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Abstract: We prove that a finite set A of points in the n-dimensional
Euclidean space R" is uniquely determined up to translation by three of its
subsets of cardinality |A|—1 given up to translation, i.e. the Reconstruction
Number of such objects is three. This result is best-possible.
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1 Introduction

In [5] Harary and Plantholt defined the Graph Reconstruction Number of
a finite graph of order n as the minimum number of its induced subgraphs
of order n — 1 given up to isomorphism that uniquely determine the graph
up to isomorphism.

This parameter is related to the famous Graph Reconstruction Conjec-
ture due to Kelly [6] and Ulam [14] which states that every finite graph of
order n is uniquely determined up to isomorphism by the multiset of its
induced subgraphs of order n — 1 given up to isomorphism (see e.g. [3] for
a good survey on this conjecture). The observation that many graphs of
order n are already uniquely determined up to isomorphism by very few of
their induced subgraphs of order n — 1 given up to isomorphism led to the
definition of the Graph Reconstruction Number. There are several results
about this parameter for special cases [4], [8], [9] and almost all graphs
have Reconstruction Number three [2].

The Graph Reconstruction Number and the Graph Reconstruction Con-
jecture have been generalized to various different combinatorial objects and
reconstruction problems for finite sets of points in R™ given up to isometry
have been considered by Alon, Caro, Krasikov and Roditty in [1] and by
Krasikov and Roditty in [7]. In [11] Radcliffe and Scott considered recon-
struction problems for infinite sets of real numbers given up to translation.
They observed that every finite set A C R is uniquely determined up to
translation by the multiset of its subsets of cardinality three given up to
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translation. This observation is easily extended to an arbitrary dimension.
Similar problems for subsets of Z, have been studied in [10]. In general
only few things are known about this kind of reconstruction problems for
infinite objects (cf. [11], [12] and [13]).

In the present paper we will prove that finite sets of points in R™ have
reconstruction number three, i.e. every finite set A C R™ is uniquely
determined up to translation by (at most) three of its subsets of cardinality
|A] = 1 given up to translation. This result is best-possible.

2 Results

We will first prove our result for dimension n = 1 and then extend it to an
arbitrary dimension. Two sets A, B C R" will be called isomorphic, if A
is a translate of B, i.e. A = B+ z := {b+ z|b € B} for some z € R". If
A, B C R™ are isomorphic, we will write A = B.

Theorem 1 Let A,B C R with |A| = |B| > 4 be two finite sets that are
not isomorphic and let a!,a},...,a. € A and b},b),...,b;, € Bber € N
different elements of A and B, respectively. For 1 < i < r let the sets
A\ {a!} and B\ {b}} be isomorphic.

Thenr < 2.

Proof: Let A' = {a},a)},...,a.} and B’ = {b},b),...,b.}. We assume that
r>3.

If we have max(A4) — min(A) > max(B) — min(B), then clearly A' C
{min(A), max(A)} and therefore r < 2. By symmetry, we assume that
max(A) —min(A) = max(B) - min(B). If A’ n(A\{max(A),min(A)})
then again 7 < 2 and hence we assume that a] € (4 {ma.x(A),m.m(A)})
This implies that b} € (B \ {max(B), min(B)}). Let @’ = a; and b' =
Possibly translatmg B, we may assume that

A\ {a'} = B\ {t'} = {a1,.,014/-1}

with
a1 < az < a3 <..<a- and a’ #b'.
There are indices 1 < %,j < |A| — 2 such that a; < @' < @i}y and a; < V' <
aj+1. Since @’ € A\ B and b' € B\ A, we have that A"\ {a'} C {a1,0/4/-1}
If either ay € A’ or aj4)—, & A’, then 7 < 2. Hence we assume that
A' = {a1,d',0)4|-1} and, by symmetry, B’ = {a1,}',a(4)-1}. Since o' €
A\ B, we obtain that

A\ {a1} = B\ {aj4)-1} and A\ {gj4-1} = B\ {a1}.
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If i < j, then, since a; € A’, we obtain that a;4; —a; = a;41 —a’ which is a
contradiction. Hence, by symmetry, we assume that i = j. Since |4| > 4,
either ¢ > 2 or |[A4] —i > 2. We assume without loss of generality that i > 2
(the proof for the case |A| — i > 2 works analogously.)

a; € A ajA|- 1€A

SIS N

Figure 1

Since a; € A’, we obtain a; — ai_; = @' — a; and since aj4)- L € A, we
obtain @; — a;_; = b’ — a; (see Figure 1). This implies that a’ = b’ and
hence A = B which is a contradiction and the proof is complete. O

The two sets {1,2,4} and {1, 3,4} are not isomorphic but their decks share
all three elements. Hence the assumption |4]| = |B| > 4 is essential for
Theorem 1. The following example gives an infinite class with » = 2. For
v,p € N with v, 0 > 2 let

Ay ={1,2,.,v}U{r+2,v+3,..,v+ pu+1}

and
Byy={1,2,.,v-1}U{r+1,v+2,. ., v+p+1}.

Clearly,

Avy # By, Avp\{v} = Byu\{v+1} and 4, ,\{1} = B, ,\ {v+u+1}.

The deletion of every other pair of elements of A,, and B,, does not
create two isomorphic sets. We now extend Theorem 1 to an arbitrary
dimension n € N.

Theorem 2 Let A,B C R" with |A| = |B| > 4 be two finite sets that are
not isomorphic and let a,,a,...,ar € A and by,bs,....b, € Bber € N
different elements of A and B, respectively. For 1 < i < r let the sets
A\ {e;} and B\ {b;} be isomorphic.

Thenr < 2.
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Proof: If the elements of A are collinear, then either the elements of B are
collinear or obviously r < 1. If the elements of both, A and B, are collinear,
then the result easily follows from Theorem 1. Hence we assume that
neither the elements of A nor the elements of B are collinear. Furthermore,
we may assume that for some (unique) z € R

A\{a1} = B\ {b1} and that A\ {as} = (B\ {b2}) +=.

Since a; € (A \ {az2}) \ (B \ {b2}), we have that z # (0,0, ...,0).
We will often use the trivial fact that S # S + z for some finite, non-
empty set S. We consider two cases.

Case 1: a; € {b1 +'i-:c|i € Z}.

Since |AN {by +i-z|i € Z}| = |BN{by +i-z|i € Z}|, we have that
either az,b; € {by +i-z|i € Z} or a3,bs & {by +%-x|i € Z}. Note that
A,B ¢ {by +i-z|i € Z}, since neither A nor B are collinear.

If az,be € {bl +i-z|i € Z}, then

A\{by+i-zli € Z} = (B\{b1 +i-zli € Z})+z = (A\ {1 +i-z|i € Z}) +=

and A\ {by +i-z|i € Z}, B\ {by +i-z}i € Z} # 0 which is a contradiction
to the finiteness of A and B. Hence ap,b2 & {b1 + % - z|i € Z}.

If for some a € A we havea € {b) +i-z|i € Z} and a # a;, thena € B
and a+z € A. This and the finiteness of A easily imply thata; = b1 +j-z
for some j € N and

Ar\{bl +i'$|’i€Z}={b1 +z,by+2:z,..,b +]".'L‘}
and
Bn{b1 +i'$|i€Z}={b1,b1 +$,b1+2'$,...,b1+(j—1)'$}.

If for some a € A we have a € {az+i-z|i € Z} and a # bz, then a € B and
a+z € A. This and the finiteness of A easily imply that by = a2 + k- z for
some k € Np = {0,1,2,...} and

ANn{ag+i-z|i € Z} = BN{ay +i-zli € 2} = {az,a2+, ..., b2 = a2 +k-z}.

Again using the finiteness of A and B and similar arguments as above we
obtain that

A,BC{bi+i-zli € Z}U {az +i-z|i € Z}
and hence (see Figure 2)

A={b1 +z,00+2:2,..,0 +j-z}U{a2,a2+1-x,...,a2+k-:c}
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and

B= {bl,bl +2z,..,0 +(j —1) ':E}U{az,az +a:,...,a2+k-z}.

A B
bhh b +z ay b by+= ay
(o] [ J [ ] ® [ J ® [ J [ J [ ] (]
® [ ] [ J [ J [ ] [ J
ap by a2 ba
Figure 2 .

Now it follows easily from the assumption |4| = |B| > 4 that r < 2.
Case 2: a) & {by +i-z|i € Z}.

If for some a € A we have a & {b; + i - z|i € Z} and a # a; (note that a,
satisfies these assumptions), then a — £ € B and a — z € A. This and the
finiteness of A easily imply that a; = a; — j - z for some j €N and

An{a, +i-zli € 2} = {az,02 + 2, ...,a1 = a2 +j - z}

and
BN{a +i-zli € Z} = {as,a2 + 7,...,a2 + ( - 1) - z}.

If for some b € B we have b € {by + - z|i € Z} and b # b, (note that b,
satisfies these assumptions), then b+ z € A and b+ z € B. This and the
finiteness of A easily imply that b, = by + k - z for some k € N and

An{bl +i'$|i€Z}={b1 +z,b +2-w,...,b2=bl+k-z}
and
Bﬂ{bl +'i-.’L’|’l:€Z}={b1,b1 +z,b+2.2,..,bp=b +k'.’l:}.

Again using the finiteness of A and B and similar arguments as above we
obtain that (see Figure 3)

A={ayar+z,.,a1=as+j-z}U{bi+2,0,+2-2,...bp = b, +k-z}
and

B= {az,az +z,...,0.2+(j—1)‘$}U{b1,b1 +z,bp+2-2,...,bb = b +k-a;}.
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Now it follows easily from the assumption |A| = |B| > 4 that r < 2. O

With some more effort the arguments used in the proof of Theorem 2 will
yield a characterization of all pairs of finite sets A and B in R™ for which
the decks share two elements.

As an open problem it is possible to consider the analogous question for
subsets of smaller cardinality |A| — k for some k > 2.
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