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Abstract

If 7 is a vertex of a digraph D, then we denote by d* (z) and d~(z)
the outdegree and the indegree of z, respectively. The global irreg-
ularity of a digraph D is defined by ig(D) = max{d*(z),d™(z)} -
min{d*(y),d~(y)} over all vertices z and y of D (including z = y).
If ig(D) = 0, then D is regular and if ig(D) < 1, then D is almost
regular. .

A c-partite tournament is an orientation of a complete c-partite
graph. It is easy to see that there exist regular c-partite tourna-
ments with arbitrary large ¢ which contain arcs that do not belong
to a directed cycle of length 3. In this paper we show, however, that
every arc of an almost regular c-partite tournament is contained in
a directed cycle of length four, when ¢ > 8. Examples show that the
condition ¢ > 8 is best possible
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1. Terminology and introduction

In this paper all digraphs are finite without loops or multiple arcs. The
vertex set of a digraph D is denoted by V(D). If zy is an arc of a digraph
D, then we write £ — y and say z dominates y, and if X and Y are
two disjoint vertex sets or subdigraphs of D such that every vertex of X
dominates every vertex of Y, then we say that X dominates Y, denoted
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by X = Y. The number of arcs from X to Y is denoted by d(X,Y).
The out-neighborhood N+ (z) of a vertex z is the set of vertices dominated
by z, and the in-neighborhood N~(z) is the set of vertices dominating
z. The numbers d*(z) = [N*(z)| and d~(z) = |N~(z)| are called the
outdegree and indegree of z, respectively. If we speak of a cycle, then we
mean a directed cycle, and a cycle of length m is called an m-cycle. By
a(D) = a we denote the independence number of (the underlying graph of)
the digraph D.

There are several measures of how much a digraph differs from being
regular. In [6], Yeo defines the global irregularity of a digraph D by

ig(D) = zgg,%){d*(r),d'(z)} - xgl,i(np){d* (z),d™(=)}.

If ig(D) = 0, then D is regular and if ig(D) < 1, then D is called almost
regular.

A c-partite or multipartite tournament is an orientation of a complete
c-partite graph. A tournament is a c-partite tournament with exactly ¢
vertices.

It is very easy to see that every arc of a regular tournament belongs to
a 3-cycle. Our first example shows that this is not valid for regular multi-
partite tournaments in general.

Example 1.1 Let C,C’ and C” be three induced cycles of length 4 such
that C — C’ — C” — C. The resulting 6-partite tournament D, is 5-
regular, but no arc of the three cycles C,C’, and C” is is contained in a
3-cycle.

Let H,H,, and H3 be three copies of D; such that that H — H, —
H; — H. The resulting 18-partite partite tournament is 17-regular, but
no arc of the cycles corresponding to the cycles C,C’, and C” is contained
in a 3-cycle.

If we continue this process, we arrive at regular c-partite tournaments
with arbitrary large ¢ which contain arcs that do not belong to any 3-cycle.

However, recently the author [5] showed that every arc of a regular ¢
partite tournament belongs to a 4-cycle, when ¢ > 6. We even proved the
following more general result.

Theorem 1.2 (Volkmann [5]) Let V3, V5, ..., V; be the partite sets of an
almost regular c-partite tournament D. If ¢ > 6 and |V}| = |Vo| = ... =
[Vel, then every arc of D is contained in a 4-cycle, and the condition ¢ > 6
is best possible.
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In this paper we present the following supplement and extension of
Theorem 1.2. Let D be an arbitrary almost regular c-partite tournament.
If ¢ > 8 or if ¢ = 7 and there are at least two vertices in every partite set,
then every arc of D is contained in a 4-cycle. Examples show that these
conditions are best possible.

Further results on cycles containing a given arc in regular multipartite
tournaments can be found in papers by Guo [1] and Guo and Kwak [2].

2. Preliminary results

The following results play an important role in our investigations. The
first three lemmas can be found in a recent article of Tewes, Volkmann,
and Yeo [3].

Lemma 2.1 If V1,V5,...,V, are the partite sets of an almost regular c-
partite tournament, then ||V;| - |V;|| < 2for1<i<j<e.

Lemma 2.2 If D is an almost regular multipartite tournament, then

[V(D)| - a(D) -1
2

d*(z),d" () >
for every vertex x of D.

Lemma 2.3 If D is an almost regular c-partite tournament with the par-
tite sets V1, Va,..., Ve such that r = |[V1| < |V < ... < |V;| = r + 2, then
[V(D)| — a(D) = |[V(D)| — r— 2 is even.

The next corollary is an immediate consequence of Lemma 2.2 and
Lemma 2.3.

Corollary 2.4 If D is an almost regular c-partite tournament with the
partite sets V1, Va,...,Ve such that r = [V1| < V| < ... < [Ve| = r 4+ 2,
then
[V(D)| - a(D) _ [V(D)|-r—2
2 2

d*(z),d™(z) >

for every vertex z of D.

Lemma 2.5 (Volkmann [4] 1999) If X is a vertex set of an almost
regular digraph D, then

|X| > 1d(X, V(D) - X) - d(V(D) - X, X)|.
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3. Main results

Theorem 3.1 Let D be an almost regular c-partite tournament.

If ¢ > 8, then every arc of D is contained in a 4-cycle.

If c = 7 and there are at least two vertices in every partite set, then
every arc of D is contained in a 4-cycle.

Proof. Let V},Va,...,V, be the partite sets of D, |V(D)| = n, and
a(D) = a. Let now e = uv be an arbitrary arc of D, and suppose to
the contrary that e = uv does not belong to any 4-cycle. In the following
we denote by V(u) and V(v) the partite sets of D, containing u and v,
respectively.

If there are two vertices z,y € S := N*(v) N N~ (u) such that =z — y,
then uvzyu is a 4-cycle through e = wuv, a contradiction. Consequently,
S =0 or S is a subset of one partite set, say S C V(S). Let |S| = s and
define W = N=(u) = S. If R := V(D) — (N+(v) UW U {u,v}), then

|R| < n—d(u) —d*(v) +5-2. (1)

Since e = uv does not belong to a 4-cycle, we observe that there is no arc
from N*(v) to W. Hence, according to Lemma 2.5, we deduce that

Wl > [d(W,V(D)-W)-d(V(D) - W, W)
> |W|+d(W,N*(v)U{v}) - |R|IW|.
Let W = V{ UVJU...U V! such that V; # @ and assume, without loss of

generality, that V/ C V; for i = 1,2,...,k. This yields together with the
last inequality

k
IRIW| > d(W, N*(v) U {v}) > D IV/I(d* () + 1+ V| = Vi]).  (2)

i=1

If min;<;<.{|Vi|} = r, then, in view of Lemma 2.1, we have a < r+ 2. If
|[Vi] < »+ j for some j € {0,1,2} and for all i = 1,2, ...,k, then, because
of |[V/]>1fori=1,2,...,k, it follows from (2)

k
IRIIW| > Y IV I(d (v) + 2 =7 — §) = [W|(d*(v) + 2 —r — j),

i=1

and thus
|R| > d*(v) —r+2—j, 3)

when |[W| # 0. However, we will show at once that |W| = 0 is never
possible. Suppose that [W| = 0. This implies d~(u) = [S| < a. fa < r+1,
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then Lemma 2.2 leads to

n—a—-1_cr—r—-2

2 = 2
Therefore, we obtain 3r +4 > cr, a contradiction to ¢ > 8 and ¢ = 7 and
r > 2. In the case @ = r 4 2, Corollary 2.4 and the fact that n >er+2
yield the same contradiction.

If in addition, k > 2 in inequality (2) and |Vi| = r + 2 for exactly one
i € {1,2,...,k}, say |Vj| = r + 2, then it follows from (2) together with
Vil<r+1fori=2,3,...,k

r+12a> S| =d (4) >

k
RIW| > Y IV/I(d* () + 1+ |V}| - |Vil)

=1

k
> W@t (v)+2) - Vi(r+2) - > IV/I(r +1)

=2

= Wld*(@)+1-r) -V
Since k > 2, we have |W| > |V{|, and so the last inequality yields
IR > d*(v) - r+1. 4)

Now we start with the case that a = r. Combining this condition with
(1) and (3) for j = 0, we find

n—d”(u)~d*(v) +7-2>n—d " (u)—d+(v)+5-2> |R| > d+(v) —r+2
and hence, by Lemma 2.2

n+2r—4>2d%(v) +d(u) > g(n—r— 1).
This implies 7r — 5 > n = cr, a contradiction to ¢ > 7.

Next we assume that o = r+ 1. If s < r, then it follows from (1) and

(3) withj =1
n—d”(u)—dt(v)+r—-2>n-d (v)—d+(v)+s-2 >|R| > d¥(v)—r+1
and hence, by Lemma 2.2

n+2r—3>2dt(v) +d"(u) > g(n—r—2).

This implies 7r > n > cr + 1, a contradiction to ¢ > 7.
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Ifs=r+1and |Vj]<rfori=1,2,...,k, then (1) and (3) with j =0
yield

n—d-(u)—d*(v)+r—1=n—-d (u)—d*(v)+s—2> |R| > d*(v) - r+2

and hence, by Lemma 2.2
nt2r—32 24* (1) +d"(u) 2 3(n—r —2).

This implies again the contradiction 7r > n > er + 1.

Let now s =r+ 1 and |V;] = r+ 1 for at least one ¢ = 1,2,...,k, say
[Vi| = r + 1. With respect to |V(S)|=|S|=a=r+1and |V}]=r+1,
we observe that V(S)NV; =0 and so we have n > cr+ 2. We deduce from
(1) and (3) with j =1

n—d (u)—dt(v)+r—1=n—-d (v)—d*(v)+s-2 > |R| > d*(v)—r+1.

According to Lemma 2.2, we obtain
n+2r—2>2d%(v) +d(u) > g(n—r—2)

and thus 7r + 2 > n, a contradiction for n > c¢r + 3 or ¢ > 8. Therefore, it
remains the case ¢ =7, r > 2, and n = 7r + 2. Since V(S) NV (u) = 0 and
VANV (u) = B, we obtain |V (u)| = r. This leads to d*+(u) +d~ (u) = 6r+2,
and because of ig(D) < 1, we conclude that d*(u) = d~(u) = 3r + 1.
Hence, (1), (3), and Lemma 2.2 imply the contradiction

n+2r—2>2d (W) +d (u)>n—r—-2+3r+1.

It remains the case that a = r + 2. This condition implies n > ¢r+ 2. In
the following we investigate four cases.

Case 1. Let a =r+2 and s < r— 1. It follows from (1) and (3) with
i=2

n—d (u)—dt(v)+r-3>n—d (u)—dt(v)+s—2>|R| > d+(v)—r.
Because of Corollary 2.4, we obtain
n+2r—3>2d%(v) +d (u) > %(n—r—2),

and this leads to the contradiction 7r > n > cr + 2.
Case 2. Let o = r+2 and s = r. Analogously to Case 1, it follows

n+2r—2> 2d* (v) +d(u) Zg(n—r—2)
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and thus 7r + 2 > n. This is a contradiction, when n > er+3orc> 8. In
the remaining case ¢ = 7, r > 2, and n = Tr+2, we observe that |V (u)| =r
or |V (v)| = r and therefore d~(u) > 3r + 1 or d*(v) > 3r + 1. Hence, we
deduce from (1), (3), and Corollary 2.4 the contradiction n + 2r — 2 >
2dt(v) +d(u) >n+2r-1.

Case 3. Leta=r+2ands=r+1. If|V;|<rforalli=1,2,...,k,
then (1), (3) with j = 0, and Corollary 2.4 lead to the contradiction 7r >
n>cr+2 Inthecase |V <r+1lforalli=1,2,...,kand |Vj|=r+1
for at least one i € {1,2,...,k}, we obtain similarly the contradiction
r+2>n>cr+3.

It remains the case that |V;| = r + 2 for at least one i € {1,2,...,k},
say |Vi| = r +2. It follows from (1) and (3) with j =2

n+2r—1>2d%¥(v) +d(u). ()

In view of Corollary 2.4, we find 7r + 4 > n. This is a contradiction for
n>cr+5o0orec>10,orc=9andn>9r+3,orc=9and r> 2, or
c=8and n > 8r+4, or c =8 and r > 3. Consequently, there remain four
subcases.

Subcase 3.1. Let c=9,r=1,and n = cr+2 = 11. Since |i|=r+2=
3, we have |V (u)| = r = 1. This implies d~(u) > 5, and so (5) and Corollary
2.4 yield the contradiction 12 =n+2r—1 > 2d*(v) +d~(u) > 8+5=13.

Subcase 3.2. Let c=8,r=1,and 10 =8r+2<n<8r+3 =11
Because of Lemma 2.3, the digraph D cannot consist of 10 vertices. In the
remaining case n = 11, we note that V(u) NV (v) = 8, V(u) N V(S) =0,
V(v)NV(S) =0, and |V(S)| > |S| = r+1 = 2. This implies |V (u)| =r =1
or [V(v)] = =1 and thus d*(u) > 5 or d~(u) > 5. Combining this with
(5) and Corollary 2.4, we obtain the contradiction 12 = n + 2r — 1 >
2d* (v) +d~(u) > 13.

Subcase 3.3. Let c=8,r=2,and 18 =8r+2<n < 8r+3=19.
Because of Lemma 2.3, the case n = 19 is not possible. If n = 18, then
[Vi| = r + 2 = 4 implies |V(u)| = r = 2 and hence d~(u) > 8. We deduce
from (5) the contradiction 21 = n + 2r — 1 > 2d¥(v) + d~(u) > 22.

Subcase 3.4. Let c=7,r > 2, and Tr+ 2 < n < 7r + 4. Because of
Lemma 2.3, the case n = 7r + 3 is impossible.

Let n = 7r + 2. Then, |[V(S)| = r+ 2 and thus |V(u)| = |[V(v)| = r,
and so d¥(v),d~(u) > 3r + 1. Using (5), we obtain the contradiction
r+l=n+2r—1>2d%(v) +d (u) >9r+3.

Nowlet n =Tr+4. If |V(u)|=r or |V(v)] =, then d=(u) > 3r+2o0r
d*(v) > 3r+2, and (5) together with Corollary 2.4 lead to the contradiction
9r+3 > 2d* (v)+d~(u) > 9r+4. Therefore, we assume now that |V (u)| >
r+1and |[V(v)| > r+1. Since |S| > r+1 and |Vj| = r + 2, we deduce
that V; = V(S) or V; =V (v).
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I Vi = V(S), then |V{| =1 and |V(u)| = |V(v)| = r + 1. In the case
W = V{, Corollary 2.4 implies the contradiction r +2 = d~(u) > 3r + 1.
Otherwise, there are vertices of at least two partite sets in W. Then,
(1), (4), and Corollary 4 yield the contradiction 9r +2 = n +2r — 2 >
2dt(v) +d~(u) > 9r +3.

If Vi = V(v), then necessarily |V(S)| = |[V(4)| =r+1 and, since v € Vi
but v g V/, we see that |[V{| < r + 1. In the case W = VY, we conclude
d~(u) < 2r + 2 and therefore d*(u) > n— (2r+2)—(r+1) = 4r+ 1.
This implies d+(u) —d~(u) > 2r — 1 > 2 for r > 2, a contradiction to
the hypothesis i;(D) < 1. Otherwise, there are vertices of at least two
partite sets in W, and we obtain a contradiction analogously to the case
W =V(S).

Case . Leta =r+2and s =r+2. f|V;| <rforalli=1,2,...,k, then
(1), (3) with j = 0, and Corollary 2.4 lead to 7r 4+ 2 > n, a contradiction,
when n > cr + 3. In the remaining case n = Tr + 2, we observe that
|V(u)| = r and so d=(u) > 3r + 1, which leads to the contradiction n +
2r—2>2d%(v)+d (u) >n—r—-2+3r+1

In the case |V;| <r+1foralli=1,2,...,k and |V;| = r+1 for at least
onei€ {1,2,...,k}, say |Vi| = r+1, we have n > cr + 3. It follows from
(1) and (3) with j =1

n+2r—1>2d%(v) + d~(u). (6)

According to Corollary 2.4, we deduce that 7r + 4 > n. This is a contra-
diction for n > cr+5,0r ¢ > 9,orc=8and n > 8r+4, or c = 8 and
r > 2. Consequently, there remain two subcases.

Subcase 4.1. Let c =8, r =1, and 11 = 8r + 3 = n. The condition
[V(S)] = |S| = r+ 2 = 3 yields V(S) N V; = 0. Therefore, [Vi}|=r+1=2
leads to |V (u)] = » = 1 and hence d~(u) > 5. Now we obtain from (6) the
contradiction 12 > 2d*(v) +d~(u) > 13.

Subcase 4.2. Let ¢ =T, 7 > 2, and Tr+ 3 < n < Tr + 4. Because
of Lemma 2.3, the case n = 7r + 3 is not possible. If n = 7r + 4, then
[V(S)] = |S]| = r+2 and |Vi| = r+1 show that |[V(u)| < r+1. In the case
|V (u)| = r or [V(v)| = r, we see that d~(u) > 3r+2 or d*(v) > 3r+2, and
this yields together with (6) and Corollary 2.4 the contradiction 9r + 3 >
2dt(v) +d~ (u) > 9r + 4. Therefore, we assume now that |V (u)| =r+1
and |V (v)| > r + 1. But this implies V; = V (v).

Let W = V{ C V; = V(v). Since v ¢ V{, we conclude d~(u) < 2r+2and
thus d*(u) > n— (2r+2) — (r+1) = 4r+ 1. This leads to d*(u) —d~ (u) >
2r —1 > 2 for r > 2, a contradiction to ig(D) < 1.

Otherwise, there are vertices of at least two partite sets in W. Since
|V{| < r for all i = 2,3,...,k, we obtain, analogously to (4), the estimate
|R| > d*(v) — r + 2. Using (1) and Corollary 2.4, we deduce 9r +2 =
n+2r—2>2d+t(v) + d~(u) > 9r + 3, a contradiction.
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Finally, we investigate the case that |V;| = r + 2 for at least one i €
{1,2,...,k}, say |Vi| = r+2. Then we have n > cr+4, and it follows from
(1) and (3) with j =2

n+ 2r > 2d (v) + d~ (). )

With the help of Corollary 2.4, we deduce that 7r + 6 > n. This yields a
contradiction for n > er+7,0rc>10,orc=9and n > 9r+5,0rc=9
andr > 2,orc=28and n > 8r+6,or c =8 and r > 3. Thus, there remain
four subcases.

Subcase 4.3. Let c=9,r =1, and 13 = 9r+ 4 = n. Since |V(S)| =
r+2 =3 and |V}] = r+2 = 3, we see that |V (u)] = » = 1 and hence
d~(u) > 6. Thus, inequality (7) leads to the contradiction 15 = n + 2r >
2d* (v) +d~(u) > 16.

Subcase 4.4. Let c =8, r=1,and 12=8r+4<n <8 +5=13.
Because of Lemma 2.3, the case n = 12 is not possible. Let now n = 13.
KE|V(u)|=r=1or|V(v)]=r =1, then d~(u) = 6 or d*(v) = 6, and
we obtain by (7) the contradiction 15 = n + 2r > 2d¥(v) + d~(u) > 16.
Therefore, it remains the case |V(u)l = r+1=2and V; = V(v). If
W = V| C Vi = V(v), then because of d*(v) > 5 and |V(u)| = 2, there
exists a vertex z € N+(v) such that z ¢ (V(S) U V(u) U V(v)). By the
assumption that e = uv is not contained in a 4-cycle, we deduce that
N=(z) 2 (N~(u) U {u,v}), a contradiction to ig(D) < 1. If there are
vertices of at least two partite sets in W, then it follows from (1), (4), and
Corollary 2.4 that 14 = n+2r—1 > 2d*(v) + d~(u) > 15, a contradiction.

Subcase 4.5. Let c=8,r=2,and20 =8r+4<n < 8r+5 = 21.
Because of Lemma 2.3, we see that n # 21, and analogously to Subcase
4.3, we obtain a contradiction, when n = 20.

Subcase 4.6. Let ¢ =7, r > 2, and 7r+4 < n < Tr + 6. Because of
Lemma 2.3, the case n = 7r + 5 is not possible.

Firstly, we discuss the case n = 7r + 4. Since |V(S)| = |V}l = r + 2,
we conclude that |V (u)| = r and so d=(u) = 3r + 2. If |V(v)| = r, then
d*(v) = 3r + 2, and consequently, (7) leads to the contradiction 9r + 4 =
n+ 2r > 2d*(v) + d~(u) = 9r + 6. Therefore, it remains the case that
[V(v)| > r+1 and thus V(v) = Vi. KW = V{ C Vi, then d~(u) < 2r + 3
and thus d* () > 7r4+4—(2r+3)—r = 4r+1. This implies d* (u)—d~ (u) >
2r—2 > 2 for r > 2, a contradiction to ig(D) < 1. Now we assume that
there are vertices of at least two partite sets in W. Combining (1), (4), the
fact that d~(u) = 3r + 2, and Corollary 2.4, we deduce the contradiction
9r +3 > 2d*(v) +d(u) > 9r +4.

Finally, let n = 7r 4+ 6. If [V(u)| = r or |V(v)| = r, then (7) and
Corollary 2.4 give the contradiction 9r + 6 > 2d+(v) + d~(u) > 9r + 7.
Therefore, it remains the case that |[V(u)| > r+1 and |V(v)| > r+1. We
distinguish again two subcases.
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Let V(v)NV) = 0. This implies |V (v)| = |V (u)|=r+1. KW C V; and
[W] < [V1], then d~(u) < 2r + 3 and thus d*(u) > n— (2r+3)— (r+1) =
4r + 2, and hence d*(u) —d~(u) > 2r —1 > 2 for r > 2, a contradiction
to ig(D) < 1. If W = V4, then let z € W. By the assumption that e = uv
is not contained in a 4-cycle, we deduce that N+(z) D (N*(v) U {u,v}),
a contradiction to ig(D) < 1. If there are vertices of at least two partite
sets in W, then, because of |V (u)| = r + 1, it follows from (1), (4), and
Corollary 2.4 that 9r + 5 > 2d*(v) + d~(u) > 9r + 6, a contradiction.

Let V(v) = Vi. £ W C W, then d~(u) < 2r + 3 and thus d+(u) >
n—(2r+3)—(r+2) = 4r+1. Consequently, d*(u) —d~(u) > 2r-2>2
for r > 2, a contradiction to ig(D) < 1. If there are vertices of at least two
partite sets in W, then, because of |V (u)| > r + 1, it follows from (1), (4),
and Corollary 2.4 that 97 + 5 > 2d*(v) + d~ (u) > 97 + 6, a contradiction.

Since we have discussed all possible cases, the proof is complete. O

Example 3.2 Let V1 = {u, uz}, V2 = {v,v3}, V5 = {w1, wq, w3}, V4 = {z},
Vs = {y}, Vs = {z}, and V7 = {a} be the partite sets of a 7-partite tour-
nament such that u = v = up; = {a,2,y,2} = v2 = u = {a,2,y,2} =
vy, u, Vs u,w a3z arysrz a3y =
Wz Sw, w2 W3 —a— W =T w3 Y — wy (see
Figure 1). The resulting 7-partite tournament is almost regular, however,
the arc uv is not contained in a 4-cycle. Consequently, the condition ¢ > 8
in Theorem 3.1 is best possible.

-1

wq w2 w3

Presccsan

\

/

v2

U2

Figure 1: An almost regular 7-partite tournament with the property
that the arc uv is not contained in a 4-cycle
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Since there are only a finite number of almost regular 7-partite tour-
naments with the partite sets V4, V3, ..., Vs such that min <i<7{|Vi|} =1,
Theorem 3.1 leads immediately to the following corollary.

Corollary 3.3 Every arc of an almost regular 7-partite tournament is
contained in a 4-cycle, except for a finite number of such multipartite tour-
naments. In addition, Example 3.2 shows that such exceptions really exist.

Example 3.4 Let Vi = {u} UV with |V]| = 2, Let V3 = {v} UV
with |V;| = 2, V3 = VU V{ with |V{| = |V¥| = 2, and V4, Vs, Vs with
[Va] = [Vs| = |Vs| = 2 with V4 = {z,y} be the partite sets of a 6-
partite tournament such that u = v - W/ = (V, UV U V) = W —
v =3 (VaUWUVe) » o, Vs 2 Va2 u, v Ve oV, V) = W
Va2 Vs 2 Ve Vy,and V3 = (VeU{z}) = V¥ = (VzU{y}) = W
(see Figure 2). The resulting 6-partite tournament is almost regular with
at least two vertices in every partite set, however, the arc uv is not con-
tained in a 4-cycle. Therefore, the condition ¢ > 7 in the second part of
Theorem 3.1 is also best possible. :

u v

’ A

e v eeeeemmenn .
! "
Viee: .eeV

R S H >

17 X B R4

/

]

: z® i@y :
: SR :
e Vsl+Vse0 | !

Figure 2: An almost regular 6-partite tournament with the property
that the arc uv is not contained in a 4-cycle
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