Mimimum Degree and the Number of Chords*

Jan Kéral Daniel Kral’t

Abstract
We address the following problem: What minimum degree forces
a graph on n vertices to have a cycle with at least ¢ chords? We
prove that any graph with minimum degree § has a cycle with at least
Mé&—_zz chords. We investigate asymptotic behaviour for large n
and ¢ and we consider the special case where n = c.

1 Introduction

It is an easy exercise to prove that a graph with minimum degree at least
three has a cycle with at least one chord (it must actually have a cycle with
two chords). A natural question is: What minimum degree forces a graph
on n vertices to have a cycle with ¢ chords? We mean by “a cycle with
¢ chords” “a cycle containing at least ¢ chords”. Peter Hamburger asked
about the following special case of that problem: What minimum degree
forces a graph on n vertices to have a cycle with n chords? The first results
on this problem can be found in [2]:

Theorem 1 Let G be a graph on n vertices with minimum degree at least
2/n. Then G has a cycle with at least n chords.

This result was improved in [1]:

Theorem 2 Let G be a graph on n vertices with minimum degree at least
14+ +/2n+ 1. Then G has a cycle with at least n chords.

Theorem 2 is a corollary of the following theorem, also proved in [1], which
gives a partial answer to a more general problem “What minimum degree
forces a graph to have a cycle with at least ¢ chords?”:
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Theorem 3 Let G be a graph with minimum degree . Then G has a cycle
with [f;—”] chords.

We improve this bound to L‘s"'—l)é(ﬂ in Section 2 (Theorem 4); this value
cannot be further improved without additional assumptions on the graph
G. Thus we improve the bound of Theorem 2 to 1/2 + /2n +9/4. We
address the original Hamburger’s problem in Section 3 — we calculate lower
and upper bounds on the minimum degree of graphs on n vertices from
Hamburger’s problem which differ by at most one (Theorem 5); our bounds
meet for about half of n’s.

We consider the generalization of Hamburger’s problem in Section 4.
We introduce the function f(n,c) which is equal to the minimum degree
which forces a graph on n vertices to have a cycle with ¢ chords. Note that
f(n,c) is defined only for 0 < ¢ < “253". We prove that f(n,c) is linear in
/¢ and it does not depend substantially on n (Theorem 6). We investigate
the behaviour of f(n,c) for n going to infinity for various choices of ¢ as
function of n in Theorem 7.

2 Tight Bound for the Number of Chords

We prove the lower bound on the number of chords in a cycle in a graph
with minimum degree & in this section. This improves Theorem 3. Our
bound is sharp — it is achieved by infinitely many graphs (consult the
proof of Theorem 7), e.g. by Ksi1.

Theorem 4 Let G be a graph with minimum degree 6 > 2. Then G con-
tains a cycle with at least i""’—léﬂ chords.

Proof: The theorem trivially holds for § = 2; thus we assume further that
J is at least 3. We set for a path P = v1,...,v, the number k(P) to be
the maximal 7 such that there is an edge v,v; in G and the number {(P)
to be the length of P (i.e. n). Let P be the path with maximal [(P) (i.e.
the longest path in G) and among all such paths the path with maximal
k(P). Note that all the neighbours of v; are due to the maximality of
I(P) and the definition of k(P) among the vertices vg,...,vxp). Since
k(P) > & + 1 from trivial reasons, k(P) must be at least 4. Let P be the
path vg(p)—1,.. -, V1, Vk(P), - - -, Un; We Write U; = vg(p)—; for i < k(P) and
% = v; for i > k(P), ie. P =71,...,T,. Note that k(P) = k(P) and
I(P) = I(P), thus P is a path which could be chosen instead of P. Thus
also all the neighbours of 77 are among the vertices 7, ..., Ux(p). Let C be
the cycle vy,...,vkp). Note that v;77 is not an edge of C. We prove that

C has at least 16_+1)216_—21 chords.
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We consider vy to be vi(p) and Tp to be Ugp); this makes more clear
some arguments in the proof, since we can say e.g. that the edges of C are
the edges v;—,v; for 1 < i < k(P). We write N(v) for the set of all the
neighbours of v and we write V(C) for the set of the vertices of C. Let
M+ be N(v;); note that M+ C V(C). Let M be the set {v;|viy1 € MT}.
Note that |M| = |M*| = |[N(v,)| > 6. We claim that N(v;) C V(C)
for each v; € M. If this was not true, let v;w be an edge of G such
that w g V(C); i cannot be 1, since N(v;) C V(C). Consider the path
Uiy« +y UL, Vigl, .- -, Un. If w is not any of v; for 1 < j < n, we can extend
the path by w contradicting the maximality of /(P). Otherwise, if w = v;
it must hold j > k(P) contradicting the maximality of k(P). Thus no such
v; can exist and our claim is true. We define M+ to be N(77) and M to
be the set {T;|v337 € M+}; it also holds that N(7;) C V(C) for all 57 € M
and |M| > 6. Note also that the vertex vy = Tp = V(P) = Ug(p) is neither
in M nor in M.

We distinguish two cases to finish the proof:

o [M|>é+1lor [M|>6+1oc M#M
It holds that |M U M| > § + 1 in this case and it also holds N(w) C
V(C) for each w € MUM. Thus each vertex of M UM is adjacent to
at least § — 2 chords and the cycle contains at least g‘si%(ﬁl chords
(each chord can be counted at most twice, once for each of its ends).

e M=Mand |M|=|M|=4
We use discharging technique argument in this case. We assign each
chord of C two units and to the edges vov; Tov; one unit. We dis-
tribute these units to the vertices of M according to the following
rules:

— The chord connecting two vertices in M will give one unit to
each of them.

— The chord connecting a vertex in M different from v; and 77 to
a vertex not in M will give two units to the vertex in M.

— The edges v,v; for 3 < ¢ < k(P) will give one unit to v;_; and
in case that i < k(P) also one unit to v;.

— The edges 77%; for 3 < ¢ < k(P) will give one unit to 7;—7 and
in case that i < k(P) also one unit to 7.

Each vertex of M got at least § — 1 units:

— Let w € M such that both its neighbours (in C) are also in M.
Note that w is neither v; nor 77, since vg is not in M. There are
at least § — 2 chords adjacent to w. Each chord connecting w
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with another vertex of M gave one unit to w. There is at most
§ — 3 such chords, since w and both its neighbours are in M. All
the other chords gave two units to w. Thus w got at least § — 1
units.

— Let w € M such that at least one of its neighbours (in C) is not
in M.
Each of § —2 adjacent chords to w gave it one unit. Let u be that
neighbour of w which is not in M. Assume w.l.o.g. that w = v;
and u = v;41; otherwise the same will be used for w = 7; = v;
and u = G731 = vi—1. The vertex u is in M* and thus adjacent
to vy, since w € M. The edge uv; gave one unit to w. Thus w
got at least 4 — 1 units.

The vertices of M got together at least §(0 — 1) units. They got at
least 6(6 — 1) — 2 = (6 + 1)(§ — 2) units from chords of the cycle C
and thus there are at least ﬁlé‘s;z)— chords.

O

The immediate corollary of this theorem related to Hamburger's problem
is following:

Corollary 1 Let G be a greph with minimum degree k on n < "2‘2#
vertices. Then G contains a cycle with n chords.

3 Hamburger’s Problem

We address the original Hamburger’s problem in this section. We say that
G has minimum degree almost k iff there is at most one vertex of degree
k —1in G and the degree of all the other vertices of G is at least k. We
write LX (k < n) for a graph on n vertices with minimum degree almost
k. The existence of Lﬁ follows easily from the fact that K, is 2-factorable
if n is odd and 1-factorable if n is even. Note that the number of chords
in any cycle of Lk is at most 1("—2'—21 We first develop some construction
techniques for graphs without cycles with a lot of chords.

Lemma 1 Let Gy,...,Gi (I > 2) be graphs with minimum degree almost k
which do not contain a cycle with ¢ chords. Let n; be the number of vertices
of Gi. If Z:=1 n—1l+1<n< 22=1 ni, then there exists a graph on n
vertices and with minimum degree k which does not contain a cycle with c
chords.

Proof: Let v; be a vertex of G; of degree k — 1 if G; contains such vertex
or any of its vertices otherwise. Let I' = n — Yi_, n; + I. Let us consider
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a graph consisting of vertex—disjoint copies of G;. If I' < I, we identify
vertices vy, ..., v, i.e. we remove vertices vy 41,...,v; and we let the edges
leading to them to lead to vy, If ' > 1, we place a cycle vq,...,v to the
graph. The just obtained graph contains Y/ n;— (I—l') =n vertices and
its minimum degree is k. Each its cycle different from vy, ..., vy is entirely
contained in a copy of G; for some 7. Thus the just obtained graph does
not contain a cycle with ¢ chords. O

Lemma 2 There ezists a graph on n vertices and with minimum degree k
X k2 .
which does not contain a cycle with n chords if ==}+2 < n and k is odd.

Proof: Let n = ak + 8 where 1 < 8 < k; note that o > 451, We
distinguish three cases:

o Iff <, weset G;tobe L, for 1 < i < a. The sum of the numbers
of vertices of G; is a(k+1): a(k+1)—a+l=ck+1<n=ak+8<
a(k + 1). Since the number of chords in any cycle of Lf,, is at most
(k+1)(k 2) _

1.

o Ifa < B8 < 2a, we set G; tobeL+2for1<z<a The sum of the
numbers of vertices of G; is a(k+2): a(k+2)—a+1< ak+8 =
n < a(k + 2). The number of chords in any cycle of L}, is at most
(""'2)2“"2) "2‘4 But it holds that ak + a+1 < n and 5! < @,

thus ——+— <n The existence of the graph follows from Lemma 1.

‘2'° =2 the existence of the graph follows from Lemma

o The remaining case if 2a < . Since ,6 <k, it must be a = " 1 and
B = k in this case. We set G; to be L}, ; for 1 <i < . The sum of
the numbers of vertices of G; is a(k +3): a(k+3) at+l<ak+B8=
n < a(k + 3). The number of chords in any cycle of Lk +3 1S at most
@"U(k 2) = k2 k8. sincen = ak+f = —;— the number of chords
is Iess than n. The emstence of the graph follows from Lemma 1.

a

Lemma 3 There ezists a graph on n vertices and with minimum degree k
which does not contain a cycle with n chords if —+—- <n and k is even.

Proof: Let n = ak + B where 1 < 8 < k; note that a > k/2 and thus
it holds 8 < 2a for all n. We proceed as in the proof of Lemma 2. If
B < a then we use Lemma 1 for Lz +1» We use it for L’,§+2 otherwise.
Since the number of chords in any cycle of Lf,, and Lf, , is at most
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(k+2)2“°"3) = "2{ 4 Lemma 1 actually ensures the existence of the desired
graph. O

If n is a bit smaller than in the just proven lemma and % is even, we can
use another technique to construct the desired graph:

Lemma 4 There ezists a graph on n vertices and with minimum degree k

2
which does not contain a cycle with n chords if # <n< ﬁz-'—“ and
k > 8 is even.

Proof: Let K be the complete graph on k+ 1 vertices and let L be a graph
on k+2 vertices with the degree sequence equal to (k—21, k, ..., k) ( is going
to be chosen later). The graph L exists, since it is enough to consider the
complement of K; 2141 UK, U...UK,. Let § =n— "2—‘;—1?- anda=4%2-p
(x>0, since n < 5%). We first establish that a(k + 1) + 8(k +2) = n:

k-2 k2 —k—2
ak+1)+p(k+2) = (—2— -B)k+1)+B(k+2)= —2-+ﬁ=n
Create the graph G from o vertex disjoint copies of K and S vertex disjoint
copies of L. Choose vertices vy,...,0, in each copy of K arbitrary and
choose vertices vg41,...,Va+p t0 be the vertices with the smallest degree
in each copy of L; add the clique on vertices v1,...,Va+g to G. We need
that the minimum degree of G is at least k. Thus we want the following to
hold:

k< k-2+ (’“2;2—1)
k-4
2 < ——
- 2
k-4
< —_—
bs 4

We choose ! to be |3%]. Any cycle of G is fully contained in either the
clique on vertices v1,...,Va+g Or in a copy of K or in a copy of L. It has at
most !ﬂEMgL-iﬂ = "2‘—12"& chords if it is in the clique, "2"2'°‘2 chords
if it is in a copy of K and ("'*'2)“;“2)"2' = "2‘;‘2’ chords if it is in a copy
of L. We estimate the last fraction:

K-4-2 k2 —4-2(52 -1/2) _ kK -4-k/2+3 K —k/2-1
2 = 2 2 2

Thus if "2—'}3 < n, then the graph G has all the desired properties. O

The immediate corollary of Lemma 1, Lemma 2, Lemma 3 and Lemma 4
is the following theorem:
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n 5|16 |7(8]9|10(1112 (13| 14

f(n,n) 414|4|4|5[5[6 |66 ](6

lowerbound |4 [4f4)4 |5/ 5| 6| 6| 6|6

upperbound [ 4 [5}|5([5[|5]| 6 | 6 [ 6 |6 | 6
n 1516 |17 |18 |19 (2021 ] 22 [ 23 | 24
f(n,n) 6|6 |6 (6] 77?28 8]3S
lowerbound | 6 | 6 | 6 | 6 [ 7 [ 7 | 7 [ 8] 8] 8
upperbound | 7 | 7T | 7 (7 | 7|78 8| 818
n 2512627128 129[30(31(32]33]34
f(n,n) 8|8 |82 9|?2]?2]|91]09
lowerbound | 8 [ 8 [ 8 [ 8 | 8 |9 | 8|8 [9 ]9
upperbound | 8 [ 8 | 8 [ 9 ] 9 [ 9|9 ][99 ]9

Table 1: The values of the function f(n,n) from Hamburger’s prob-
lem and lower and upper bounds from Theorem 5; f(n,n) for n =
6,7,8,10,15,16,17,18 was calculated using methods not contained in this

paper.

Theorem 5 Let n be at least five. Then:

o f(n,n) =k if "2'2“4 <n< "2'2'°‘2 for even k

o either f(n,n)=k—1or f(n,n) =k ifn= -"—2% for even k

2 :
o f(n,n) =k if kz—Z.gkil.s <n<k =2k=3 o k’—§k+3 <n< kz-zk—z
for odd k

o cither f(n,n) =k —1 or f(n,n) =k if"z‘—gk‘*ﬁ <n< ’"2‘—225""—1 or
n = E=2kEl for o4q &

Note that the cases in the theorem are disjoint and they cover all the pos-
sibilities (gﬂﬁ'—zM = l‘—z-g-"-’i) The values of f(n,n) for small n can be
found in Table 1; we calculated some of the values (6,7, 8,10, 15,16, 17, 18)
in the table using some reasoning not contained in this paper. Theorem 5
gives us the following inequalities:

Corollary 2 It holds that |1+ +/2n—2] < f(n,n) < [1/2+ /2n + 9/4]
forn > 5.
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4 Generalization of Hamburger’s Problem

We want to address the generalization of Hamburger’s problem in this sec-
tion. We first develop some lower bounds on f(n, c) for the general case:

Lemma 5 Let s > 2 be a fized integer. Let c be at least 9/2(x + 1)? and
let n be at least kv/2¢c. There exists a graph G on n vertices and minimum
degree at least v/2c 3y which does not contain a cycle with ¢ chords.

Proof: Let k be | 2=]; note that kv2c < n < (k+1)v2cand k < k. We

split the n vertices of our graph G to k parts Vi,..., Vi of sizes [n/k| and
[n/k]. We claim that the following holds for all 1 5 1<k

V2e—-1< Vil £ V2e(1 +1/k) +1

The first inequality is clear from the definition of k. The average size of |V;|
is at most &1v/2c < &+1./2c. The size of each V; differs from the average
size by at most one, thus the second inequality also holds. Let m be further
V2c(1 +1/k) + 1, ie. |V;] <m for all i.

Let & be [v2¢c=%: =51 1- We place a copy of le' on each vertex set V;; we

need to check that |V;| > & + 1 for existence of LIV- E

K
i > V2c - >
Vil > V2c -1 2e—
1
k+1 3
c > 9/2(x+1)?

Let w; be any vertex of minimum degree in the subgraph placed on V;. We
add edges w;w;4; for all 1 < ¢ < k— 1. The minimum degree of all the
vertices is §, now. The just added edges do not introduce any new cycle
in G and thus all the cycles are only in the subgraphs placed on V;. We
prove that § < = 2"' + 2; then the number of chords of any cycle is bounded

by "'(62 =2) < m(2c/ ™) — ¢ and G does not contain a cycle with ¢ chords.
We prove that bound on 6 now and finish the proof of the lemma:

%, 2¢ to4 2 _ 2¢ 3
V2c(1+1/k) +1 V2e(1+1/k)  V2c(1+1/k)

oy (2¢)3/2(1 + 1/K) — (2¢)3/%(1 + 1/K) —

Ve

v

k+1 2¢(1+1/k)2 + V2c(1 + 1/)
V¢ K

V22— - +2>42
CFl VR AR +141/k o k+1
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Lemma 6 There is a graph G on n vertices and minimum degree at least
< which does not contain a cycle with ¢ chords.

Proof: Let k be the largest even integer strictly smaller than 2"’ + 2. Note
that k is at least 2. Let G be L% and let C be any cycle of G. The number

of its chords is at most 'C'(k'z) < "(k"z) <3¥x=caO
We first state that f(n, c) is linear in \/c:
Theorem 6 It holds that \/c/V2 < f(n,c) < 3/¢ for ¢ > 1.

Proof:

It easily follows from Theorem 4 that f(n,c) < 3/2 + /2c + 9/4. This
gives the upper bound for ¢ > 2. There is f(n,c) = 3 in the remaining case
¢ =1 and the upper bound holds also in this case. We distinguish several
cases to prove 1/v/2/c < f(n,c):

e c>4landn > 8¢
It follows 1/v/2,/c = 1/2v/2c < f(n,c) from Lemma 5 used for x = 2.

e n< \/—
It holds that 2¢/n < f(n,c) due to Lemma 6. But since 1/v/2\/c =
2¢/v/8c < 2¢/n, the lower bound follows.

e c<18
This case is trivial, since 1/v/2/c < 3 and 3 < f(n,c) from trivial
reasons for ¢ > 0. If ¢ = 0, then f(n,c) = 2 and the lower bound also
holds.

¢ 19<c<32
Since 1/4/2,/c < 4, we need to establish that 4 < f(n,c). There is n
at least 8 in this case in order f(n,c) to be defined. We use Lemma
1 for G; equal to L3 for 1 < i < [n/4] and n = 8,10,11,...; we use
Lemma 1 for G; = L} and G2 = L2 for n = 9. In both cases we have
a graph on n vertices with minimum degree 3 which does not contain
a cycle with 3 chords and thus 3 < f(n,c).

¢ 33<c<40

Since 1/v/2,/c < 5, we need to establish that 5 < f(n,c). There is n
at least 10 in this case in order f(n,c) to be defined. We use Lemma
1 for G; equal to L§ for 1 < i < [n/5] and n = 13,14,15,17,18,.. ;
we use Lemma 1 for G; = G2 = L§ for n = 10,11,12 and for G; =
G2 = G3 = L§ for n = 16. In all the cases we have a graph on n
vertices with minimum degree 4 which does not contain a cycle with
7 chords and thus 4 < f(n,c).
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We study asymptotic behaviour of f(n,c) in the next theorem:
Theorem 7 Let c: N' = N be any function.

o Iflim,_, 00 ¢(n) ezists, is finite and equal to co, then:
nllngo f(n,c(n)) = [1/2+ v/2¢o + 9/4]

o Iflim,_ o0 c(n) = 00, then limp— o0 f(n,c(n)) = 0.

o lim, 00 f(n,c(n)) is equal to lim,o0[1/2 + 1/2¢(n) + 9/4] if the

latter limit emists and lim, o f(n,c(n)) does not exist otherwise.
o Iflim,_o c(n) = 00 and lim, o c(n)/n? =0, then:

 flncln) _

n—o0 2c(n) -

Proof: In the first case, there exists ng such that c(n) = co for n > ny.
Let k = [1/2 + v/2¢co + 9/4]. The graph with minimum degree at least &
contains a cycle with at least gﬂ%ﬂ > ¢o chords due to Theorem 4.
On the other hand, if we use Lemma 1 for K (for n sufficiently large), we
immediately get that [1/2 + /2¢o + 9/4] < f(n,c(n)). If lim, oo c(n) =
00, the same construction gives that lim,_,., f(n,c(n)) = co. The third
case easily follows from the first and second one.

Let us focus our attention to the fourth statement of the theorem. The-
orem 5 assures the existence of a graph on n vertices without a cycle with
¢ chords for ¢ > 9/2(x + 1)? and n > k+v/2c. Since lim,—o0 ¢(n) = 0o and
lim, 00 ¢(n)/n? = 0, we can always choose large & for n large enough to
get the following:

liming L) 5 4

n—oo \/ﬁz -

On the other hand, the opposite inequality easily follows from Theorem 4.
m]

Conclusions

We have proved lower and upper bounds on values of f(n,n) which differs by
at most one, calculating for about half of n’s the exact value of f(n,n). The
interesting fact is that we managed to prove that f(30,30) = f(33,33) =9,
but we only proved that 8 < f(31,31), f(32,32) < 9. We believe that
f(31,31) = £(32,32) = 8 but we did not succeed in proving this. This
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would imply that f(n,n) is not increasing in n. Our belief is supported
by the fact that f(15,15) = f(16,16) = f(17,17) = f(18,18) = 6 which
is an analogous smaller case of f(31,31) and f(32, 32); we omit the proofs
of these equalities in the paper, since their proofs are very boring and
technical. This raises the following open problem: Prove that f(31,31) =8
or f(32,32) = 8. Or even, calculate f(n,n) for all n.

We addressed in Section 4 problems of more general interest. We calcu-

lated limy o0 "";c" for all functions c(n) such that lim,_, c(n)/n? =0

(for those for which the limit exists). What is (if it exists) the limit for ¢(n)
such that lim,,_, o, ¢(n)/n? = ¢ where 0 < ¢y < 1/2? The problem which is
obligatory to mention, but it seems to be extremely hard, is the following;:
Calculate f(n,c) for all n and c.

Note added in proof

Recently, our attention was pointed by Jeff Kahn to his joint paper [3].
This paper contains a slightly different proof of Theorem 4 which answers
the problem posed in [1].
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