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1. Introduction

In the study of combinatorial designs, as in any area of algebraic or
combinatorial structures, one of the most basic questions is this: under what
circumstances can a given design or near design be enclosed or embedded
in some larger design. This problem is strongly related to that of whether a
design has contained within it a proper subdesign or is contained in a
natural way in some larger design, or whether it can be completed in some
special way. Curiously, although all these topics have been studied,
surprisingly little is known about the topic that seems to be the most basic
of them and subject of the present paper, enclosings of designs. Before
considering this further, we need to discuss terminology and background
information.
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A balanced incomplete block design, or BIBD(v, b, r, k, A), is a
collection B of b subsets or blocks of a set V of order v such that all blocks
have size k, each element appears in r blocks, and each pair of elements
appears together in A blocks. The conditions imply that bk = vr and A(v- 1)
= r(k — 1), and we usually write BIBD(v, k, A) for short. When k = 3, the
design is often called a triple system, a TS(A, 3; v) or TS(A, v). We use the
more generic BIBD since we hope the results here will lead to further
research on similar questions for other values of k. We refer the reader to [8,
14, 16] for background about BIBD’s or triple systems.

A design injection of X = BIBD(v, by, 1, k, A) into Y = BIBD(v+s, by,
r2, k, A+m) is a mapping ¢ such that, ¢ is a one-to-one map from V; to V,,
and for each block B; of X, ¢(B;) is a block of Y. The injection is an
embedding if m = 0 and an enclosing if m > 0. We will always regard the
injection as the inclusion map. Therefore, the enclosing design Y will
always be based on the points of X and some s new points.

In this paper, except in Section 8, k will be 3 and s will be 1. An
enclosing of X = BIBD(v, 3, 1) into Y = BIBD(v+s, 3, A+m) is minimal if s
=1 and no design BIBD(v+1, 3, A+n) exists with 0 < n < m. There is a large
body of literature on embeddings, and we refer the reader to [5, 7, 10, 11,
13]. However, enclosings, the subject of this note, have been studied less
extensively, and the reader is referred to papers by (in various
combinations) Bigelow, Colburn, Hamm, and Rosa [1, 2, 4, 6] mostly for A
= 1. Much of this earlier work has been accumulated and presented in [8].

Simple designs have no repeated blocks, and the enclosings of [1, 2]
are faithful, i.e. each new block of Y has at least one new point. These are
both severe restrictions and we do not consider them here. We are further
motivated by the comments in [8], p. 155-156: "Enclosing of partial systems
have not been seriously studied; in fact, as we see next, even-enclosings of
triple systems themselves have not been determined. ... Both the enclosing
and the faithful enclosing problems appear to be far from a solution at this
point. The situation is worse for simple enclosings.” In this paper we begin
the systematic general study of enclosings of designs.

We point out that Bigelow and Colbourn [1,2] proved that a BIBD(v, 3,
A) can be faithfully enclosed in a triple system BIBD(w, 3, 1) whenever w 2
2v+1 and p = 0 (mod ged(w-2, 6)). Although this is a wide ranging general
result, in view of the necessary condition which we derive in Section 8 and
in view of its implication that there is a range of s-values for which no
enclosing is possible, it is important to examine both ends of this s-interval.
To that end, in this paper in Sections 2 to 7 we solve a specific problem: we
show, when 1 < A < 6, that the necessary conditions are sufficient for the
existence for an enclosing of X = BIBD(v, 3, 1) into some Y = BIBD(v+1, 3,
A+m) for a minimal positive m. We mention that the new necessary
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condition referred to just above is for arbitrary enclosing of any BIBD(v, k,
A) into BIBD(v+s, k, A+m), k not necessarily 3.

We will frequently refer to Table 1 below [14, p.50] which provides
necessary and sufficient conditions for the existence of a A-fold triple
system of order v. We will always use the variable x to denote the element
added to the set V. A group divisible design, a GDD, for our purposes here
is a design in which the points are partitioned into disjoint sets of equal size
called groups. Points within a group will said to have index zero with each
other, i.e., they will not appear together in any common block. All pairs of
points not in a common group will have the same index A. We use the
superscript notation GDD(g") to denote a GDD with group size g, index
one, and block size 3, with v/g = u. Existence questions are addressed in [9]
and [15]. .

Table 1: The A-v Spectrum of Triple Systems

A =0 (mod 6) Allv#2
A=15(mod6) | Allv=1, 3 (mod 6)
A=24(mod6) | Allv=0, 1 (mod 3)
A =3 (mod 6) All odd v

A partially balanced incomplete block design, a PBIBD, on v elements
is a collection if blocks such that every element say u appears in A; blocks
with some set of n, elements, called first associates of u, and u appears in A,
blocks with n, elements, called second associates of u. Note n; and n, are
constants for all points of the design and n; + n; = v — 1. In the present
paper we will always have A, = 0. Thus, for us, GDD’s are a special type of
PBIBD in which the condition of being a second associate is transitive and
in which the number of second associates is g - 1.

Our first result is a simple construction that will be applied several
times.

Theorem 1.1 Suppose a PBIBD(v, b, r, 3, ny=v-(A+2),n, = A+ 1, 4y =1,
A; = 0) exists. Then a BIBD(v, 3, A) may be enclosed in a BIBD(v+1, 3,
A+l).

Proof: Suppose X = BIBD(v, 3, A) and Z is the PBIBD. We identify
elements of Z with the elements of X, arbitrarily, so that X and Z are both
designs on the set V. The design Y is based on the set V U {x}. We make
the blocks of X and of Z the blocks of Y = BIBD(v+1, 3, A+1), and we will
add certain other blocks to complete the design. The blocks so far make the
index equal to A + 1 for elements of Z which are first associates. For any u
in V there exist A + 1 elements a,, a,, ..., )+ which are second associates of
u. For this u we add the following blocks to Y: {x, u, a,}, {x, u, &}, ..., {x,
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u, ay.1}. We do this for every u in V taking care not to repeat a block.
Clearly the index is A+1 for every pair of elements of V U {x}.

When we employ this useful construction, we automatically forfeit
faithfulness since none of the blocks of Z contain any new points. On the
other hand, in order to apply the theorem, we have constructed many
families of PBIBDs with block size 3 which may be new as the first
members are not in [3] and are not familiar to the authors as known
families.

Example 1.2 We apply Theorem 1.1 to show X = BIBD(12, 3, 6) can be
enclosed into Y = BIBD(13, 3, 7). We first construct Z =PBIBD(12, 3, n; =
4,n2=7,l]= 1,M=0)Z

{l’ 2a 3}) {4v 5: 6}) {7’ 8’ 9}a {10: ll’ 12}’

{1,5,9}, {4, 8, 12}, {7, 11, 5}, {2, 6, 10}.
Each point has 7 second associates. The enclosing comes from applying
Theorem 1.1. Now suppose A = BIBD(6, 3, 6). Since a BIBD(7, 3, 7)
exists, by Table 1, we would expect that there exists a minimal enclosing of
A into some B = BIBD(7, 3, 7). However, this is not possible, as we now
show. Suppose A is based on the points 1, 2, ..., 6 and B is based on the
points 1, 2, ..., 7. As the new index is 7, we must have the points 1 and 7
together in seven blocks. By the pigeon hole principle, some point, say 2,
must be in two of these blocks. But 1 and 2 are already together in 6 blocks
from A. So the index is 8 for points 1 and 2, a contradiction.

Section 8 explains in a more general way why the presumed enclosing
in the example was not possible. Sections 2 to 7 consider A from 1 to 6 and
all possible v, and in all these sections we prove the minimal enclosing
occurs for the smallest allowable parameters.

2, A=1,

With A = 1, we need only consider v = 1, 3 (mod 6), according to Table 1. A
parallel class or a resolution class is a set of blocks in a design which
contain every point once and only once. A design is resolvable if its blocks
can be partitioned into paralle] classes. The following result is well-known
[14].

Lemma 2.1 Forallv =1, 3 (mod 6) and v = 9, there exists a cyclic
BIBD(v, 3, 1). For all v =3 (mod 6), v 29, there exists a resolvable BIBD(v,
3, 1) (called a Kirkman triple system).

Theorem 2.2 For every X = BIBD(v, 3, 1) with v =3 (mod 6), there is a
minimal enclosing Y = BIBD(v+1, 3, 2).
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Proof: Suppose v =3 (mod 6), and X = BIBD(v, 3, 1). Let Z = BIBD(v, 3,
1) be a Kirkman triple system. We identify the v elements of Z with the
elements of X, and we define a block system Y on the set V U {x} such that
blocks of Y are the blocks of X plus the blocks of Z, with the following
modification. For every block {a, b, c} in one of the resolution classes of Z,
we replace {a, b, ¢} with the set of blocks {x, a, b}, {x, a, ¢}, {x, b, c}. One
notes that this does not increase the index for elements a, b, and ¢, but x
now appears with each u in V exactly twice. (We call this expanding the
resolution class with new point x.) The result is a BIBD(v+1, 3, 2).

Theorem 2.3 Suppose v =1 (mod 6), and X = BIBD(v, 3, 1) is an arbitrary
Steiner triple system. Then there exists a minimal enclosing Y = BIBD(v+ 1,
3,6).

Proof: Since v+ 1 =2 (mod 6), there is no smaller index possible than 6 by
Table 1. Suppose now that Z is a cyclic Steiner triple system on v elements.
We next create the blocks for Y as follows. The blocks of X are blocks for
Y, and we use five copies of the blocks of Z for Y with the following
modification. Suppose {a, b, ¢} is one of the difference sets for Z. Replace
{a, b, c} with three blocks {x, a, b}, {x, a, ¢} and {x, b, c¢}. Similarly
replace each block developed from {a, b, ¢} by 3 new blocks. As in the
previous proof, one notes that this does not increase the index between any
elements of Z. As {a, b, c} is developed to create Z, element a appears in
three blocks. Thus a now appears six times with x in the blocks developed
for Y. This shows the index for Y is 6. (We call this construction
developing the difference set with new point x.)

The types of constructions in Theorem 2.2 and 2.3 are both well-
known.

3. A=2.
Since v = 0, 1 (mod 3) in this case by Table 1, there are four subcases

to consider (A+m = A):

a. v=1(mod6)and A=6;

b. v=3(mod6)and A=4;

c. v=4(mod6)and A=3;and

d v=0(mod6)and A=3.
The values for the smallest possible A just above depend on v+1 (mod 6)
and Table 1. For example, consider Case b just above. Since v+ 1 = 1 (mod
3), the smallest index greater than 2, from Table 1 again, is A+m = 4.

Theorem 3.1 Suppose there exists X = BIBD(v, 3, 2) for v = 1 (mod 6).
Then there exists a minimal enclosing Y = BIBD(v+1, 3, 6).
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Proof: We construct blocks for Y by using one copy of the blocks for X,
four copies of a cyclic Z = BIBD(v, 3, 1), and expand new point x with a
difference set as in the proof of Theorem 2.3. Since x will appear six times
in blocks with each other element, the index is six.

Theorem 3.2 Suppose v = 3 (mod 6) and X = BIBD(v, 3, 2). Then there
exists a minimal enclosing Y = BIBD(v+1, 3, 4).

Proof: We construct blocks for Y by using the blocks from X and from two
copies of a Kirkman triple system Z = BIBD(v, 3, 1). Thus the index is 4 for
pairs of elements of V. Now just expand two resolution classes with x.

Example 3.3: For the family v = 6 (mod 12), we have an enclosing for the

smallest v, an enclosing for a triple system (6, 3, 2) into a triple system (7,

3, 3). Take the blocks of the (6, 3, 2) together with the following blocks:
{7,1, 4}, {7,i, 5}, {7.}, 6}, fori= 1, 2, 3, and {1, 2, 3}, {4, 5, 6}.

Theorem 3.4 We can minimally enclose a triple system BIBD(v, 3, 2) into
a triple system BIBD(v+1, 3, 3) whenv =0, 4 (mod 12).

Proof: If v =0, 4 (mod 12), then a group divisible design of block size
three, group size four, index 1, exists [12]. The result follows from the
Theorem 1.1.

Note that if v is even, then for a triple system (v, 3, 2) to exist, v=0, 4
(mod 6); so the construction for Theorem 3.7 gives only half the necessary
enclosings for Case (c) and Case (d).

Example 3.5.a: The following case is of interest. Suppose we wish to
enclose a triple system X = BIBD(10, 3, 2) into a triple system Y =
BIBD(11, 3, 3). We know {3, p.236] that a PBIBD(10, 10, 3, 3, 6, 3, 1, 0)
exists. The blocks of Y are the blocks of X together with the blocks of the
PBIBD
{1,2,3}, {1, 5,6}, {1,4,7}, {2, 5, 8}, {2, 4, 9},
{3, 6, 8}, {3, 4, 10}, {5, 7,9}, {6, 7, 10}, {8, 9, 10}.
Then construct new blocks with element 11 based on the blocks of the
PBIBD as follows:
{11,1,8}, {11, 1,9}, {11, 1, 10}, {11, 2, 6}, {11, 2,7},
{11,2,10}, {11, 3, 5}, {11, 3, 7}, {11, 3, 9}, {11, 4, 5},
{11, 4,6}, {11, 4, 8}, {11, 5, 10}, {11, 6,9}, {11, 7, 8}.
Note that if element a has three second associates, say b, c, and d, we will
construct new blocks {x, a, b}, {x, a, ¢}, {x, a, d}. Having n,, the number of
second associates, equal 3 is critical to the construction.

Example 3.5.b: We next illustrate another enclosing with the same
parameters of Example 3.5.a, but the examples are non-isomorphic. We use
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{1, 2, 5} as a partial difference set to generate 10 blocks. We observe that
the non-zero differences generated by {1, 2, 5}, namely 1, 3, 4, 6, 7, and 9,
omit the differences 2, 5, and 8. This means that the element 1 is not in a
block with 1+2, 1+5, or 1+8. Also, 2 is not in a block with 2+2, 2+5, or
2+8; and so on. Thus, each element has three second associates. It follows
by Theorem 1.1 that a BIBD(10, 3, 2) may be enclosed in a BIBD(11, 3, 3).

It is convenient to restate Theorem 1.1 with parameters needed for this
section.

Lemma 3.6 Suppose v = 6t for some t > 1 and suppose there exists a
partially balanced design with parameters (v = 6t, b = v(v-4)/6, r = (v-4)/2, k
=3, m=v-4,m=3 A =1, A, =0). Then we can minimally enclose a
triple system (v, 3, 2) into a triple system (v+1, 3, 3).

Lemma 3.7 If a GDD(6') exists (i.e., with group size 6, index I, block size
3), then there exists a PBIBD with parameters as in Lemma 3.6.

Proof: Suppose G is the GDD. For each group, G;, G, ..., G, we partition
the group arbitrarily into two subsets of size 3, G; fori=1,2,....tandj=1,
2. The blocks of the PBIBD are the blocks of the GDD and the blocks Gj
for all i, j. Now each v in G;, is a second associate for the 3 elements in Gy,
and vice-versa,

Theorem 3.8 If v =0 (mod 6), then there is a minimal enclosing for any
BIBD(v, 3, 2) into a BIBD(v+1, 3, 3).

Proof: To enclose BIBD(6, 3, 2) into BIBD(7, 3, 3), see Example 3.3. To
enclose BIBD(12, 3, 2) into BIBD(13, 3, 3), add Z = GDD(4%). Next, for
any group G = {a, b, ¢, d} in Z, put each pair of points of G in a block with
13. For v > 12, the GDD required for Lemma 3.7 exists [12]. Now the
theorem follows by Lemma 3.6.

This theorem completes Case d, above. For A = 2, it only remains to
deal with v = 10 (mod 12). The next example is suggestive of a method
which was the key element in our proof of this last case.

Example 3.9 We give an example for v = 22 similar to Example 3.5.b. We
create blocks by developing the following difference sets: {1, 2, 5}, {1, 3,
9}, and {1, 8, 18}, mod 22. These 66 blocks give a PBIBD(22, 66, 9, 3, n;=
18, n;=3, A, = 1, A, = 0) design. It may be checked that the differences not
created by the three difference sets are 9, 11, and 13. Then, for any u in the
design, {u+9, u+11, u+13}, calculated mod 22, are second associates for u.
This shows we can enclose a BIBD(22, 3, 2) into a BIBD(23, 3, 3) by
Theorem 1.1.
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Theorem 3.10 Suppose v =4 (mod 6). Then there is a minimal enclosing of
X = BIBD(v, 3, 2) into Y= BIBD(v+1, 3, 3).
Proof: To inclose BIBD(4, 3, 2) into BIBD(S, 3, 3), put each pair of points
of X in a block with new point x. The rest of case v = 12t + 4 is done in
Theorem 3.4. The case v = 10 is in Example 3.5. Now suppose v =12t + 10
for t > 1. We provide a (partial) difference family for a PBIBD(v, b, r, 3, n;
=v-4, 0,=3, =1, ,,=0):
{0,1,3t+3}, {0,3,3t+4}, {0,5,3t+5},...,{0,2t+1, 4t + 3}, and
{0, 2, 5t + 5}, {0, 4, 5t + 6}, {0, 6, 5t + 7}, ..., {0, 2t, 6t + 4}.
It is easily checked that three differences are missing: St + 4, 6t + 5 (the
center point), and 7t + 6. For any u in the design, these determine the
second associates of u, as in Example 3.9. Now the result follows by
Theorem 1.1.

4. A=3.
In this case, BIBD(v, 3, 3) exist for v = 1, 3, 5 (mod 6), and the respective
minimum index values for an enclosing are 6, 4, and 4, from Table 1.

Theorem 4.1 For every X = BIBD(v, 3, 3) with v =3 (mod 6), there is a
minimal enclosing Y = BIBD(v+1, 3, 4).

Proof: Let Z be a Kirkman triple system BIBD(v, 3, 1). The blocks of Y
are the blocks of X, the blocks of Z, and we expand new point x with two
resolution classes of Z. Clearly A = 4.

Theorem 4.2 For every X = BIBD(v, 3, 3) with v = 1 (mod 6), there is a
minimal enclosing Y = BIBD(v+1, 3, 6).
Proof: The proof uses the same construction as the proof of Theorem 2.3.

Theorem 4.3 For every X = BIBD(v, 3, 3) with v =5 (mod 6), there is a
minimal enclosing Y = BIBD(v+1, 3, 4).
Proof: First suppose v = 12t + 11. Then the same difference family from
the proof of Theorem 3.10 generates a cyclic PBIBD(12t+11, 3, n; = 12t+6,
n, =4, Ay = 1, Ay = 0) — just develop the difference family mod 12t+11
instead of 12t+10. Now, however, there are 4 differences missing, 5t+4,
6t+5 and their complements (mod 12t+11), namely 7t+7 and 6t+6. This case
now follows by Theorem 1.1. (For v = 11, use only the first difference set.)
Next, to enclose BIBD(5, 3, 3) into BIBD(6, 3, 4), just put new point X in
blocks with each pair of points of X. Supposet > 0 and v = 12t + 5. Then
the following difference family,

{0, 1, 3t+1}, {0, 3, 3t+2}, {0, 5, 3t+3}, ..., {0, 2t-1, 4t},

{0, 2, 5t+3}, {0, 4, 5t+4}, {0, 6, 5t+5}, ..., {0, 2t, 6t+2},
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when developed, produces a cyclic PBIBD(12t+5, 3, n; = 12t, n, =4, A; = 1,
A2 = 0). The four differences missing are 4t + 1, 8t + 4, 5t + 2, and 7t + 3.
Again, this case now follows by Theorem 1.1.

5 A=4
In this case, v =0, 1 (mod 3). Set A+m = A. The subcases to consider are
similar to the A = 2 case:

a v=1(modé6)and A=6;
b. v=3(mod6)and A=6;
¢. v=4(mod6)and A =6; and
d v=0(mod6)and A=35.

The values for the smallest possible A just above depend on v+1 (mod 6)
and Table 1. For example, consider Case b just above. Since v+ 1=4=1
(mod 3), the smallest suitable index greater than 4, from Table 1 again, is A
=6,

Theorem 5.1. Suppose there exists X = BIBD(v, 3, 4) for v = 1 (mod 6).
Then there exists a minimal enclosing Y = BIBD(v+1, 3, 6).

Proof: We construct blocks for Y by using one copy of the blocks for X
and two copies of a cyclic Z = BIBD(v, 3, 1). Thus the new index is 6 for
any pair of elements of V. As in the proof of Theorem 2.3, we expand new
point x with one of the difference sets for one of the copies of Z.

Theorem 5.2 Suppose v = 3 (mod 6) and X = BIBD(v, 3, 4). Then there
exists a minimal enclosing Y = BIBD(v+1, 3, 6).

Proof: The proof uses the same construction as Theorem 2.2 but with two
Kirkman triple systems and 3 resolution classes.

Theorem 5.3 Suppose v =4 (mod 6). Then for any X = BIBD(v, 3, 4) there
is a minimal enclosing of X into Y = BIBD(v+1, 3, 6).

Proof: To enclose BIBD(4, 3, 4) into BIBD(5, 3, 6), form two copies of
each pair of points of X and put them in blocks with new point x. Suppose v
= 12t + 4 for t > 0. In this case a cyclic BIBD(v, 3, 2) exists. Use the
construction from Theorem 2.3. Suppose v =12t + 10 for t > 0. Let Z be the
PBIBD(v, 3, 2) from Theorem 3.10. Then the blocks of Y are the blocks of
X and the blocks of Z supplemented as follows. For each u in X, with
second associates (b, ¢, d), we add two copies of blocks {x, u, b}, {x, u, ¢},
and {x, u, d}, without further repeating blocks. Then the new index is 6.

Proposition 5.4 Suppose X = BIBD(6t, 3, 4). Then there is a minimal
enclosing of X into Y = BIBD(6t+1, 3, 5).

Proof: To enclose BIBD(6, 3, 4) into BIBD(7, 3, 5), put each pair of points
of X in a block with new point x. To enclose BIBD(12, 3, 4) into BIBD(13,
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3, 6), add the blocks of Z, a resolvable GDD(43). Next, for each group {a, b,
¢, d} of Z, add blocks

{a, b, 13}, {a,c, 13}, { 8, d, 13}, {b, ¢, 13}, {b, d, 13}, {c, d, 13}.
Next expand a resolution class of Z with new point 13. For t > 3, there
exists a GDD(6'). The group-mates of any element u are second associates
of u so Theorem 1.1 may be applied for the remaining cases.

6. A=5
In this case, v =1, 3 (mod 6).

Theorem 6.1 If v =1 (mod 6), then for every BIBD(v, 3, 5) there is a
minimal enclosing BIBD(v+1, 3, 6).

Proof: The construction is just like that in the proof of Theorem 2.3, with
one copy of Z.

Theorem 6.2 Suppose v =3 (mod 6) and X = BIBD(v, 3, 5). Then there is a
minimal enclosing Y = BIBD(v+1, 3, 6).

Proof: The blocks of Y are those of X and, as in the proof of Theorem 2.2,
those of Z, a Kirkman triple system. Note A = 6 for elements of V. Since
the number of resolution classes is (v-1)/2, there are at least 4 resolution
classes for any Z we are considering since v 2 9. Therefore, expand new
point x with any 3 resolution classes of Z.

7. A=6

In this case v > 3. Here are the cases with A+m = A:
a. v=1(mod 6), A = 12.
b.v=2(mod 6), A=17.
c.v=3 (mod 6), A=8.
d.v=4(mod6),A=9.
e.v=5(mod6), A=8.
fv=0(mod6),A=17.

Theorem 7.1 Suppose X = BIBD(6t+1, 3, 6). Then there exists a minimal
enclosing Y = BIBD(6t+2, 3, 12).

Proof: Suppose Z = (6t+1, 3, 1) is a cyclic Steiner triple system. Then the
blocks of Y are the blocks of X, the blocks of six copies of Z, and expand
new point x with two difference sets.

Theorem 7.2 There exists a cyclic PBIBD(6t+2, 3, nj=6t—6,n, =7, 4; =
1,,=0) fort> 1.

Proof: We first construct a nearly full set of difference triples {a, b, a+b}
where atb < v/2 = 3t+1. A cyclic PBIBD will occur by replacing each
difference triple with a corresponding difference set {0, a, at+b} and
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expanding the difference set. Each difference set determines the differences
+ a, + b, £ (atb) evaluated mod v. First suppose t is even and v/2 = 6n+1
for some n. The triples are

{1, 3n, 3n+1}, {3, 3n-1, 3n+2}, ... {2n-1, 2n+1, 4n}, and

{2, 5n, 5n+2}, {4, Sn-1, 50+3}, ... {2n, 4nt+1, 6n+1}.
Note the point 5n+1 is not among the triples. We remove the last triple, {2n,
4n+1, 6n+1}, from our list. The remaining triples are used to form a cyclic
PBIBD. The differences not determined by the difference sets are + 2n, +
(4n+1), £ (6n+1), + (5n+1). Since 6n+1 = -(6n+1) evaluated mod v, there
are 7 differences missing from the difference sets, and we have n; = 7 in the
PBIBD. This proves the theorem for even t using Theorem 1.1.

Now suppose t is odd, say t = 2j-1 for some j, and v/2 = 6j-2. The
difference triples are

{1, 3j-1, 3j}, {3, 3j-2, 3j+1}, ... {2j-1, 2j, 4j-1}, and

{2, 55-2, 5}, {4, 5i-3, 5j+1}, ... {2j-2, 4j, 6j-2}.
The point not listed is 5j-1. As in the previous case, we delete the last triple
containing v/2 = 6j-2, and the result follows as before.

Theorem 7.3 Suppose X = BIBD(6t + 2, 3, 6). Then there exists a minimal
enclosing into Y = BIBD(6t+3, 3, 7).

Proof: To enclose BIBD(8, 3, 6) into BIBD(9, 3, 7) just put each pair of
points of X with new point x. For t > 1, use Theorem 7.2 and Theorem 1.1.

Theorem 7.4 Let v = 6t + 3. There is a minimal enclosing of X = BIBD(v,
3, v-3)into Y = BIBD(v+1, 3, v-I).

Proof: Let R be the replication number for Y. Then R = v(v-1)/2 which is
the number of pairs of elements for V. In order to construct Y from X, we
just need to add the blocks of Z = BIBD(v, 3, 1) and add block {x, a, b} to
X for each pair a,b in V, with no repetition of blocks. Note the index for x is
v-1, the number of pairs of V containing each element u of X.

Theorem 7.5 Suppose X = BIBD(6t+3, 3, 6). Then X may be enclosed in a
minimal Y = BIBD(6t + 4, 3, 8).

Proof: Let Z; = BIBD(6t + 3, 3, 1) be a cyclic Steiner triple system (we
may assume v > 9 since Theorem 7.4 covers the v = 9 case) and let Z; =
BIBD(6t+3, 3, 1) be a Kirkman triple system on the same elements as X.
Form blocks for Y using X, Z,, and Z, This makes the index 8 for all
elements of Y except x. For one difference set in Z;, and the blocks
developed from it, we expand with new point x. This brings the index up to
6 for x (and leaves the index for elements of X unchanged). In one
resolution class of Z, expand with new point x. Then the index is 8 for all
elements of Y.
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Theorem 7.6 (a) If X = BIBD(6t+4, 3, 6) then there is a minimal enclosing
of Xinto Y = BIBD(6t+5, 3, 9). (b) If X = BIBD(6t+4, 3, 6) then there is an
enclosing of X into Y = BIBD(6t+5, 3, 12).

Proof: For part (a), first enclose BIBD(4, 3, 6) into BIBD(S, 3, 9) by taking
3 copies of each pair from (1, 2, 3, 4} and make blocks with 5. To enclose
BIBD(10, 3, 6) into BIBD(11, 3, 9), take each pair formed from{1, 2, ... ,
10} and make blocks with 11; then add the blocks of any BIBD(10, 3, 2).
Now let Z = GDD(4™*") the group design on 12t+4 points, block size 3,
index 1, and group size 4. Add the blocks of 3 copies of Z to those of X,
and, for each group of 4 elements, take 3 copies of each of the pairs from
those elements to make blocks with 6t+5. For v = 12t+10, let Z be the
PBIBD from Theorem 3.10. Add the blocks of 3 copies of Z to those of X.
Then, for any point u of X, use 3 copies of the pairs {u, 5t+4+u}, {u,
6t+5+u}, and {u, 7t+6+u} and make blocks with 12t + 11.

For part (b), enclose BIBD(4, 3, 6) into BIBD(S, 3, 12) using 4 copies
of each pair of points of X in a block with new point x. Next add the blocks
of one copy of BIBD(4, 3, 2). To enclose BIBD(10, 3, 6) into BIBD(11, 3,
12), add 3 copies of a cyclic BIBD(4, 3, 2) and expand two difference sets
with new point x. Now let t > 0. Suppose v = 12t + 10. Let Z, denote any
BIBD(12t+10, 3, 2), and let Z, denote the PBIBD on 12t+10 points
constructed in the proof of Theorem 3.10. Then the blocks of Y are the
blocks of X and the blocks from two copies of Z, and two copies of Z,.
Now the index is 12 for all elements that are first associates in Z,. For
element u in X there are three second associates say {b, ¢, d} in Z,. For each
u, add two copies of blocks {x, u, b}, {x, u, c}, and {x, u, d} without further
repeating blocks. Now the index is 12 for all elements of X and is six for the
element x. Since Z, is cyclic, use one difference set to augment the set of
blocks as in the proof of Theorem 2.3. Now suppose v = 12t + 4. In this
case a cyclic BIBD(v, 3, 2), say Z, exists. Then the blocks for Y are the
blocks from X and 3 copies of Z. These are supplemented using two of the
difference sets for Z as in Theorem 2.3.

Theorem 7.7 Suppose X = BIBD(6t+5, 3, 6). Then there is an minimal
enclosing of X into Y = BIBD(6t+6, 3, 8).

Proof: To enclose BIBD(S, 3, 6) into BIBD(6, 3, 8), put new point x into 2
blocks with each pair of points of X. The two general cases v =12t + 5 and
v = 12t + 11 are both handled using the PBIBD’s developed in the proof of
Theorem 4.3. In each case for v, we use the blocks from X, the blocks from
two copies of the PBIBD, and two copies each of the 4 blocks indicated as
in the proof of Theorem 4.3.

For the last case of this section, v = 6t, for some t > 0. We first

complete the question posed by Example 1.2, i.e., what BIBD gives a
minimal embedding for a (6, 3, 6) triple system?
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Example 7.8 We recall the v =6 = A case is the first in which the minimal
parameters do not give the enclosing (Example 1.2). However, there exists a
minimal enclosing of A = BIBD(6, 3, 6) into B = BIBD(7, 3, 8). The
necessary blocks to create B from A are the following: use the blocks of A
and ’

{7.1,2},{7,1,2},{7,1,3}, {7, 1,3}, {7, 1,4}, {7, 1,4}, {7, 1, 5},
{7.1,6},{7,2,5},{7,2,5},{7,2,6}, {7, 2,6}, {7,2,3}, {7, 2,4},
{1,3,4},{7,3,5}, {7, 3,5}, {7, 3,6}, {7, 3,6}, {7, 4,5}, {7, 4,5},
{7,4,6},{7,4,6}, {7, 5,6}, {1,5,6}, {2, 3, 4}.

Theorem 7.9 Suppose t > 1. Then X = BIBD(6t, 3, 6) can be enclosed into
Y =BIBD(6t+1, 3, 7).

Proof: In view of Example 1.2 we may assume t > 2. In this case there
exists a resolvable Z = GDD(2*). Use the blocks of X, of Z, expand point x
with 3 resolution classes, and for each group {a, b} add block {x, a, b}.

8. A new Necessary General Condition

The purpose of this section is to establish the next theorem, a new
general condition for enclosings for arbitrary k. Its consequences are quite
far reaching.

Theorem 8.1 A necessary condition for enclosing X = BIBD(v, k, A) into
Y = BIBD(v+s, k, A+m) is that

S ko1 (k =1+ 2v)2 (A + m)(k - 2) - 8(k - ymv(v - 1) .
2k - 1) 44 + m)(k - 2)(k —1)2

okt (k =1+ 2v)2 (A + m)(k — 2) — 8(k - ymv(v - 1)
C2(k-1) 44+ m)(k - 2)(k —1)2 '

Proof: Suppose that R is the replication number for Y and that {a;, a, ...,
a,} are the points of Y which are not in X. We count the "new" blocks for Y
which are not in X. The point a, will appear in R distinct new blocks. Point
a; must appear in R-(A+m) new blocks without a,. Point a; must appear in
R-2(A+m) new blocks (that is, without either a, or a,; more new blocks are
needed if a), a,, and a; appear together in the same block), and so on. By
adding these it follows that at least sR - (A+m)s(s-1)/2 new blocks are
needed. Now let B and b be the total number of blocks in Y and X,
respectively. Since for any BIBD, vr = bk and A(v-1) = r(k-1), we get:
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b= V+sYA+m)v+s-1) _ﬂv(v—l)
k(k-1) k(k-1)

B- 2sR-(A+m)s(s-1)/2.

Substitute (A+m)(v+s-1)/(k-1) for R. If the resulting inequality is solved for
s, the theorem follows.

Corollary 8.2 A necessary condition for enclosing BIBD(v, 3, 1) into
BIBD(v+1, 3, A+m) is that v- 22 A/m.

Proof: This follows directly from the inequality developed in the proof of
Theorem 8.1.

Alternate versions of Corollary 8.2 can be further easily specialized for
selected values of s and m and k. The argument in Example 1.2 shows that
when s = m = 1, the index A must be less than the number v of points. The
corollary shows that in fact v - 2 2 A is necessary.

A further point may be illustrated by a new example. We have shown
in Theorem 7.3 that any B = BIBD(14, 3, 6) may be minimally enclosed
into C = BIBD(15, 3, 7). However, it follows from the previous theorem
that the next point-enclosing for B, with m = 1 and for a smallest v+s, may
possibly occur only for BIBD(27, 3, 7). Fork=3,v=14, m=1, we get

(s-13)s-2)20.
The entire range of s strictly between 2 and 13 is inadmissible and s = 2 is
not possible by Table 1. This type of gap will occur for any v, and it
suggests that the spectrum of enclosings has to be studied at each end. In
particular, the importance of considering small values of s is pronounced.

This curious gap was noticed in [1], but to explain fully we specialize
the formula in Theorem 8.1 for k= 3:

1+v YA +9)ZE A +m)? - dmv(y =14+ m)
s< - or
2 24 + m)

s l+v+\/(1+v)2(l+m)2 —4my - DA +m)

2 2(A+m)

These can be seen to be exactly equivalent to the formulas in Lemma 1.2 of
[1]. The derivation in [1] was for faithful enclosings, that is, for enclosings
in which each new block has at least one new point. Our derivation here is
much simpler, and it is for arbitrary k, not just k = 3. Furthermore, it shows
that the condition is a necessary one for all enclosings not just the faithful
type. The formula in [1] for k = 3 is also developed again in [8] but before
mentioning faithfulness.
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