definition 2.8 for almost (k,t)-regular graphs, it follows that in the graphs H_m , $|A_m| = t$ and if we define $B_m = N(x_m) \setminus A_m$, $C_m = N(y_m) \setminus A_m$, then, $|B_m| = |C_m| = k - t$ and thus,

$$\forall m \ge 1, |V(H_m)| = n = 2k - t + 2.$$
 (3)

2. If t = 0 then m = 1 and thus, $\gamma_S(H_1; 2) = 2$ (by labeling $st(x_1) = st(y_1) = 2$).

To the sequel when the graph H_m is mentioned, we mean the graphs defined in definition 2.8 with the additional property of being almost (k, t)-strongly regular graphs, and according to observation 2.13 (2), we assume $t \ge 1$.

Our main result in that case is:

Theorem 2.14 Let G be a graph which is almost (k, t)-strongly regular. Then,

1. either there exists $m \ge 1$ such that $G = H_{m+1}$ and

$$\gamma_S(H_{m+1};2) = 2m+2.$$

2. or there exists $m \ge 1$ such that $G = H_{m+1}$ and

$$\gamma_S(H_{m+1};0,2)=2m(t-k-1)+t+2.$$

In order to prove Theorem 2.14 we need some preliminaries.

Proposition 2.15 Let $H_1 = H_1(m_0; x_1, y_1)$ be sequential graph which is almost (k, t)-strongly regular. Put $A_1 = H_0$ and $B_1 = N(x_1) \setminus A_1$, $C_1 = N(y_1) \setminus A_1$. Then,

- (a) $|A_1| = m_0 = t$.
- (b) $|B_1| = |C_1| = k t$.
- (c) $|V(H_1)| = 2k t + 2$

Proof: (a) follows from the definition of $H_m, m \ge 1$ as an almost (k, t)-regular graph. (b) follows from (a) and the fact that H_1 is k-regular. (c) is a particular case noticed in the observation above.

In a similar way we prove for $m \geq 2$:

Theorem 2.16 Let H_{m+1} , $m \ge 1$, be sequential graph which is almost (k,t)-strongly regular. Then,

$$|A_1| = 2m(t-k-2) + t. (4)$$

Proof: To prove the theorem we have that:

$$t = |N(x_{m+1}) \cap N(y_{m+1})| = |A_1| + \sum_{i=1}^{m} (|B_i| + |C_i|) + 2m, \tag{5}$$

where, $B_i = N(x_i) \setminus (N(x_i) \cap N(y_i))$, $C_i = N(y_i) \setminus (N(x_i) \cap N(y_i))$, Hence, it follows that $|B_i| = |C_i| = k - t$ for all the values of i so that by substituting in (5) together with t = 2k - n + 2 (from (3)), we obtain (4).

Now we are ready to prove Theorem 2.14.

Proof of Theorem 2.14

The proof of the theorem follows exactly from the proof of Theorem 2.11 with the additional condition upon G to be almost (k,t)-strongly regular graph. To obtain the value of $\gamma_S(H_{m+1};0,2)$ we just have to substitute the value of $m_0 = |A_1|$ obtained in (4).

This completes the proof of the theorem.

We end our paper with a slightly more general result concerning k- regular graphs where, $k \geq 3$. The cases $k \leq 2$ were dealt in [1].

Theorem 2.17 Let G be a k-regular connected graph with $g(G) \geq 4$. Then,

$$\gamma_S(G) \leq \gamma_S(G;0,1) \leq n(1-\frac{1}{2k}).$$

Proof: Let $(u,v) \in E(G)$. Since $g(G) \geq 4$ we have $N(u) \cap N(v) = \emptyset$. Then there are at most 2k(k-1)+2 vertices at distance at most three from at least one of the vertices u and v. Since $e(G) = \frac{nk}{2}$ it follows that there are at least $\frac{nk}{2[2(k-1)[k(k-1)+1]]}$ edges whose neighbors are disjoint (since $g(G) \geq 4$). Label st(u) = st(v) = 1. Then 2k vertices (including u and v) are dominated. Hence, running over all such edges we have that at least $\frac{nk}{2[2(k-1)[k(k-1)+1]]} \bullet 2k$ vertices are dominated. The rest of the vertices are labeled 0.

Hence.

$$\gamma_S(G;0,1) \leq n - k \frac{nk}{2(k-1)[k(k-1)+1]} + \frac{nk}{2(k-1)[k(k-1)+1]} = n - n \frac{k(k-1)}{2(k-1)[k(k-1)+1]} = n \left(1 - \frac{k}{2[k(k-1)+1]}\right) \leq n\left(1 - \frac{1}{2k}\right).$$

References

- [1] G Chartrand, M. Jacobson, E. Kubicka and G. Kubicki, The step domination number of a graph. *In progress*.
- [2] F. Harary, Graph Theory, Addison-Wesley, 1969.
- [3] Kelly Schultz, Step domination in graphs, Ars Combinatoria 55(2000), 65-79.
- [4] D. West, Introduction to Graph Theory, Simon @ Schuster A Viacom Company, Upper Saddle River, NJ 07458, (1996).