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ABSTRACT

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H
are chromatically equivalent, written G ~ H, if P(G) = P(H). A graph G is
chromalically unique if for any graph H, G ~ H implies that G is isomorphic
with H. In “Chromatic Equivalence Classes of Ceriain Generalized Polygon
Trees”, Discrete Mathematics Vol 172, 108 - 114 (1997), Peng el al. studied
the chromalticily of certain generalized polygon trees. In this paper, we present
a chromalicily characterizalion of another big Jamily of such gruphs.

1980 Mathematical Subject Classification. Primary 05C15.

1. Introduction

The graphs that we consider are finite, undirected and simple. Let P(G) de-
note the chromatic polynomial of a graph G. T'wo graphs G and H are said to
be chromatically equivaleni, and we write G ~ 1, if P(G) = PP(J]). A graph
G is chromatically unique il G ~ H implies that H is isomorphic to G. A set

of graphs S is called a chromalic equivalence class if any two element of S are
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chromatically equivalent, and if any graph which is chromatically equivalent
with a graph G in S is also isomorphic to some element of S. Although chro-
matically unique graphs have been the subject of many recent papers (see [2)
and [3)), relatively few results concerning the chromatic equivalence classes of

graphs are known.

Figure 1. Gi(a,b; c,d)

A path in G is called simple if the degree of each interior vertex is two in G.
A generalized polygon trec is a graph defined recursively as follows. A cycle G,
(p > 3) is a generalized polygon tree. Next, suppose / is a generalized polygon
tree containing a simple path Py, where k > 1. If G is a graph obtained from
the union of H and a cycle C,, where r > k, by identifying P in H with a
path of length k in C, then G is also a generalized polygon tree. Consider
the generalized polygon tree Gi(a,b; c,d) shown in Figure 1. The integers
a, b, ¢, d, s and { represent the lengths of the respective paths between the
vertices of degree > 2, where s > 0, ¢ > 0. Without loss of generalily, assume
that a < b, a € ¢ < d and if a = ¢, then b < d. Thus, min{ a,b,c,d} = a. Let
r = s+1. We now form a family C,(a, b; ¢, @) of the graphs Gi(a, b; c.d) where
the values of a, b, ¢, d and 7 are fixed but the values of s and ¢ vary; that is

Co(ab;c,d)={Gi(a,b;c,d)|r=s5+1520,120}.

1t is clear that the families Co(a,b; ¢, d) and C,(a,b; ¢, d) are singletons.

Note that G{(a, b; c,d) is a connected (n, n-+2)-graph, whose chromatic polyno-
mials were computed by Chao and Zhao (see (1]), who also determined several

chromatic equivalence classes, excluding among others the graph Gi(a,b; c,d).

In [6], Peng et al. showed that C.(a,b; c,d) is & chromatic equivalence class for
a, b, ¢, d al least 7+ 3. As a corollary, the graph G{a, b; c,d) is chromatically
unique for a, b, ¢, d at least four (see also Peng [5]). ln [4], Omoomi and Peng
characterized the chromaticity of Ci(a, b; ¢, d) for the minimumn e,b,c, and d
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less than four. In this paper, we characterize the chromaticity of C.(a,b; ¢,d)
for the minimum of a, b, ¢ and d equal to 7 + 2, and r > 2. Also we discover
that the following conjecture is not true for each r > 2.

Conjecture [6]). The family of graphs C.(a,b; ¢, d) is a chromatic equivalence
class whenever a,b,c, and d are each at least four.

In the remaining of this section, we give some known results that will be used
Lo prove our main theorem. The girth of G, denoted by g(G), is the length of
a shortest cycle of G.

Theorem A (Whitney (7]). Let G and H be chromalically equivaleni graphs.
Then

(@) V()] = V(H).
(b) 1E(G)| = |E(H)].
(c) 9(G) = g(H).

(d) G and H have the same number of shoriest cycles.

Theorem B (Chao and Zhao (1], Peng et al. [6]). All the graphs in

C.(a,b; c,d) are chromaltically equivalent.

By this theorem we only need to compute P(G%(a,b; c,d)) for computing the
chromatic polynomial of Gi(a,b; c,d).

The next result is Case 1 in the proof of Theorem 6 in [6).

Theorem C (Peng et al. [6]). If Gi(a,b; c,d) and Gi(a',¥; ¢, d) are
chromatically equivalent and s+1 = s'+, then G5(a', b ; ¢, d') € Co(a,b; c,d),
where T = s+ L.

The next result gives the chromatic polynomial of Gi(a,b; c,d). In [1], Chao
and Zhao also determined the chromatic polynomial of this graph, but we shall
use the computed chromatic polynomial of Gi(a.b; ¢,d) in [6] to prove our
main results.

Theorem D (Peng et al. {6]). Let the order of Gi(a,b; ¢, d) be n (n =
a+b+c+d+r-2), endz=1- A Then we have

(=1)"=z
(z—1)?

P(Gi(a,b; c,d)) = - Q(Gi(a,b; ¢, d)),
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where

Q(Gi(a,b; c,d)) = (g™ — ot gotddT L r gy
)
(O+z+x)+ @+ D)@ +2"+ 25+ 29) -

(0Fe 4 gotd g g g pbdy

2. Main Theorem

In this section, we shall characterize the chromaticity of the family C,(a,b; ¢,d)
when min{a, b,c,d} = r + 2, which gives us two counterexamples for the Con-

jecture.

Theorem 1. The family of graphs in Cr(a,b; ¢, d) is a chromatic equivalence
class if r > 2 and min{a, b, c,d} = r+2, except the two families C,.(r+2,b; b+
L,b+7+2) and Co(r +2,c+7+2; ¢c.c+1).

Proof. Let G = Gi(a,b; c,d) € C.(a,b; c,d) and H ~ G. By Lemma 4 and
Theorem 2in (1}, H = G} (a',b'; ¢, d'), where o', ¥,c,d' 2 1. Let 7 = 5" + 1'.
If ¥ = r, then by Theorem C , H € C.(a,b; ¢,d). Now assume r’ # r. We
solve the equation Q(G) = Q(H). After cancelling the terms 2"*+!, —z and
—(1 + z + z2), we have @Q1(G) = @,(H) where

Q\(G) = ™+ + (z+ 1)(z® + ¥ + z° + 79) — gHotb—
grietd | gate _ gatd bt _,,'.b+d:
Qi(H) = =" + (z + 1)(z¥ + 2 + 29 +2%) — g+
g gal+d | geld gl 3.b’+d'
anda+b+c+d+r=d +b+d+d+7; a<bagec<d d <V,
d<d<d.
Since by assumption min{a,b,c,d} = r + 2, the term z™*! in Q,(G) cannot
be cancelled. Hence z™+! is in @Q,(H) and this implies r + 1 = min{r’' +
1,a,¥,c,d}. Thus' +1=r+1o0ra’ =r+1. By our assumption, we must
have @' = r + 1. Since @ = min{ a,b,¢,d } = v + 2, we have Q2(G) = Q2(/1)
where

Q2(G) = T3 + (z + 1)(2* + 27 + 2¢) — 2 ++2—
zr+c+d — Ir+c+2 — z.r+d+2 - Ib-&c - xb-o-a‘ ,
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Q?(H) — o) +(z+ ])(.7:"‘ +x" +1.d’) — g
Ir’+c’+d’ _ Ir+a+1 _ xr+d'+l _ xb’+r:’ _ I”"’d’:
andb+c+d+r+1=b+c+d+71';
r+2=a<br+2<c<d,r+1<¥V,r+1<<d.

The lowest power positive term in Q2(G) cannot be cancelled, hence we have
min{¥,c,d',7” + 1} > r + 2. The term z"** in Q2(G) cannot be cancelled.
Hence 2"+ is a term in Qy(H), and thus we have ¥’ +1=r+3 or b/ =r+3
ord=r+3orcd+l=r4+3ord=r+3ord+1=r+3o0rd+1=r+3.
Since b,¢,d > 7 + 2, we have g(H) = g(G) = 2r +4. So ¥/ > r + 3 because
@ =r+1. Thus ¥/ = r + 2 is impossible. Alsod =7+ 3ord =r+2 imply

that ¢ = r+ 2 or ¢ = r + 3. Therefore we need to consider only the first four

cases (underline).
Case | Suppose ' +1 =r1+3 (or 7 = r+2). Then we have Q3(G) = Q4(H)
where
Q3(C) = (z + 1)(x? + =€ + z¥) — g2 ++2—
gTHeHd _ grod? _ prddd2 _ pbte _ b
Qs(H) = (z+ 1)(a¥ + z + z¥) — 7 +¥+3_
g2 _ 1.r+::’+l — grtd+l _ J,:l:‘+d _ xb’+d':
andb+c+d=V++d+1;
T+2<bhr+2<c<d r+3<¥, r+2<<d.
It is easy Lo see that min{b,¢,d} = min{¥,,d'}. We consider two subcases:
b<cand b>c
Subcase 1.1 Suppose b < ¢. Then we have min{ b, ¢, d} = b and ¢g(G) = a+b.
Alsowehave b= (il < D orb=¢ ({6 > ). Mb=1V, then g(H) =
a4+ ¥ = g(C) = a+b, and we have @ = ¢, a contradiction (since a = 7 + 2

anda’=7+1). Henccwe have b= and g(G)=a+b=a+d=r+2+.

Then g(H) is equal to either o’ + b or d +d or @'+ 7'+ ¢ = 2r + 3+ . Since
9(H) = g(G), the last possibility is impossible. We now look at the other two
possibilities.
Subcase 1.1.] Suppose g(H) =a'+¥ =r+1+¥ (b= ¢). Then g(G) =
T+2+c =7r+1+V and we have ¥’ = ¢ + 1 = b+ 1. Moreover, we have
Q4(G) = Q4(H) where
Q4(G) = (z +1)(z° + z¢) — 2242~
grHeHd _ graet? _ gradd2 _ phie | pbid
Qu(H) = (x4 1)(z¥ + 2%) — g2r+b+a_
g A2 b _ grbd' ) o 26) _ bid 4]

andc+d=bV+d+1;7+2<b<c<d,7+3<¥V =+, b= < d"
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It can be seen that the term z° in Q4(G) cannot be cancelled since if ¢ =
2r + b+ 2, then at least one of the terms z¥ and z¥+! is neither cancelled in
Q4(H) nor is a term of Q4(G). Thus we must have z¢ in Q4(H). So we have
c=borc=d.
Subcase J.1.1.1 Suppose ¢ =¥ (or c= b+ 1). Then we have d = d' + 1 and
from Q4(G) = Q«(H), after cancelling equal terms, we have Qs(G) = Qs(H)
where

Qs(G) = g+ — grH42 _ greckd _ gricd? ZTHeH2,

Qs(H) — zd-l — I2r+b+4 - z.r+b+d+l — gt zr-&-d’
The terms z%+ and 2%~! must be cancelled in Qs(G) and Qs(H ), respectively;
otherwise, there is no solution. The term z¢+! can be cancelled with —z?+¢+2
or —z"++2 and the term z9~! can be cancelled with —z?*+b+1 or —gm+b+1 |1
d+1=2r+b+2thend—1=2r+band Q(G) = Q(H) has no solution. If
d+l1=r+c+2,thend—1=r+c¢=r+b+1 and we have many solutions:
a=7+2,¢c=b+1,d=b47r+2;andad' =r+ 1,V =b+1,d=bd =b+r+l,
and 7 = r+2. In other words, we have G%(r+2,b; b+ 1,b+7+2) ~ G2 ,(r +
1,041 b, b+7+1), but GO, (r+1,0+41; bb+r+1) € C(r+2,b; b+1,b+7r+2).
Note that G¥(r +2,b; b+ 1,b4+7+2) F G (r+1,b+1; b,b+7+1) where
b>2r+2
Subcase 1.1.1.2 Suppose ¢ = d'. Recall that we also have b = ¢ = ¥/ - 1.
Then d = b'+1 = b+2 and from Q4(G) = Q4(H), after cancelling equal terms,
we have Q¢(G) = Qs(H) where

Q6(G) = z8+) — g +b+2 _ grockd _ grécs2 _ LI bt . pbid

Qe(H) = g8 — g2r+b+h _ grabbes? _ prabbl _ grickl _ g2l _ ghtot)
Now 24-" = z%*! in Qg(/) cannot be cancelled because b < ¢ but %' is not
a term in Q¢(G). This is a contradiction.
Subcase 1.1.2 Suppose g(H) = ¢ +d'. Then g(G)=7r+2+c = +d’, thus
d=1+2 Sincer+2<b=¢ <d =r+2 wehaved =7+ 2=1b. From
Q3(G) = Qa(H). we have @:(G) = Q7(H) where

Q:(G) = (z + 1){z° + %) — 2%+~

xr+¢-‘+d - :’:r+4:+2 — 1:"+d+2 - 3:r+2+u _ J:r+2-(--d .

Q:(H) = (x + 1)(a¥ + 27+2) — g2r+'+3_
.'L':’r+“ _ 2:‘:'2r+:£ - 210’+r+'1 — :,’.b'+r+2.
andc+d=b+74+3;
a=b=r+2<c¢<dd=r+,¥V¥2r+3,d=r+2=4d.
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The term z"+2 in Q;(H) cannot be cancelled, therefore z™*? is a term of Q+(G)

and c = 7+ 2. Thus d = ¥ + 1 and alter cancelling equal terms, we have
Qs(G) = Qs(H) where

Qp(G) = a8 — g+ _ q2r+d4d _ 9g2r+d _ oyrd+2
QB( H) = _,L.d-l — plrd+2 _ L Ur46 Qp2r+3 _ 9 pdird]

Note that 2%+ and =~ must be cancelled in Qs(G) and Qg( /) respectively,

but this is impossible. Therefore there is no solution.
Subcase 1.2 Suppose b > ¢. Thus min{b,c,d} = c. So we have ¢ = ¥’ (that is
if min{¥',c,d'} = ¥) or ¢= ¢ (that is if min{¥/,c,d'} = ¢).
Subcgse 1.2.1 Suppose ¢ = &/, Then g(H) =d' +¥ =7+ 14V = g(G).
Ifg(G) =a+b=r+2+bthenr+2+b=r+14+¥=r+14+cor
¢ = b+ 1. This contradicting our assumption that b > ¢. I g(G) = ¢+ d, then
c+d=r+1+cbutd > r+2, a contradiction. If g(G) = a+c+r =2r+c+2,
then 2r + ¢+ 2 = r + 1 + ¢ and this is a contradiction. Therefore ¢ = b’ is
impossible.
Subcase 1.2.2 Suppose ¢ = ¢. Then from Q3(G) = Q4(H) we have Qo(G) =
Qo(H) where

Qo(G) = (z + 1)(zb + z%) — 2 +t+2—

d 2 _ rid+2 <
grHeHd _ gréct2 _ gradt2 _ ghto _ pbbd

Qo(H) = (z+1)(z¥ + z%) — 2+ 3

gricHd+2 _ rdctl If+d'+l — gbite _ 1.b‘+d':

andb+d=V+d+1l,a=r+2<bc<d,c<y
d=r+1<¥,<d, d<¥t,c<d, e<¥, V' 27+3.

Note that there is at least one positive term in Qo(G) that cannot be cancelled
by a negative term. This can be seen as follows. For the case of b < d, at least
one of the terms z¥ or zb*! cannot be cancelled. Also for the case of b > d, at
least one of the terms z¢ or 2%+ cannot be cancelled. Now consider the positive
terms in Qo(G) and Qg(H). Since Qo(G) = Qo(H), we have eight possibilities:
b=V, b=bV+1,b=d. b=d+1.b+1 =V, b+1=d,d+1=¥,0r
d+1=d.
Subcase 1.2.2.1 Suppose b =Y. Then d=d + 1, and from Qo(G) = Qo(H),
after cancelling equal terms, we have Q10(G) = Q1o(H) where
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QIO(G) = g+l _ g2r+bi2 _ gractd grHeH2 _ grad+2 _ Ib-l-d:

Qw(H) = A=) _ p2r+bE3 _ grictddl _ gret) g+ _ pbd=1,
The term —z"*++! is in Q10(H), but —z"++! is not in Q10(G) (since ¢ < b and
¢ < d). Therefore it must be cancelled by a positive term in Qyo(H ). Thus

4+ cannot be cancelled

r+c+l1=d-1henced+1=r+c+3and thetermz
in @10(G), which is a contradiction.
Subcase 1.2.2.2 Suppose b= b + 1. Then d = d’, and from Qo(G) = Qs(H),

after cancelling equal terms, we have @,(G) = Q1 (H) where
Q11(C) = zb+! — gr+otd _ grick? _ gradd2 _ ghic _ b+,
Q”(H) = pb=1 _ grietd+2 _ gretl gl 1.!»+«:~—l — pbrd=1
The term —z"++ isin Q, (M), but —z7*** is not in @i (G) (since ¢ < b and
¢ < d). Therefore it must be cancelled by a positive term in Q1 (H). Thus
r+c+1="b—1hence b+ 1 =7+ ¢+ 3 and the term %*! can be cancelled
inQu(G)ilandonlyif b+1=r+c+3=r+d+2,0ord=c+1 Thus,
we have many solutions: a = r+2, b=r+c¢+2,d=c+1;a =r+1,
V=b-1l=r+c+1,d=¢d=d=c+1, 7 =r+2 In other words,
we have Gor + 2,7 +c+ 2; ¢,c+ 1) ~ Gou(r + 1,7+ ¢+ 15¢,c+ 1) but
Goy(r+1,r+c+15¢c+1) ¢C(r+2,r+c+2;cet)forc2r+224.
Note that CO(r 4+ 2,7 + ¢+ 2; e+ 1) FCGl(r+ Lr+c+1;¢c.c4 1) lor
c>2r+224.
Subcase 1.2.2.8 Suppose b= d'. Then d =¥ + 1, and from Qs(G) = Qo(H),

after cancelling equal terms, we have @2(G) = Qi2(H) where
Q12(G) = g+ — g2 _ rHcHd _ gred2 _ g rkdt2 _ gbhe _ gbid

Ql?(H) = gd-! _ p2rHd+2 _ e gretl grbt) _ pdde=l g bbd-1
The term —z"++ is in Qu2(H), but —27++ is not in Q12(G) (since ¢ < b
and ¢ < d). Therefore it must be cancelled by a positive term in Qya(H).
Thus 7+ c+1=4d~—1, hence d+ 1 = 7 + c + 3 and the term z%*' can be
cancelled in Q2(G) if and only ifd+ 1 =r+c+3=b+c, or b=1r+3. Since
r+2<c<b=r+3 wehave c=7+2, and hence d = 2r + 4. So we have
a solution for Q(G) = Q(H): a=7+2,b=7+4+3,c=71+2,d=2r+4;

l=r+1, 0 =d-1=2r+3,d=c=r+2,d =b=r1+3,7" =r+2. Inother
words, we have GO(r + 2,7 +3; r+2,2r+4) ~ Glp(r+1,2r +3; 1+ 2,7 +3)
but Gop(r+1,2r +3;7+2,7+3) €Cr(r +2,7+3;7+2,2r +4) forr 2 2.
Note that Go(r +2,7+3; 7+2,2r+4) ¥ G0,,(r +1,2r+3; r+2,7+3). This
solution is a special case of solution in Subcase 1.2.2.2, where c =17+ 2.
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Subcase 1.2.2.4 Suppose b=d'+ 1. Then d =V, and from Qo(G) = Qo(H).
after cancelling equal terms, we have @13(G) = Q13(H) where

Q13(G) = ) — g2r+o¥2 _ prbetd _ gractd _ gradd? _ phbe _ gbvd

Qia(H) = zt-) — g2r+d+8 _ groctbbl _ gractl _ grkb _ gdve _ gbid-1,
The term —z7++! is in Q,3(H), but —z™+*! is not in Q,3(G) (since ¢ < b and
¢ £ d). Therefore it must be cancelled by a positive term in Q,3(H). Thus
r4+c+1=b—-1, hence b+ 1 =17+ c+3 and the term z**' can be cancelled
in@3(G),onlyifb+1=r+c+3=r+d+20rd=c+ 1. Thus the term
—z"++2 cannot be cancelled in Q14(G), and —z"++2 is not, a Lerm of Q,;3(H),
which is a contradiction.
Subcase 1.2.2.5 Supposeb+1 =¥. Thend = d'+2, and from Qo (G) = Qo(H),
after cancelling equal terms, we have Q4(G) = Q4(H) where

Q14(G) = zb + (x + 1)z? — g2 +6+2 _ gried2 _ prddd2 _ gbbe _ phid

Qua(H) = 282 4 (g + 1)z?-2 — g2+ _ grekl _ grad=1 _ gbict] _ pbid-1,
The term —z™**! isin @)4(H) but it is not in Q,4(G) (since ¢ < b and ¢ < d).
Hence —z"*°*! must be cancelled by a positive term in Q,4(H). We have cither
r+c+l=b+20rr+c+l=d-20rr+c+l=d-1. lr+c+1=0+2,
then the term zb = 27+~ cannol be cancelled in Q,4(G) which means that z*
is a term of Q14(H). Thus we have either b=d -2 or b=d— 1. In each case
the term z¢ cannot be cancelled in Q,4(G), which is a contradiction.
If r+c+1 = d—2, then we have the term 9! = z"++2 in Q,(H) and this term
cannot be cancelled in Q,4(/7) because r + 2 < ¢ < b. Since —z"*++? occurs in
©14(G), we must have the term 2z7++2 in Q,4(G), which is impossible.
Ifr+c+1=d-1,thend-2=r+c and the term z%2 = z™+° cannot
be cancelled in Q,4(H). Thus, we must have the term z™+° = 29-2 in Q,,(G).
This implies b = 7 + ¢. Now the term z8¥2 = z7+°*2 cannot be cancelled in
@Q1a(H) because 7 + 2 < ¢ < b. Since —z"++2 occurs in Q)4(G), we must have
the term 227**2 in Q,4(G), which is impossible. Therefore there is no solution.
In the remaining three possibilities, that isb+1=d',d+1 =¥V, and d+1 = d,
there is no solution for Q(G) = Q(H). The proof is similar to that of Subcase
1.2.2.5.
For Case 2 ({/ = r + 3), Case 3 (¢/ = r + 2), and Case 4 (¢ = r + 3), there is
no new solution for the equation Q(G) = Q(H). The proof is similar to that of
Case 1. The detailed proof can be obtained by e-mail from the second author

or viewed at http://www.fsas.upm.cdu.my/ yhpeng/publish/p2c234.pdf. ¢
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Corollary. We discover that the conjeclure in [6] is only lruc for r = 1. For
each r > 2, we provide lwo counterezamples as follows.
o GUr+2,b; b+ 1,b+7+2) ~Glo(r+1,0+1;b,b+7+1) forb> 4 bu
Glolr+1,b+1;0,b+7+1)€C(r+2,b; 0+ 1,b+7+2).
o GUr+2,c+r+2;c,e+1) ~Glo(r+1,c+r+1;¢c+1) forc > 4 but

Couir+lc+r+l;cec+ ) €C(r+2,c+r+2;5cc+1).
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