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1. Introduction

An edge colored graph is called a rainbow if no two of its edges have
the same color. Let H and G be two families of graphs. Denote by RM (H, G)
the smallest integer R, if it exists, having the property that every coloring of the
edges of Kr by an arBitrary number of colors implies that either there is a
monochromatic subgraph of K that is isomorphic to a graph in H, or there is a
rainbow subgraph of K'g that is isomorphic to a graph in G. If there is no integer
R that satisfies the property above, then we write RM(H, G) = co. If one of the
sets H or G contains only a single graph H or G, respectively, then we use the
simplified notation RM(H,G) or RM(H,G) or RM(H,G). For a family of
graphs Hand an integer s, we denote by r(H, s)the corresponding Ramsey
number, which is defined to be the smallest integer = such that every s-coloring
of the edges of K implies the existence of a monochromatic subgraph of K, that
is isomorphic to a graph in H. If H contains only a single graph H, then we
denote r(H, s) by r(H, s).

We use e(G) and v(G) to denote the set of edges and the set of vertices
of the graph G, respectively. Furthermore, K, K(A), Kna, and K(A, B)
denote the complete graph on n vertices, the complete graph on the vertex set A,
the complete bipartite graph on m - n vertices, and the complete bipartite graph

on the sets A and B, respectively.
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The investigation of RM(H,G) began in [9] with the investigation of
RM(H, K, ), which was called the (s — 1)-local Ramsey number and denoted
by riz}(H). It was proved in [9] that 7§ !(H) < oo, for every graph H and
every integer s > 1. Results concerning local Ramsey numbers, their variations
and generalizations appear in [4], [6], [8], [9], [10], [11], [12], [13], and [14]. In
[13], it is proved that RM(H,G) < oo, for any graph H if and only if G is a
forest. As will be seen in this paper this theorem does not apply if H is replaced
by a set H. We begin with the following observation.

Observation: Let n = max{|e(H)|: H € H} and let m = min{|e(G)|: G €

Gy Ifm > n, then r(H,n) < RM(H,G). Indeed, consider a coloring of
e(K(#,n)-1) by n colors that avoids a monochromatic copy of a graph in 1. By
the definition of r(H,n) such a coloring exists. Moreover, since m > n, i.e.,
every graph in G has more than n edges, it follows that this coloring avoids a
rainbow copy of a graph in G as well.

In view of this observation it is of interest to discover cases where
r(H,n) = RM(H,G). For example, the authors proved in [2] that
r(nKy,n — 1) = RM(nK,,nK3). In this paper we investigate
RM(H,G), where H is either the set of all trees on n vertices denoted by 7, or
‘H consists of the single graph of n matchings denoted by nK>. Both families
have received attention in the context of Ramsey numbers for graphs. We know
that r(7;,2) =n and 7(nK»,2) =3n—1. Generalizations of these two
theorems appear in [1], [2], [3], [5) and [7]." We now investigate further
generalizations of these two theorems by determining RM(7,,G) and
RM(nK,, G) for all graphs G having three edges.

132



2. Preliminary Results

The five graphs with three edges are: K3, 3K», K3, Py,and P3 U P,
where P, denoles a path on n vertices. In view of what follows we see that only
the first three graphs need to be investigated.
Theorem 2.1: Let n > 5. Ife(K,) is colored by at least three colors, then K,
contains a rainbow copy of Py and P3 U P,.
Proof: The validity of the theorem follows from a simple verification of the
various colorings of e(K).
Corollary 2.2: Ifn > 5, then
7(Th,2) = RM(T,, P4) = RM(T,, PsU P;) = n.
Corollary 2.3: Ifn > 5, then
7(nK3,2) = RM(nK,,Py) = RM(nK,,UP;) =3n—1.

3. Spanning trees

Theorem 3.1: RM(T,, K3) = n.

Proof: Since 7(7,,2) = n, it follows that RM (7, K3) > n. We will prove the
reverse inequality. Consider a coloring of e(K,) by an arbitrary number of
colors. Choose a monochromatic tree T° with the maximum number of vertices.
Suppose that T" is colored red. We can assume that 7" is not a spanning tree and
hence there exists a vertex z, where z ¢ v(T'). Assuming that K, does not
contain a rainbow K3, we will prove that the star whose center is £ and whose
end points are the vertices of T' is monochromatic. Indeed, consider the color of
Tuy, where vy is an arbitrary vertex of T'. By the maximality of T the color of
xuy is not red; suppose it is blue. If uy is any vertex of T distinct from ug, then
there is a path wug, uy, ..., u; joining upand ug. Again, by the maximality of T,
the edge zu, is not red and since by our assumption K, does not contain a
rainbow K3, it follows that zu,is colored blue. Similarly, we get that all the

edges zuy, ..., xuy are colored blue. Thus we proved that the star whose center
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is ¢ and whose end points are all the vertices of T is blue. But this star has one
more vertex than T', contradicting the maximality of T'. (W]

We wonder whether some stronger results can be proved. Namely, is it
true that RM (U, K3) = n, where U is any of three subfamilies of 7,. In order to
state the problems, we need to intoduce the folowing definitions:

(a) The family D, (k) denotes all trees T" on n vertices for which diam(T’) < k,
where diam(T') is the diameter of T.

(b) A k-superstar is a tree that has one vertex of degree k (called the center of
the superstar) and all other vertices of degree 1 or2. We denote by S,(t) the set
of all k-superstars on n vertices, witht < k <n — 1.

(c) A broom is a combination of a star and a path that have in common only one
vertex: the center of the star and an end vertex of the path, We denote by B, the
set of all brooms on n vertices.

Parts (a) and (b) of the following theorem were proved in [2] and part
(c) in [5].

Theorem 3.2:
@ 7r(Da(4),2) =n
®) r(Sa([2541),2) =n
©)r(Bn,2) =mn
Problem 3.3: Is it true that the following hold?
(@) RM(Dn(4), K3) =n
(b) RM(Sn([2511), K3) = n
(©)RM(B,,K3)=n
Next, we consider RM (T,,, K3 3).

Theorem 3.4: RM(T,, K13) = f(n), where
fmy = 36-1 if n=2k
=3k +1 if n=2k+1
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Proof: (a) For every n > 3 we will describe a 3-coloring of e(K(n)-1) that
avoids a monochromatic tree on n vertices as well as a rainbow copy of K] 3.
Consider the following coloring of e(Ky(n)—;). First partition v(Ks(;)-;) into
three parts A,B,andC as follows: if f(n)—1= 3k-—2, then
|Aj=|Bl=k-1, and |C|=k, and if f(n)—1= 3k, then
|Al = |B| = |C| = k. Next, color the edges of K(A), K(B), and K(C) by
three distinct colors and the edges of K (A, B), K(B,C), and K(C, A) by the
same three colors, respectively. It is easy to see that this coloring implies that
RM(T,,K13) < f(n). In order to prove the reverse inequality consider a
coloring of e(/{y(n)) that avoids a rainbow copy of K)3. We consider two
cases.
CASE 1: There is a color which induces a subgraph G of K (), that has at least
n vertices.

We assume that the components of G are nontrivial. If G has a
component with at least n vertices, then the proof is complete. Otherwise, there

is a component H of G with no more thatI—"T‘l] < k vertices. Since the

coloring avoids a rainbow copy of Kj 3, it follows that if z € v(H), then all the
edges joining z to a vertex outside of H have the same color. Moreover, since
[v(H)| < k, it follows that the number of vertices outside of H is at least 2k — 1
if n=2kor at least 2k+1 if n=2k+1. In both cases we get a
monochromatic star with at least n vertices.

CASE 2: The maximum number of vertices of a subgraph G of K/, induced by
any color is less than n.

Let G be a subgraph of K, induced by one of the colors and assume
that |v(G)| =t < n. We assume that the components of G are nontrivial. Since
the coloring avoids a rainbow copy of K 3, it follows that the edges that join
v(G) and v(Kyu))\ v(G) are colored by only two colors; moreover, if

z € v(G), then all the edges that join z to a vertex in v(Ks(n))\ v(G) have the
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same color. Hence there are at least |_§.| vertices in G that are connected to the

vertices in v(/{s(n))\ v(G) by the same color which results in a complete
bipartite graph with at least I-%-I +(f(n) —t) = f(n) - I.éJ vertices. Since
t < m, it follows that f(n) — l_éJ 2 n and the proof is complete. O

Remark: It is worthwhile mentioning that in the proof of the previous theorem,
we actually showed that RM (B, K13) = f(n).
Lemma 3.5: RM(73,3K,) = RM(T3,3K,) =6
and RM(T5,3K5) = RM(T5,3K,) =7
Proof: The result follows from a case by case analysis. We omit all the details,
but we would like to depict a coloring of K that avoids a monochromatic copy
of 75 as well as a rainbow 3K,. Let v(Ks) = {a,b,c,d,e, f}. Color ab,ac,de
and df by color 1, color the edges of the complete graph spanned by {a, b,d, e}
by color 2, and the remaining edges by color 3.
Lemma 3.6:RM(T7,3K,) = 8
Proof: Consider an arbitrary coloring of e(/3) and let T be a monochromatic
tree with the maximum number of vertices. Furthermore, suppose that the color
of T'is red. If lv(T)l = 2, then since 8 > 6, a rainbow copy of 3K is assured.
Next, we will consider three cases.
CASE 1: (T)I =3

Let T consist of the vertices z, y, and z and the edges zy and yz, and let
the remaining vertices be denoted by wv;, where i=1,2,3,4,5. By the
maximality of R(T)l, we can assume that the color of zwv; is blue. If
K ({v2, v3,va4,vs5}) contains an edge that is neither red nor blue, then we get a
rainbow copy of 3K3; otherwise it is colored only by red and blue and hence
contains a spanning tree on 4 vertices, contradicting the maximality of T".
CASE2: w(T)I=4

Let T consist of the vertices z,y,zand ¢ and the edges and let the

remaining vertices be denoted by v;, where ¢ = 1,2, 3,4. By the maximality of
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lv(T)), we can assume that the color of zviand yv, are blue. If one of the edges
in K({v1,v2}, {v3,v4}) is neither red nor blue, then we obtain a a rainbow copy
of 3K3. Hence it is monochromatic either in red or in blue. If it is blue, then
there is a blue tree on the six vertices z, y, v1, v, v3, v4, a contradiction. Hence it
is red. Finally, consider the graph K({{v1,v:},{z,t}). If one of its edges is
neither red nor blue, then we obtain a a rainbow copy of 3K,. Hence it is
monochromatic either in red or in blue. However, each of these cases
contradicts lv(T)l = 4.
CASE 3:(T)I > 4

We can assume that W(T')I < 6. Let {z,y} = v(K3)\v(T) and let ab
be an arbitrary cdge of T. We consider the color of the edges zc and yd, where
¢,d € v(T)\{a,b}. If at least one of the edges zcor yd is red, then we have
contradicted the maximality of lv(T')l. If the two edges have distinct colors, then
we can combinc them with the edge ab to obtain a rainbow copy of 3K,. Thus
zcand yd have the same color. Since ¢ and d were arbitrary we can conclude
that the graph K'({z,y},v(T)\{a, b}) is monochromatic and since (T)l > 4, it
follows that it has at least 6 vertices, and hence it contains a monochromatic
spanning tree, say, S. Consider the edge 2m, where m € {a, b} and m is not the
center of a star in case that T" is a star . By the maximality of T the color of zm
is not the same as the color of T. If it is the color of S, then we get a
monochromatic tree on 7 vertices and the proof is complete. Otherwise, the edge
xm has a new colorand together with yd and an additional edge from T, we
obtain a rainbow copy of 3K, and the proof is complete. O
Theorem 3.7: Ifn > 7, then RM (T,,,3K>2) =n + 1.
Proof: For every n > 7 we will describe a 3-coloring of e(K,) that avoids a
monochromatic tree on n vertices as well as a rainbow copy of 3K,. Consider
the following coloring of e(K,). First partition v(K}) into three parts A, B, and
C, where |A| = |B| = 1, and |C| = n — 2. Next, color the edges of K(C) and
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K(C, A) by rcd, the edges of K(C,B) by blue and the remaining edge of
K(A,B), by green. It is easy to see that this coloring implies that
RM(T,,3K,) >n+1. In order to prove the reverse inequality we use
induction on n. By Lemma 3.6 the theorem holds for n = 7, so assume that it
holds for some n, where n > 7, and consider a coloring of e(K,41). Applying
the induction hypothesis we get either a rainbow copy of 3K, and the proof is
complete, or a monochromatic copy of Thy € Tpy. Let
{z,y} = v(Ku41)\v(Tn-1) and let ab be an arbitrary edge of T,;. We
consider the color of the edges zc and yd, where c¢,d € v(Tn-1)\{a,b}. If at
least one of the edges mcor yd has the color of T,_;, then we obtain a
monochromatic tree on n vertices. If the two edges have distinct colors, then we
can combine them with the edge ab to get a rainbow copy of 3K,. Thus zcand
yd have the same color. Since ¢ and d were arbitrary we can conclude that the
graph K({z,y},v(Th-1)\{a,b}) is monochromatic and since it has n —1
vertices, it contains a monochromatic spanning tree, say, Sn—;. Consider the
cdge zm, where m € {a, b} and mis not the center of a star in case that T}, is
a star . Ifits color is the same as the color of T,,—) or the color of S,_;, then we
have a monochromatic tree on n vertices and the proof is complete. Otherwise,
the edge zm has a new colorand together with yd and an additional edge from
T,—1, we get a rainbow copy of 3K, which completes the proof. O

Remark: It is worth noting that the coloring in the previous proof implies that

RM(T;I’ {3K‘.’s K1,3}) =n+1

4. Matchings

Theorem 4.1: RM (nK,, K3) = 00.

Proof: The theorem follows from [13], but because of its simplicity we present
its proof here. Let the vertices of K, be vy,va,...,vp, and let the color set be

{2,3,...,n}. II'i < j, then color the edge v;v; by color j.
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Theorem 4.2: RM(nK,, K;3) =3n—1.

Proof: This is Theorem 13 of [9]

Theorem 4.3: RM(2K2,3K,) = 2, RM(3K3,3K>) = 6, and

RM(nK,,3K>) =3n—1forn > 3.

Proof: The first two values of RM can be easily checked. We will prove that
RM(nK3,3K,) =3n—1 for n > 3. Since RM(nK»,3K3) > r(nK>3,2) and
since 7(nK,,2)=3n—1 by [7], it suffices to prove that RM(nK,,
3K,) < 3n— 1. We will show that RM (3K3, 3K3) < 8 and then proceed for
n > 4. In any coloring of K3 consider four independent edges u;vy, upve, uzv3
and uqvs. W.lo.g we can assume that wjv; and upv, are red, and uzv3 and
u4vsare blue; otherwise the proof is complete. Any new color joining a vertex
from {u,v;,us,v2} and a vertex from {u3,v3, u4,v4} will result in a rainbow
3K,. Thus we can assume that all the sixteen edges that join {u;,v), ug,v2} and
{us,v3, ug,vq} are either red or blue. If the 4-cycle uyuzvyvs has three edges of
the same color or two opposite edges of the same color, then we get a
monochromatic 3K,. Hence w.l.o.g. we can assume that uju3 and u;jv3 are both
red and vyu3 and vyv3 are both blue. Now examine the edge uzus. A new color
forces a rainbow 3K and a blue forces a blue 3K, so it must be red. Finally,
any color choice for the edge v3v; forces either a monochromatic or a rainbow
3K,

Consider a coloring of K3,—; by an arbitrary set of colors, say, C. If
|C| < 2, then by [7] K3,- contains a monochromatic copy of nK>. Hence, we
can assume |C| > 3. Choose 3 representative edges from e(K3,—1), where each
edge is colored by a different color. Denote by H the graph induced by the
representing edges and let d denote the number of its vertices. Also denote by M
the complete graph induced by the vertices that do not belong to 1. We can
choose the representative edges such that the number of K,’s that are

components in A/ is maximal. If d = 6, then the proof is complete. Hence we
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can assume that d < 5 and that there are edges in H that are not components.
An important fact is that by the maximality of H, the set of colors used in M is
a subset of the set of colors used in H. Moreover, the colors of the edges that
are not components in H are not used in M. Since d < 5, it follows that the
number of vertices in M is at least 3n — 6; furthermore, since n > 4, it follows
that 3n — 6 > 2n — 2. Thus M contains at least n — 1 copies of K. If these
copies are monochromatic, then adding one more matching from H results in a
monochromatic nK». Otherwise there are two disjoint matchings in M having
two different colors, yielding, by the maximality of H, d > 5. Thus d =5 and
H = K, U Kj »; furthermore the only color that appears in M is the color of the
K, from H. But the fact that M is monochromatic contradicts our assumption
that there are two disjoint matchings in M having two different colors. This
completes the proof. O
Corollary 4.4: RM (nK>,3K3) = r(nK>,2) =3n— 1.
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