Cycles of length four through a given arc in almost regular multipartite tournaments.

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

If x is a vertex of a digraph D, then we denote by $d^+(x)$ and $d^-(x)$ the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by $i_g(D) = \max\{d^+(x), d^-(x)\} - \min\{d^+(y), d^-(y)\}$ over all vertices x and y of D (including x = y). If $i_g(D) = 0$, then D is regular and if $i_g(D) \leq 1$, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph. It is easy to see that there exist regular c-partite tournaments with arbitrary large c which contain arcs that do not belong to a directed cycle of length 3. In this paper we show, however, that every arc of an almost regular c-partite tournament is contained in a directed cycle of length four, when $c \geq 8$. Examples show that the condition $c \geq 8$ is best possible

Keywords: Multipartite tournaments; Cycles; Cycles of length four

1. Terminology and introduction

In this paper all digraphs are finite without loops or multiple arcs. The vertex set of a digraph D is denoted by V(D). If xy is an arc of a digraph D, then we write $x \to y$ and say x dominates y, and if X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted

by $X \to Y$. The number of arcs from X to Y is denoted by d(X,Y). The out-neighborhood $N^+(x)$ of a vertex x is the set of vertices dominated by x, and the in-neighborhood $N^-(x)$ is the set of vertices dominating x. The numbers $d^+(x) = |N^+(x)|$ and $d^-(x) = |N^-(x)|$ are called the outdegree and indegree of x, respectively. If we speak of a cycle, then we mean a directed cycle, and a cycle of length m is called an m-cycle. By $\alpha(D) = \alpha$ we denote the independence number of (the underlying graph of) the digraph D.

There are several measures of how much a digraph differs from being regular. In [6], Yeo defines the *global irregularity* of a digraph D by

$$i_g(D) = \max_{x \in V(D)} \{d^+(x), d^-(x)\} - \min_{x \in V(D)} \{d^+(x), d^-(x)\}.$$

If $i_g(D) = 0$, then D is regular and if $i_g(D) \leq 1$, then D is called almost regular.

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite tournament with exactly c vertices.

It is very easy to see that every arc of a regular tournament belongs to a 3-cycle. Our first example shows that this is not valid for regular multipartite tournaments in general.

Example 1.1 Let C, C' and C'' be three induced cycles of length 4 such that $C \to C' \to C'' \to C$. The resulting 6-partite tournament D_1 is 5-regular, but no arc of the three cycles C, C', and C'' is is contained in a 3-cycle.

Let H, H_1 , and H_2 be three copies of D_1 such that that $H \to H_1 \to H_2 \to H$. The resulting 18-partite partite tournament is 17-regular, but no arc of the cycles corresponding to the cycles C, C', and C'' is contained in a 3-cycle.

If we continue this process, we arrive at regular c-partite tournaments with arbitrary large c which contain arcs that do not belong to any 3-cycle.

However, recently the author [5] showed that every arc of a regular c-partite tournament belongs to a 4-cycle, when $c \ge 6$. We even proved the following more general result.

Theorem 1.2 (Volkmann [5]) Let V_1, V_2, \ldots, V_c be the partite sets of an almost regular c-partite tournament D. If $c \ge 6$ and $|V_1| = |V_2| = \ldots = |V_c|$, then every arc of D is contained in a 4-cycle, and the condition $c \ge 6$ is best possible.

In this paper we present the following supplement and extension of Theorem 1.2. Let D be an arbitrary almost regular c-partite tournament. If $c \geq 8$ or if c = 7 and there are at least two vertices in every partite set, then every arc of D is contained in a 4-cycle. Examples show that these conditions are best possible.

Further results on cycles containing a given arc in regular multipartite tournaments can be found in papers by Guo [1] and Guo and Kwak [2].

2. Preliminary results

The following results play an important role in our investigations. The first three lemmas can be found in a recent article of Tewes, Volkmann, and Yeo [3].

Lemma 2.1 If V_1, V_2, \ldots, V_c are the partite sets of an almost regular c-partite tournament, then $||V_i| - |V_j|| \le 2$ for $1 \le i \le j \le c$.

Lemma 2.2 If D is an almost regular multipartite tournament, then

$$d^+(x), d^-(x) \ge \frac{|V(D)| - \alpha(D) - 1}{2}$$

for every vertex x of D.

Lemma 2.3 If D is an almost regular c-partite tournament with the partite sets V_1, V_2, \ldots, V_c such that $r = |V_1| \le |V_2| \le \ldots \le |V_c| = r + 2$, then $|V(D)| - \alpha(D) = |V(D)| - r - 2$ is even.

The next corollary is an immediate consequence of Lemma 2.2 and Lemma 2.3.

Corollary 2.4 If D is an almost regular c-partite tournament with the partite sets V_1, V_2, \ldots, V_c such that $r = |V_1| \le |V_2| \le \ldots \le |V_c| = r + 2$, then

$$d^+(x), d^-(x) \ge \frac{|V(D)| - \alpha(D)}{2} = \frac{|V(D)| - r - 2}{2}$$

for every vertex x of D.

Lemma 2.5 (Volkmann [4] 1999) If X is a vertex set of an almost regular digraph D, then

$$|X| > |d(X, V(D) - X) - d(V(D) - X, X)|$$

3. Main results

Theorem 3.1 Let D be an almost regular c-partite tournament.

If $c \geq 8$, then every arc of D is contained in a 4-cycle.

If c = 7 and there are at least two vertices in every partite set, then every arc of D is contained in a 4-cycle.

Proof. Let V_1, V_2, \ldots, V_c be the partite sets of D, |V(D)| = n, and $\alpha(D) = \alpha$. Let now e = uv be an arbitrary arc of D, and suppose to the contrary that e = uv does not belong to any 4-cycle. In the following we denote by V(u) and V(v) the partite sets of D, containing u and v, respectively.

If there are two vertices $x, y \in S := N^+(v) \cap N^-(u)$ such that $x \to y$, then uvxyu is a 4-cycle through e = uv, a contradiction. Consequently, $S = \emptyset$ or S is a subset of one partite set, say $S \subseteq V(S)$. Let |S| = s and define $W = N^-(u) - S$. If $R := V(D) - (N^+(v) \cup W \cup \{u, v\})$, then

$$|R| \le n - d^{-}(u) - d^{+}(v) + s - 2. \tag{1}$$

Since e = uv does not belong to a 4-cycle, we observe that there is no arc from $N^+(v)$ to W. Hence, according to Lemma 2.5, we deduce that

$$|W| \geq |d(W, V(D) - W) - d(V(D) - W, W)|$$

> |W| + d(W, N⁺(v) \cup {v}) - |R||W|.

Let $W = V_1' \cup V_2' \cup \ldots \cup V_k'$ such that $V_i' \neq \emptyset$ and assume, without loss of generality, that $V_i' \subseteq V_i$ for $i = 1, 2, \ldots, k$. This yields together with the last inequality

$$|R||W| \ge d(W, N^+(v) \cup \{v\}) \ge \sum_{i=1}^k |V_i'|(d^+(v) + 1 + |V_i'| - |V_i|). \tag{2}$$

If $\min_{1 \leq i \leq c} \{|V_i|\} = r$, then, in view of Lemma 2.1, we have $\alpha \leq r+2$. If $|V_i| \leq r+j$ for some $j \in \{0,1,2\}$ and for all $i=1,2,\ldots,k$, then, because of $|V_i'| \geq 1$ for $i=1,2,\ldots,k$, it follows from (2)

$$|R||W| \ge \sum_{i=1}^{k} |V_i'|(d^+(v) + 2 - r - j) = |W|(d^+(v) + 2 - r - j),$$

and thus

$$|R| \ge d^+(v) - r + 2 - j,$$
 (3)

when $|W| \neq 0$. However, we will show at once that |W| = 0 is never possible. Suppose that |W| = 0. This implies $d^-(u) = |S| \leq \alpha$. If $\alpha \leq r+1$,

then Lemma 2.2 leads to

$$r+1 \ge \alpha \ge |S| = d^-(u) \ge \frac{n-\alpha-1}{2} \ge \frac{cr-r-2}{2}$$
.

Therefore, we obtain $3r+4 \ge cr$, a contradiction to $c \ge 8$ and c = 7 and $r \ge 2$. In the case $\alpha = r + 2$, Corollary 2.4 and the fact that $n \ge cr + 2$ yield the same contradiction.

If in addition, $k \geq 2$ in inequality (2) and $|V_i| = r + 2$ for exactly one $i \in \{1, 2, ..., k\}$, say $|V_1| = r + 2$, then it follows from (2) together with $|V_i| \leq r + 1$ for i = 2, 3, ..., k

$$|R||W| \geq \sum_{i=1}^{k} |V_i'|(d^+(v) + 1 + |V_i'| - |V_i|)$$

$$\geq |W|(d^+(v) + 2) - |V_1'|(r+2) - \sum_{i=2}^{k} |V_i'|(r+1)$$

$$= |W|(d^+(v) + 1 - r) - |V_1'|.$$

Since $k \geq 2$, we have $|W| > |V'_1|$, and so the last inequality yields

$$|R| \ge d^+(v) - r + 1.$$
 (4)

Now we start with the case that $\alpha = r$. Combining this condition with (1) and (3) for j = 0, we find

$$n-d^-(u)-d^+(v)+r-2 \ge n-d^-(u)-d^+(v)+s-2 \ge |R| \ge d^+(v)-r+2$$
 and hence, by Lemma 2.2

$$n+2r-4 \ge 2d^+(v)+d^-(u) \ge \frac{3}{2}(n-r-1).$$

This implies $7r - 5 \ge n = cr$, a contradiction to $c \ge 7$.

Next we assume that $\alpha = r + 1$. If $s \le r$, then it follows from (1) and (3) with j = 1

$$n-d^-(u)-d^+(v)+r-2 \ge n-d^-(u)-d^+(v)+s-2 \ge |R| \ge d^+(v)-r+1$$
 and hence, by Lemma 2.2

$$n+2r-3 \ge 2d^+(v)+d^-(u) \ge \frac{3}{2}(n-r-2).$$

This implies $7r \ge n \ge cr + 1$, a contradiction to c > 7.

If s = r + 1 and $|V_i| \le r$ for i = 1, 2, ..., k, then (1) and (3) with j = 0 yield

$$n-d^-(u)-d^+(v)+r-1=n-d^-(u)-d^+(v)+s-2 \ge |R| \ge d^+(v)-r+2$$
 and hence, by Lemma 2.2

$$n+2r-3 \ge 2d^+(v)+d^-(u) \ge \frac{3}{2}(n-r-2).$$

This implies again the contradiction $7r \ge n \ge cr + 1$.

Let now s=r+1 and $|V_i|=r+1$ for at least one $i=1,2,\ldots,k$, say $|V_1|=r+1$. With respect to $|V(S)|=|S|=\alpha=r+1$ and $|V_1|=r+1$, we observe that $V(S)\cap V_1=\emptyset$ and so we have $n\geq cr+2$. We deduce from (1) and (3) with j=1

$$n-d^{-}(u)-d^{+}(v)+r-1=n-d^{-}(u)-d^{+}(v)+s-2>|R|>d^{+}(v)-r+1.$$

According to Lemma 2.2, we obtain

$$n+2r-2 \ge 2d^+(v)+d^-(u) \ge \frac{3}{2}(n-r-2)$$

and thus $7r+2 \ge n$, a contradiction for $n \ge cr+3$ or $c \ge 8$. Therefore, it remains the case c=7, $r \ge 2$, and n=7r+2. Since $V(S) \cap V(u)=\emptyset$ and $V_1 \cap V(u)=\emptyset$, we obtain |V(u)|=r. This leads to $d^+(u)+d^-(u)=6r+2$, and because of $i_g(D) \le 1$, we conclude that $d^+(u)=d^-(u)=3r+1$. Hence, (1), (3), and Lemma 2.2 imply the contradiction

$$n+2r-2 > 2d^+(v) + d^-(u) > n-r-2+3r+1.$$

It remains the case that $\alpha = r + 2$. This condition implies $n \ge cr + 2$. In the following we investigate four cases.

Case 1. Let $\alpha = r + 2$ and $s \le r - 1$. It follows from (1) and (3) with j = 2

$$n - d^{-}(u) - d^{+}(v) + r - 3 \ge n - d^{-}(u) - d^{+}(v) + s - 2 \ge |R| \ge d^{+}(v) - r.$$

Because of Corollary 2.4, we obtain

$$n+2r-3 \ge 2d^+(v)+d^-(u) \ge \frac{3}{2}(n-r-2),$$

and this leads to the contradiction $7r \ge n \ge cr + 2$.

Case 2. Let $\alpha = r + 2$ and s = r. Analogously to Case 1, it follows

$$n+2r-2 \ge 2d^+(v)+d^-(u) \ge \frac{3}{2}(n-r-2)$$

and thus $7r+2 \ge n$. This is a contradiction, when $n \ge cr+3$ or $c \ge 8$. In the remaining case $c=7, r \ge 2$, and n=7r+2, we observe that |V(u)|=r or |V(v)|=r and therefore $d^-(u) \ge 3r+1$ or $d^+(v) \ge 3r+1$. Hence, we deduce from (1), (3), and Corollary 2.4 the contradiction $n+2r-2 \ge 2d^+(v)+d^-(u) \ge n+2r-1$.

Case 3. Let $\alpha = r+2$ and s = r+1. If $|V_i| \leq r$ for all i = 1, 2, ..., k, then (1), (3) with j = 0, and Corollary 2.4 lead to the contradiction $7r \geq n \geq cr+2$. In the case $|V_i| \leq r+1$ for all i = 1, 2, ..., k and $|V_i| = r+1$ for at least one $i \in \{1, 2, ..., k\}$, we obtain similarly the contradiction $7r+2 \geq n \geq cr+3$.

It remains the case that $|V_i| = r + 2$ for at least one $i \in \{1, 2, ..., k\}$, say $|V_1| = r + 2$. It follows from (1) and (3) with j = 2

$$n + 2r - 1 \ge 2d^+(v) + d^-(u). \tag{5}$$

In view of Corollary 2.4, we find $7r+4 \ge n$. This is a contradiction for $n \ge cr+5$, or $c \ge 10$, or c=9 and $n \ge 9r+3$, or c=9 and $r \ge 2$, or c=8 and $n \ge 8r+4$, or c=8 and $r \ge 3$. Consequently, there remain four subcases.

Subcase 3.1. Let c = 9, r = 1, and n = cr + 2 = 11. Since $|V_1| = r + 2 = 3$, we have |V(u)| = r = 1. This implies $d^-(u) \ge 5$, and so (5) and Corollary 2.4 yield the contradiction $12 = n + 2r - 1 > 2d^+(v) + d^-(u) > 8 + 5 = 13$.

Subcase 3.2. Let c=8, r=1, and $10=8r+2 \le n \le 8r+3=11$. Because of Lemma 2.3, the digraph D cannot consist of 10 vertices. In the remaining case n=11, we note that $V(u) \cap V(v) = \emptyset$, $V(u) \cap V(S) = \emptyset$, $V(v) \cap V(S) = \emptyset$, and $|V(S)| \ge |S| = r+1=2$. This implies |V(u)| = r=1 or |V(v)| = r=1 and thus $d^+(u) \ge 5$ or $d^-(u) \ge 5$. Combining this with (5) and Corollary 2.4, we obtain the contradiction $12 = n + 2r - 1 \ge 2d^+(v) + d^-(u) \ge 13$.

Subcase 3.3. Let c = 8, r = 2, and $18 = 8r + 2 \le n \le 8r + 3 = 19$. Because of Lemma 2.3, the case n = 19 is not possible. If n = 18, then $|V_1| = r + 2 = 4$ implies |V(u)| = r = 2 and hence $d^-(u) \ge 8$. We deduce from (5) the contradiction $21 = n + 2r - 1 \ge 2d^+(v) + d^-(u) \ge 22$.

Subcase 3.4. Let c = 7, $r \ge 2$, and $7r + 2 \le n \le 7r + 4$. Because of Lemma 2.3, the case n = 7r + 3 is impossible.

Let n = 7r + 2. Then, |V(S)| = r + 2 and thus |V(u)| = |V(v)| = r, and so $d^+(v), d^-(u) \ge 3r + 1$. Using (5), we obtain the contradiction $9r + 1 = n + 2r - 1 \ge 2d^+(v) + d^-(u) \ge 9r + 3$.

Now let n = 7r + 4. If |V(u)| = r or |V(v)| = r, then $d^-(u) \ge 3r + 2$ or $d^+(v) \ge 3r + 2$, and (5) together with Corollary 2.4 lead to the contradiction $9r + 3 \ge 2d^+(v) + d^-(u) \ge 9r + 4$. Therefore, we assume now that $|V(u)| \ge r + 1$ and $|V(v)| \ge r + 1$. Since $|S| \ge r + 1$ and $|V_1| = r + 2$, we deduce that $V_1 = V(S)$ or $V_1 = V(v)$.

If $V_1 = V(S)$, then $|V_1'| = 1$ and |V(u)| = |V(v)| = r + 1. In the case $W = V_1'$, Corollary 2.4 implies the contradiction $r + 2 = d^-(u) \ge 3r + 1$. Otherwise, there are vertices of at least two partite sets in W. Then, (1), (4), and Corollary 4 yield the contradiction $9r + 2 = n + 2r - 2 \ge 2d^+(v) + d^-(u) \ge 9r + 3$.

If $V_1 = V(v)$, then necessarily |V(S)| = |V(u)| = r+1 and, since $v \in V_1$ but $v \notin V_1'$, we see that $|V_1'| \le r+1$. In the case $W = V_1'$, we conclude $d^-(u) \le 2r+2$ and therefore $d^+(u) \ge n-(2r+2)-(r+1)=4r+1$. This implies $d^+(u)-d^-(u) \ge 2r-1 \ge 2$ for $r \ge 2$, a contradiction to the hypothesis $i_g(D) \le 1$. Otherwise, there are vertices of at least two partite sets in W, and we obtain a contradiction analogously to the case $V_1 = V(S)$.

Case 4. Let $\alpha = r+2$ and s = r+2. If $|V_i| \le r$ for all i = 1, 2, ..., k, then (1), (3) with j = 0, and Corollary 2.4 lead to $7r + 2 \ge n$, a contradiction, when $n \ge cr + 3$. In the remaining case n = 7r + 2, we observe that |V(u)| = r and so $d^-(u) \ge 3r + 1$, which leads to the contradiction $n + 2r - 2 \ge 2d^+(v) + d^-(u) \ge n - r - 2 + 3r + 1$.

In the case $|V_i| \le r+1$ for all $i=1,2,\ldots,k$ and $|V_i|=r+1$ for at least one $i \in \{1,2,\ldots,k\}$, say $|V_1|=r+1$, we have $n \ge cr+3$. It follows from (1) and (3) with j=1

$$n+2r-1 \ge 2d^+(v)+d^-(u).$$
 (6)

According to Corollary 2.4, we deduce that $7r + 4 \ge n$. This is a contradiction for $n \ge cr + 5$, or $c \ge 9$, or c = 8 and $n \ge 8r + 4$, or c = 8 and $r \ge 2$. Consequently, there remain two subcases.

Subcase 4.1. Let c=8, r=1, and 11=8r+3=n. The condition |V(S)|=|S|=r+2=3 yields $V(S)\cap V_1=\emptyset$. Therefore, $|V_1|=r+1=2$ leads to |V(u)|=r=1 and hence $d^-(u)\geq 5$. Now we obtain from (6) the contradiction $12\geq 2d^+(v)+d^-(u)\geq 13$.

Subcase 4.2. Let c=7, $r\geq 2$, and $7r+3\leq n\leq 7r+4$. Because of Lemma 2.3, the case n=7r+3 is not possible. If n=7r+4, then |V(S)|=|S|=r+2 and $|V_1|=r+1$ show that $|V(u)|\leq r+1$. In the case |V(u)|=r or |V(v)|=r, we see that $d^-(u)\geq 3r+2$ or $d^+(v)\geq 3r+2$, and this yields together with (6) and Corollary 2.4 the contradiction $9r+3\geq 2d^+(v)+d^-(u)\geq 9r+4$. Therefore, we assume now that |V(u)|=r+1 and $|V(v)|\geq r+1$. But this implies $V_1=V(v)$.

Let $W = V_1' \subseteq V_1 = V(v)$. Since $v \notin V_1'$, we conclude $d^-(u) \le 2r+2$ and thus $d^+(u) \ge n - (2r+2) - (r+1) = 4r+1$. This leads to $d^+(u) - d^-(u) \ge 2r-1 > 2$ for $r \ge 2$, a contradiction to $i_g(D) \le 1$.

Otherwise, there are vertices of at least two partite sets in W. Since $|V_i'| \leq r$ for all i = 2, 3, ..., k, we obtain, analogously to (4), the estimate $|R| \geq d^+(v) - r + 2$. Using (1) and Corollary 2.4, we deduce $9r + 2 = n + 2r - 2 \geq 2d^+(v) + d^-(u) \geq 9r + 3$, a contradiction.

Finally, we investigate the case that $|V_i|=r+2$ for at least one $i \in \{1,2,\ldots,k\}$, say $|V_1|=r+2$. Then we have $n \geq cr+4$, and it follows from (1) and (3) with j=2

$$n + 2r \ge 2d^+(v) + d^-(u).$$
 (7)

With the help of Corollary 2.4, we deduce that $7r+6 \ge n$. This yields a contradiction for $n \ge cr+7$, or $c \ge 10$, or c = 9 and $n \ge 9r+5$, or c = 9 and $r \ge 2$, or c = 8 and $n \ge 8r+6$, or c = 8 and $r \ge 3$. Thus, there remain four subcases.

Subcase 4.9. Let c = 9, r = 1, and 13 = 9r + 4 = n. Since |V(S)| = r + 2 = 3 and $|V_1| = r + 2 = 3$, we see that |V(u)| = r = 1 and hence $d^-(u) \ge 6$. Thus, inequality (7) leads to the contradiction $15 = n + 2r \ge 2d^+(v) + d^-(u) \ge 16$.

Subcase 4.4. Let c=8, r=1, and $12=8r+4 \le n \le 8r+5=13$. Because of Lemma 2.3, the case n=12 is not possible. Let now n=13. If |V(u)|=r=1 or |V(v)|=r=1, then $d^-(u)=6$ or $d^+(v)=6$, and we obtain by (7) the contradiction $15=n+2r\ge 2d^+(v)+d^-(u)\ge 16$. Therefore, it remains the case |V(u)|=r+1=2 and $V_1=V(v)$. If $W=V_1'\subset V_1=V(v)$, then because of $d^+(v)\ge 5$ and |V(u)|=2, there exists a vertex $z\in N^+(v)$ such that $z\notin (V(S)\cup V(u)\cup V(v))$. By the assumption that e=uv is not contained in a 4-cycle, we deduce that $N^-(z)\supseteq (N^-(u)\cup \{u,v\})$, a contradiction to $i_g(D)\le 1$. If there are vertices of at least two partite sets in W, then it follows from (1), (4), and Corollary 2.4 that $14=n+2r-1\ge 2d^+(v)+d^-(u)\ge 15$, a contradiction.

Subcase 4.5. Let c=8, r=2, and $20=8r+4 \le n \le 8r+5=21$. Because of Lemma 2.3, we see that $n \ne 21$, and analogously to Subcase 4.3, we obtain a contradiction, when n=20.

Subcase 4.6. Let c = 7, $r \ge 2$, and $7r + 4 \le n \le 7r + 6$. Because of Lemma 2.3, the case n = 7r + 5 is not possible.

Firstly, we discuss the case n=7r+4. Since $|V(S)|=|V_1|=r+2$, we conclude that |V(u)|=r and so $d^-(u)=3r+2$. If |V(v)|=r, then $d^+(v)=3r+2$, and consequently, (7) leads to the contradiction $9r+4=n+2r\geq 2d^+(v)+d^-(u)=9r+6$. Therefore, it remains the case that $|V(v)|\geq r+1$ and thus $V(v)=V_1$. If $W=V_1'\subset V_1$, then $d^-(u)\leq 2r+3$ and thus $d^+(u)\geq 7r+4-(2r+3)-r=4r+1$. This implies $d^+(u)-d^-(u)\geq 2r-2\geq 2$ for $r\geq 2$, a contradiction to $i_g(D)\leq 1$. Now we assume that there are vertices of at least two partite sets in W. Combining (1), (4), the fact that $d^-(u)=3r+2$, and Corollary 2.4, we deduce the contradiction $9r+3\geq 2d^+(v)+d^-(u)\geq 9r+4$.

Finally, let n = 7r + 6. If |V(u)| = r or |V(v)| = r, then (7) and Corollary 2.4 give the contradiction $9r + 6 \ge 2d^+(v) + d^-(u) \ge 9r + 7$. Therefore, it remains the case that $|V(u)| \ge r + 1$ and $|V(v)| \ge r + 1$. We distinguish again two subcases.

Let $V(v) \cap V_1 = \emptyset$. This implies |V(v)| = |V(u)| = r+1. If $W \subseteq V_1$ and $|W| < |V_1|$, then $d^-(u) \le 2r+3$ and thus $d^+(u) \ge n - (2r+3) - (r+1) = 4r+2$, and hence $d^+(u) - d^-(u) \ge 2r-1 \ge 2$ for $r \ge 2$, a contradiction to $i_g(D) \le 1$. If $W = V_1$, then let $z \in W$. By the assumption that e = uv is not contained in a 4-cycle, we deduce that $N^+(z) \supseteq (N^+(v) \cup \{u,v\})$, a contradiction to $i_g(D) \le 1$. If there are vertices of at least two partite sets in W, then, because of |V(u)| = r+1, it follows from (1), (4), and Corollary 2.4 that $9r+5 \ge 2d^+(v) + d^-(u) \ge 9r+6$, a contradiction.

Let $V(v) = V_1$. If $W \subset V_1$, then $d^-(u) \leq 2r + 3$ and thus $d^+(u) \geq n - (2r + 3) - (r + 2) = 4r + 1$. Consequently, $d^+(u) - d^-(u) \geq 2r - 2 \geq 2$ for $r \geq 2$, a contradiction to $i_g(D) \leq 1$. If there are vertices of at least two partite sets in W, then, because of $|V(u)| \geq r + 1$, it follows from (1), (4), and Corollary 2.4 that $9r + 5 \geq 2d^+(v) + d^-(u) \geq 9r + 6$, a contradiction.

Since we have discussed all possible cases, the proof is complete.

Example 3.2 Let $V_1 = \{u, u_2\}$, $V_2 = \{v, v_2\}$, $V_3 = \{w_1, w_2, w_3\}$, $V_4 = \{x\}$, $V_5 = \{y\}$, $V_6 = \{z\}$, and $V_7 = \{a\}$ be the partite sets of a 7-partite tournament such that $u \to v \to u_2 \to \{a, x, y, z\} \to v_2 \to u \to \{a, x, y, z\} \to v \to V_3 \to u$, $v_2 \to u_2$, $v_2 \to V_3 \to u_2$, $w_1 \to a \to x \to y \to z \to a \to y \to w_1 \to z \to x \to w_1$, $w_2 \to z \to w_3 \to a \to w_2 \to x \to w_3 \to y \to w_2$ (see Figure 1). The resulting 7-partite tournament is almost regular, however, the arc uv is not contained in a 4-cycle. Consequently, the condition $c \geq 8$ in Theorem 3.1 is best possible.

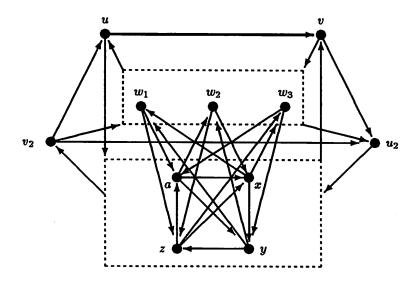


Figure 1: An almost regular 7-partite tournament with the property that the arc uv is not contained in a 4-cycle

Since there are only a finite number of almost regular 7-partite tournaments with the partite sets V_1, V_2, \ldots, V_7 such that $\min_{1 \le i \le 7} \{|V_i|\} = 1$, Theorem 3.1 leads immediately to the following corollary.

Corollary 3.3 Every arc of an almost regular 7-partite tournament is contained in a 4-cycle, except for a finite number of such multipartite tournaments. In addition, Example 3.2 shows that such exceptions really exist.

Example 3.4 Let $V_1 = \{u\} \cup V_1'$ with $|V_1'| = 2$, Let $V_2 = \{v\} \cup V_2'$ with $|V_2'| = 2$, $V_3 = V_3' \cup V_3''$ with $|V_3'| = |V_3''| = 2$, and V_4, V_5, V_6 with $|V_4| = |V_5| = |V_6| = 2$ with $V_4 = \{x,y\}$ be the partite sets of a 6-partite tournament such that $u \to v \to V_1' \to (V_4 \cup V_5 \cup V_6) \to V_2' \to u \to (V_4 \cup V_5 \cup V_6) \to v$, $V_2' \to V_3 \to u$, $v \to V_3 \to V_1'$, $V_2' \to V_1'$ and $V_3' \to (V_6 \cup \{x\}) \to V_3'' \to (V_5 \cup \{y\}) \to V_3''$ (see Figure 2). The resulting 6-partite tournament is almost regular with at least two vertices in every partite set, however, the arc uv is not contained in a 4-cycle. Therefore, the condition $c \geq 7$ in the second part of Theorem 3.1 is also best possible.

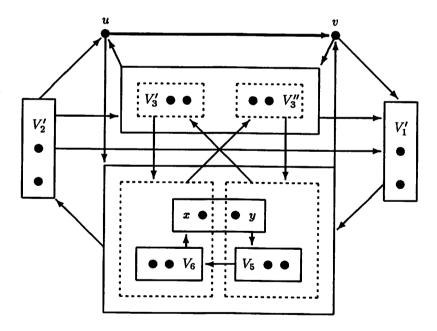


Figure 2: An almost regular 6-partite tournament with the property that the arc uv is not contained in a 4-cycle

References

- [1] Y. Guo, Semicomplete Multipartite Digraphs: A Generalization of Tournaments, *Habilitation thesis*, RWTH Aachen (1998), 102 p.
- [2] Y. Guo and J.H. Kwak, The cycle structure of regular multipartite tournaments, Discrete Appl. Math., to appear.
- [3] M. Tewes, L. Volkmann, and A. Yeo, Almost all almost regular c-partite tournaments with $c \ge 5$ are vertex pancyclic, *Discrete Math.* (2001), 28 pp., to appear.
- [4] L. Volkmann, Strong subtournaments of multipartite tournaments, Australas. J. Combin. 20 (1999), 189-196.
- [5] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math., to appear.
- [6] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? *Graphs Combin.* 15 (1999), 481-493.