Some results in step domination of graphs

Y. Caro * A. Lev't Y. Roditty !

Abstract

The step domination number of all graphs of diameter two, is determined.

1 Introduction: Definitions and Notation

In this paper we shall refer to graphs as connected graphs. We follow the notation and
terminology of [2] and [4]. However, in order to simplify the reading of the paper we shall
introduce some of the necessary definitions and notation we are using throughout the paper.

The distance between two vertices u, v in a graph G, denoted d(u,v), is the length of a
shortest simple path u — v in G. When d(u,v) = 1 we say that u and v are adjacent. The
eccentricity of a vertex u, denoted ecc(u), is the distance of the furthest vertex from , i.e.,

ecc(u) = max{d(u, z)|z € V(G)}.

The diameter of G ,d(G), is the maximum eccentricity.
The set of vertices at distance & from a vertex v in G is called the k-neighborhood of v
and is denoted by N (v). That is,

Ne(v) = {u € V(G)|d(v,v) = k).
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In case k = 1 we shall refer to it as the neighborhood of v or open neighborhood. In this case
we shall denote it, as usual, N(v), while Nfv] = N(z)U {v}.

A vertex v in G is said to dominate itself and each of its neighbors. A set S C V(G) isa
domination set if every vertex of G is dominated by some vertex of S.

The notion of step domination and results along this line are given in [1] and {3).

A set S = {v),v5,-+-,;} of vertices in a graph G is defined as a step domination set
for G if there exist nonnegative integers ky, ks, - - -,k such that the set {Ny,(v;)} forms a
partition of V(G). This partition is called the step domination partition associated with S.
The sequence ky, kz,---, ke , (ki € kg2 < -+ < k) is called a distance domination sequence
associated with S, while k; is called the step of v; and denoted st(v;) = k;. Each vertex u
in N, (v;) is said to be step dominated by v;, and v; step dominales u. We assume that in
the above definitions N, (v;) is nonempty. Thus, 0 < k; < ecc(v;) for each integer k; in a
distance domination sequence associated with S. Since a vertex in a step domination set S
cannot step dominate both itself and other vertices, the cardinality of a step domination set
for G is at least 2 unless G = K. On the other hand, |S]| < [V(G)}.

Let G be a graph with V(G) = {v,2,--,s}. Then the set {No(v:)}}, is obviously
a step domination partition of V(G) corresponding to the step domination set § = V(G).
Thus, every graph has some step domination set. This leads us to the step domination number
s(G) of a graph G (defined in [1]) to be the minimum cardinality of a step domination set
for G. As a consequence of the above, vs(G) is well defined and satisfies,

2<75(G) L V(G )

with vs(K,) = 1.

However, that concept can be extended to a sequential step domination number of a
graph G, denoted s(G; k1, k2, - - -, ki), to be the minimum cardinality of a step domination
set for G using all values of the sequence ky,ka, -+, k. As a consequence of the above,
15(G) < 15(Gi k1, ko, » - k)

The value oo will be given in case there is not a partition of V(G) associated to a
particular sequence.

In this paper we deal with graphs having d(G) = 2. We determine the values of
15(G;1),75(G;0,1),75(G; 0,1,2) and v5(G; 1,2). Bounds on the remaining numbers, namely,
75(G;0,2), 15(G; 2), are given, with exact values of some particular graphs defined in the
sequel. We end our paper with a slightly more general result concerning k~regular graphs
k > 3, whose girth is at least four, but their diameter is not bounded.

2 Results

Let G be a simple graph. Denote #(G) = maz{d(x) + d(v)l(u,v) € E(G)}. The girth of
a graph G is denoted g(G). We say that G has a strong spanning double star if G has a
spanning double star with centers, say, at u,v such that N(u)N N(v) = O.
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For other Graph Theoretical concepts we use [2] and [4].
For convenience we define the following sets.

Definition 2.1 Let G be a graph with d(G) = 2 and g(G) 2 4, where V(G) = N[u]U N[v),
(u,v) € E(G), and u,v are certain vertices.
We shall denote in this case:

A=N@u)nN(v), B=Nu)\A4, C=N@)\A.

So that,
V(G)I =14l +|B| +|C| +2.

Observe that since d(G) = 2 and g(G) > 4 the induced subgraphs < A >, < B >,< C >
are empty graphs, and each vertex of B is adjacent to at least one vertex of C, and vise-versa.

Theorem 2.2 Let G be a connected graph such that d(G) =2 and g(G) > 4.
1. If G has a spanning double star then, vs(G) = 15(G;1) = 2.
2. If G does not have a spanning double star then,

(a) either vs(G) = 15(G;0,1) = n - t(G) + 2,
(b) or, 7s(G) = 15(G;0,2) = 2 + |A|, where G is the graph defined in definition 2.1.

3. vs(G;2) = v5(G;0,1,2) = 00

Proof: Observe first that since g(G) > 4 then, if G has a spanning double star it should
be a strong spanning double star. So, suppose G has a spanning double star with centers at
u,v. Then, the label st(u) = st(v) = 1 yields a domination set of size 2, so that item 1 of
the theorem is proved. Thus, to the end of the proof of the theorem we assume that G has
no strong spanning double star ( in particular G # K, ,).

Let S be a minimal dominating set in G.
Case 1: 3u€ S, st(u) = 2.
Now in order to dominate u we can do it by either one of its neighbors or by a vertex at
distance two from it. Let v € N(u) such that st(v) = 1. Since g(G) > 4 it follows that
N(v) N N(u) = @ (since otherwise a triangle is created). On the other hand, it follows that
N(v) € N(u), which is also impossible since then the vertices in N(v) \ {} are dominated
by both u and v. Hence, N(v) \ {u} = @, which is d(v) = 1. But this situation is also
impossible since it yields d(v,z) 2 3 for all z € N;(u) (where N;(u) # @ since st(u) = 2).
A contradiction.

So we may assume that there exists v € N(u) with st(v) = 2. In that case we shall see
that the graph G is the graph defined in definition 2.1. Indeed, suppose that the set
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Y =V\ (Nu]u N[d), )

is not empty. Then each vertex of Y is dominated by both u and v, which is impossible.
Hence Y = @ and G is indeed the graph defined in definition 2.1. In that case it is easily
observed that a label 1 to any vertex of A leads a domination of both » and v. Suppose
st(z) = 2 for some vertex = € A. Then = dominates all vertices of BUC, which are already
dominated by u and », unless, B = C = @. But then, since < A > is the empty graph,
it follows that G = Kj4), which has a spanning double star, and this is impossible by our
assumption. Hence, since |A| # O (indeed if |A| = 0 it would imply that d(u,v) > 3) it must
be that for alla € A, st(a) = 0 so that 45(G;0,2) > 2+ |A|.

To obtain the upper bound, just label « and v by 2 and the vertices of A by 0.

Hence, we may assume that there are no vertices in S with label 2.
Case 2: Jue S, st(u)=1.
In this case the domination of u must be done by one of its neighbors, say, v. Namely,
st(v) = 1. Hence, N(u)N'N(v) = @ and let Y be as in (2).

Assume first that Y # @. By the diameter of G every vertex of Y must be adjacent to
at least one vertex of N(u) and one of N(v). This yields that for all y € Y, st(y) = 0.
Indeed, a label 1 given to some vertex of }" yields a domination of vertices in N(u) U N(v).

Hence, vs(G) = 715(G;0,1) = n — t(G) + 2.

The case Y = @ is impossible since then G will have a strong spanning double star.

Following the previous cases we obtain , v5(G;2) = 715(G;0,1,2) = c0. ™)

Corollary 2.3 (Theorem 2 in [3])
If G is a k—regular (k > 2) greph with d(G) = 2 and g(G) > 5, then,

15(G) = 75(G;0,1) =2+ (k — 1)%.

Proof: In [3] it was proved that ys(G) = 2 + (k — 1)°>. On the other hand, the properties
required for the graph in the corollary, meet with those of Theorem 2.2 (case 2(a)), with
t(G) = 2k and n = k®+1, so that 75(G;0, 1) = 2+ (k—1)2 and the result follows immediately.
]

In the next theorem we extend our treatment to graphs having d(G) = 2 by extending
the girth condition to be g(G) > 3.
For convenience we shall denote Ep = {(u,v) € E(G)|N(u) "\ N(v) = @}. If Eg # @ we
define,
t:(G) = maz{d(u) + d(v)|(u,v) € Ep}.

Theorem 2.4 Let G be a connected graph such that d(G) =2 and g(G) 2 3. then,
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n_tl(a)+2 ,Eg#@
-0,1) =
'78(6: 0: ) { ,E@ =0
2. 7s(G;0,1,2) = v5(G; 1,2) = o0.
3.
2=195(G) ,If G has a strong spanning double — star
715(G;1) = .
(%) ,otherwise.

Proof: Let S be a minimal step-domination set. Obviously if Ep = 0, then v5(G; 0, 1)=o00
(and also 75(G; 1) = oo), since there is a triangle for each adjacent vertices, so that a label
1 is not possible. Indeed, if st(u) = 1 then there exists v € N(u) such that st(v) = 1. But
then u and v dominate a mutual vertex of N(u) N N (v).

Hence we may assume Ep # @. This yields u,v € V(G) , (u, v) € E(G) and N{u) N
Nwp)=0.

Assume, then, that u,v € S and st(u) = st(v) = 1. Let Y be as in (2). We claim
that if Y # @, then for all y € Y , st(y) = 0. Indeed, since d(G) = 2, it follows that
each y € Y should be adjacent to at least one vertex of N(u) and N(v). So that any
label rather than 0 yields a domination of u or v or a member from N (1) U N(v). Hence,
75(G; 0,1) 2 |[Y|+2 = n—¢,(G) + 2. To obtain the upper bound Just use the same labeling
mentioned above.

IfY = @, then G has a strong spanning double star and thus, 715(G;1) = 2. If G has
no strong spanning double star then, Y # @ and by the same arguments mentioned in the
previous paragraph st(y) = 0 for all y € Y, which yields that 7s(G; 1) = oo, in this case.

Next we determine the values of v5(G;1,2) and 15(G;0,1,2). Since the label 2 must
occur, let u € S such that st(u) = 2. In order to dominate u (by a vertex v), we can do it
in one of the following ways:

Case 1: st(v) = 2.

Let, A= N(u)NN(v), B = N(u)\ A,C = N(v)\ A. Since d(G) = 2, A # @. But then none
of the vertices of A can have the label 1 since it will dominate both 4 and v. On the other
hand, Y = @( Y defined in (2)), since otherwise the vertices of Y will be dominated by both
u and v. This yields that V(G) = N[u] U N{v] and none of the vertices of G has a label 1.
Thus, 75(G; 1,2) = 15(G;0,1,2) = oo, in this case.

Case 2: st(v) =1.

In that case N(v) C N(u), since otherwise v will dominate vertices which are dominated by
u. Now, in order to dominate v, one can easily observe that no vertex with a label 1 can do
it, since such a vertex will dominate u, as well. So that there exists w € S,st(w) =2. It
follows than that N(v) C N(w), for otherwise vertices of N(v) will be dominated by w, as
well. In order to dominate w we can do it with a vertex z € N (w), st(z) = 1. This yields
that z & N(u), otherwise z dominates u, as well. Since N (v) € N(u), d(z,v) = 2 and then
there exists r € N(z) N N(v). But than r is dominated by both z and v. Hence, w should
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be dominated by w, such that st(w,) = 2. But this case is exactly the above case 1 (with w
and w,), which is impossible. Thus, vs(G; 1,2) = vs(G; 0, 1,2) = o0, in this case.
This completes the proof of the theorem. ]

Remark 2.5 There are families of infinite graphs G for which v5(G;1) = v5(G;0,1) = co.
The first example is the n—spoke wheel (n > 3 ) (obtained by taking a simple cycle Co,n > 3
with a vertez u inside it adjacent to all vertices of C,). The second family is obtained from
the n—spoke wheel (n > 3 ) by adding a new vertez, say, v which is adjacent to all vertices
of C,, only.

1t is easily checked that vs5(G;1) = v5(G;0,1) = 0.

For some more accurate values of the size of a minimum step-domination set, in graphs
with d(G) = 2, we present a straightforward corollary concerning k—regular graphs. The
only thing we point out is that ¢,(G) = 2k in that case.

Corollary 2.6 Let G be a k—regular graph with d(G) = 2. Then,

1.
n-2k+2 ,Ea#0
G;0,1) =
7s( ) { Ep=0
2. 715(G;0,1,2) = 45(G; 1,2) = oo.
3.

(G;1) = 2=5(G) ,If G has a strong spanning double — star
W= ,otherwise.

Remark 2.7 Again, there exist k—regular graphs in which vs(G;1) = v5(G;0,1) = oo.
First K, is a 3—regular such graph. While for k = 4 just take the second graph defined in
Remark 2.5 with n = 4.

Next we investigate the graphs in which v5(G;2),7s(G;0,2) # 0. First we define the
following set of graphs.

Definition 2.8 sequential grephs of diameter two are defined as follows:

Hyy = Hin(Mo; Zm, Yomy Tm=1,Ym-1," " T1, 1), Mo ENU {0},

where,

1. Hp = Hy(my) is a complete graph K,n,. If mg =0 then we put Ho(mg) = O.
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2. Hy = Hy(mq; 21,11) is defined as follows:
V(H) = N[znJU N[w] , (z1,0) € E(H), IN(z1)) 0 N(y)| = mg, and < A, =
N[z |NN[y] > is either a graph of type Hy(mo) (which is ezactly Ko, ), called hereafter
Type 1, or for each pair of non-adjacent vertices u,v € A, at least one of them is not
connected to at least one member of (N[z\] \ A)) U(N[n]\ A). In this case we call it
Type 2.

3. For m > 2 we define H,, as follows:

(a) V(Hm) = N[zm] U Nlynm)

(b) Foralll <i<m, (zi,v:) ¢ E(Hn)

(¢) < Am = N(zm) N N(ym) >= Hr-1(m0; Tm-1, Ym-1, - 21,31)

(d) Foralll < i < m the sets N(z;) and N(y;) contain (N[z;]U N[y;)\(N|z;] N Nly;))
for alli < j < m, as a subset.

(e) For all 1 < i < m we define B; = N(z;) \ (N(z:) N N(y)) and C; = N(y;) \
(N(z:) N N(w)). ‘

(f) For all1 < i < m we define A; = (N(z;) N N(y;)) \Ujtin (B; UC; U {zj,y;}).

Remark 2.9 The value of m is calculated according to the fact that A, = H,.

Theorem 2.10 Let G be a graph with d(G) = 2. Assume, 75(G;0,2) # 00 or 75(G;2) #
0o. Then,

1. There exist vertices 2,y , (z,y) € E(G), such that V(G) = N[z] U N[y).

2. There exist vertices Ty, Ty, "+, Im, Y1, ¥2,"* *, Ym and mg € N U {0} such that G =
Hu(mo; Zon, Yms Tme1 Yme1s -+, 21, Y1), Where Hy, is the graph defined in definition 2.8.

Proof: Let = be a vertex such that st(x) = 2. Then in order to dominate x we have a
vertex y with st(y) = 2. Let ¥’ = V(G) \ N[z] U Njy]. Then if Y # O cach vertex in Y is
dominated by both z and y, which is impossible. Hence, V'(G) = N[z] U N(y).

Now the vertices of N|z] N N[y] are not dominated. If N[z] N N[y] # © and G is of
Type H), then only a label 0 is possible to each of its vertices. Otherwise, we shall have a
sequence (of pairs) of non-adjacent vertices {z;, 1}, (defined, say, by induction) such that
st(z;) = st(y:;) =2, i=1,2,---,m where m is determined by the condition A, = H,.

Then, we label the vertices of A, by 0, and the obtained graph G is the graph H,, defined
in definition 2.8. ]

As a consequence of Theorems 2.4 and 2.10 we have the following result.

Theorem 2.11 Let G be a connected graph such that d(G) = 2. Then,
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L If v5(G;2) # oo there ezist vertices, Z1,%2,"**,Tm, Y1, Y2 """+ Ym such that, G =
Hun(0; 2y Ymy - -2 21, 1) and 75(G) < 715(G;2) = 2m.

2. If 15(G;0,2) # oo there exist vertices, T1,%2, ", Zm Y1, ¥20" "1 Ym and mg € N such
that, G = Hp(mo; Ty Ymy - -, 21, 1) 60d 75(G) < 75(G;0,2) = 2m + mo.

Proof: Let S be a minimal step domination set. Then one can see that for each z €
S, st(z) = 2 there exists y € S, st(y) = 2 such that z dominates y and vise-versa (and both
dominate possibly some other vertices of G). Furthermore, we have V(G) = Nlz] U N[y).
Indeed, if there exists z € V(G) \ Njz] U N[y), then, z is dominated by both z and y (since
d(G) = 2). In addition, for each such z € S there exists a unique such y € S (by the
definition of the step domination ). Hence, the vertices of S, with label 2, can be ordered
into such pairs {z;, %}, (m > 1) which yields G = Hp. If mp = 0 then item 1 of the
theorem is achieved. If mp # 0 then the vertices of the set A, are labeled by 0 and we get
item 2 of the theorem.

This completes the proof of the theorem. [ ]

We compute now the values of ys(G; 0, 2) and 7s(G; 2) for a particular case of k—regular
graphs, the almost (k, £)—strongly regular graphs, defined below.

Definition 2.12 A graph G is called almost (k,t)-strongly regular with the parame-
ters k,t, if it is k—regular and every pair of non-adjacent vertices have exactly ¢ common
neighbors.

In the following we assume k > 3.

Observation 2.13 1. As a consequence of definition 2.8 for almost (k, t)—regular graphs,
it follows that in the graphs Hy,, |Aml = t and if we define By = N(zm) \ Am,Cin =
N(ym) \ Am, then, |Bp| = |Cn| = k —t and thus,

vm2>1, |[V(Hn)|=n=2k-t+2. (3)
2. Ift =0 then m =1 and thus, vs(H1;2) = 2 (by labeling st(zx,) = st(y) = 2).

To the sequel when the graph H,, is mentioned, we mean the graphs defined in definition
2.8 with the additional property of being almost (k, t)—strongly regular graphs, and according
to observation 2.13 (2), we assume ¢t > 1.

Our main result in that case is:

Theorem 2.14 Let G be a graph which is almost (k,t)—strongly regular. Then,

1. either there exists m > 1 such that G = Hp,4, and

s(Hms132) = 2m + 2.
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2. or there ezists m > 1 such that G = Hpyy and

Ys{(Hm+1;0,2) =2m(t —k - 1)+ 242
In order to prove Theorem 2.14 we need some preliminaries.

Proposition 2.15 Let Hy, = H,(mq; z1,1) be sequential graph which is almost (k, t)—strongly
regular. Put A; = Hy and By = N(z,) \ A1, Cy = N(y) \ A;. Then,

(a} Al =mo=1t.

() 1Bl =|C\| =k -t.

(c) I[VIH)|=2k-t+2

Proof: (a) follows from the definition of Hy,,m > 1 as an almost (k, t)—regular graph. (b)
follows from (a) and the fact that H, is k—regular. (c) is a particular case noticed in the
observation above. | |

In a similar way we prove for m > 2:

Theorem 2.16 Let H,,,, ,m > 1, be sequential graph which is almost (k,t)—strongly reg-
ular. Then,
|Ail =2m(t - k- 2) +¢. (4)

Proof: To prove the theorem we have that:

£ = IN@mat) O Nmp)| = [Ar] + 3B + [Ci) + 2m, (5)

=]
where, B; = N(z;) \ (N(z:) N N(%)) , Ci = N(:)\ (N(z:) N N(w:)) , Hence, it follows
that |B;| = [Ci| = k — ¢t for all the values of 7 so that by substituting in (5) together with
t =2k — n+ 2 (from (3)), we obtain (4). [ ]

Now we are ready to prove Theorem 2.14.
Proof of Theorem 2.14
The proof of the theorem follows exactly from the proof of Theorem 2.11 with the addi-
tional condition upon G to be almost (k, t)—strongly regular graph. To obtain the value of
7Ys(Hm+1;0,2) we just have to substitute the value of mg = |4, obtained in (4).

This completes the proof of the theorem. [ ]

We end our paper with a slightly more general result concerning k— regular graphs where,
k > 3. The cases k < 2 were dealt in [1].

Theorem 2.17 Let G be a k— regular connected graph with g(G) > 4. Then,

15(6) < %5(G:0,1) S n1 = ).
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Proof: Let (u,v) € E(G). Since g(G) > 4 we have N (x) " N(v) = @. Then there are at
most 2k(k — 1) + 2 vertices at distance at most three from at least one of the vertices % and
v. Since e(G) = 2 it follows that there are at least 22(;-1)[';:'(:&-1) iy edges whose neighbors
are disjoint (since g(G) > 4). Label st(u) = st(v) = 1. Then 2k vertices (including v and v )
are dominated. Hence, running over all such edges we have that at least m’iﬁ_wﬁ o2k
vertices are dominated. The rest of the vertices are labeled 0.

Hence,
. " k — k(k-1 —
15(G;0,1) <n— k'z_(k-l)ll:(‘;-l)ﬂj + 2(&-'1)[:‘(::-1)4-1[ = e kG- (l - flk(kf—l)-{q]) <
n(l1-4). n
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