ABOUT MULTICOLOURED CYCLES IN K_{24n+1}

Marina Martinova Department of Mathematics University of Architecture, Construction and Geodesy Sofia, Bulgaria e-mail: marina fte@uacg.acad.bg

ABSTRACT. Colour the edges of a K_{24n+1} by 12 colours so that every vertex in every colour has degree 2n. Is there a totally multicoloured C_{12} (i.e. every edge gets a different colour)? Here we answer affirmative to this question. In [1] P. Erdos stated the same problem for K_{12n+1} and 6 colours. It was settled in [2].

In this paper we follow the terminology and symbols of [3]. We assume the complete graph K_{24n+1} to have the vertex-set

$$V=V(K_{24n+1})=\{1,2,...,24n+1\}, n>=1.$$

MAIN RESULT

If the edges of a K_{24n+1} are coloured by 12 colours so that every vertex is an endvertex of 2n edges of every colour then there are at least n totally multicoloured C_{12} .

Proof. I. Let us start with the case n=1, i.e. K_{25} . First we decompose K_{25} into 25 subgraphs isomorphic to the graph G in Fig.1 constructing a cyclic G-decomposition [3, pp.57-59]. The base system consists of a single element - the graph G_1 in Fig.1. For K_{25} , with vertex-set $V = \{1, 2, ..., 25\}$ the cyclic permutation is:

Since the length of an edge (i, j) of a graph with vertex-set $\{1, 2, ..., \nu\}$ is the number

$$\min \{|i-j|, v-|i-j|\}$$

the edges of K_{25} have lengths: 1, 2, ...12. Thus applying 25 cyclic permutations (including the identity) we obtain a G-decomposition G_1 , G_2 , ..., G_{25} of K_{25} . Let us indicate the edges' lengths of G_k , k=1, 2, ..., 25 using the corresponding vertices of G in Fig.1.

Now we colour the edges of G_k k=1, 2, ..., 25 by 12 colours, for example $A_1, A_2, ..., A_{12}$ giving to each edge of length i the colour A_i . So each vertex has in every colour degree 2.

A multicoloured cycle C_{12} of K_{25} is the following: C_{12} : 8, 9, 11, 14, 18, 13, 19, 12, 4, 20, 10, 21, 8. The consecutive colours of the cycle's edges are: $A_1, A_2, ..., A_{12}$.

II. Now let $n \ge 2$. For colouring K_{24n+1} by 12 colours we shall apply composite method. Let separate the vertices of K_{24n+1} into sets:

$$\{1,2,...,24\}, \{25,26,...,48\},...,\{24n-23,...,24n\}, \{24n+1\}.$$

Using these sets of vertices we represent K_{24n+1} as follows:

$$K_{24n+1}=n.K_{25}+1/2n(n-1)K_{24,24}$$

where each $V(K_{25})$ consists of the vertex 24n+1 and 24 vertices from one of the other sets; each bipartite graph $K_{24,24}$ has as parts two of the above sets except $\{24n+1\}$. Colour now every K_{25} as in I. Each vertex of K_{24n+1} except the vertex 24n+1 belongs to one K_{25} and has degree 2 in every colour; the vertex 24n+1 belongs to all graphs K_{25} and has degree 2n in every colour.

For colouring the graphs $K_{24,24}$ let us assume a graph $K_{24,24}$ to have parts

$$\{u_1, u_2,...,u_{24}\}$$
 and $\{v_1, v_2,...,v_{24}\};$

then we represent $V(K_{24,24})=B_1+B_2+B_3+B_4$, where

$$B_1 = \{u_1, u_2, \dots, u_{12}\}; B_2 = \{u_{13}, u_{14}, \dots, u_{24}\}; B_3 = \{v_1, v_2, \dots, v_{12}\}; B_4 = \{v_{13}, v_{14}, \dots, v_{24}\}.$$

If we take the bipartite graphs $K_{12,12}$ with parts

$$B_1$$
 and B_3 ; B_1 and B_4 ; B_2 and B_3 ; B_2 and B_4 ,

it is clear that $K_{24,24} = 4K_{12,12}$. Every vertex of a $K_{24,24}$ belongs to two of its subgraphs $K_{12,12}$.

Let us colour a bipartite graph $K_{12,12}$ in 12 colours; for example let it be $K_{12,12}$ with parts B_1 and B_3 . For i=1, 2, ..., 12 we give to the edge (u_i, v_{i+k}) the colour A_k , k=1, 2, ..., 12. Obviously every vertex in $K_{12,12}$ has degree 1 in every colour. Let u be an arbitrary vertex of K_{24n+1} except 24n+1; u belongs to n-1 graphs $K_{24,24}$ and it belongs to 2(n-1) graphs $K_{12,12}$; so its degree in the whole colouring is: 2+2(n-1)=2n. This way the required colouring of the edges of K_{24n+1} is done.

We take one multicoloured C_{12} from each K_{25} ; so we have n multicoloured C_{12} which are subgraphs of K_{24n+1} . This completes the proof of the main result.

References

- [1] Paul Erdos, Some of my favourite solved and unsolved problems in graph theory. Quaestiones Mathematicae 16(3) (1993), 333-350.
- [2] Marina Martinova, A solution of an Erdos' problem, to appear in Annuaire de L'Institut d'Architecture et de Genie Civil Sofia, Fascicule II, MATHEMATIQUES.
- [3] Juraj Bosak, Decomposition of Graphs, Klumer Academic Publishers, Dodricht, 1990.