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Abstract

A )-design on v points is a set of v distinct subsets (blocks) of
a v-element set (points) such that any two different blocks meet in
exactly A points and not all of the blocks have the same size. Ryser’s
and Woodall’s A-design conjecture states that all M-designs can be
obtained from symmetric designs by a certain complementation pro-
cedure. The main result of the present paper is that the A-design
conjecture is true when v =8p + 1, where p=1 or 7 (mod 8) is a
prime number.

1 Introduction

Definition 1.1 Given integers A and v satisfying 0 < A < v, a A-design
D on v points is a pair (X,B), where X is a set of cardinality v whose
elements are called points and B is a set of v distinct subsets of X whose
elements are called blocks, such that

(i) For all blocks A,B€ B, A# B, |ANB|= ), and
(ii) There exist blocks A, B € B with |A| # |B|.

A-designs were first defined by Ryser [12], [13] and Woodall [22]. The
only known examples of A-designs are obtained from symmetric designs
by the following complementation procedure. Let (X,.4) be a symmetric
(v, k, p)-design with u # k/2 and fix a block A € A. Put B= {A}JU{AAB:
B € A, B # A}, where A denotes the symmetric difference of sets (we refer
to this procedure as complementing with respect to the block A). Then an
elementary counting argument shows that (X, B) is a A-design on v points
with A = k — u. Any A-design obtained in this manner is called a type-1
A-design.
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The A-design conjecture of Ryser [12], [13] and Woodall [22] states that
all A-designs are type-1. The conjecture was proven for A = 1 by deBruijn
and Erdés (5], for A = 2 by Ryser [12], for 3 < A < 9 by Bridges and
Kramer [1], [10}, [3], for A = 10 by Séress [15], for A = 14 by Tsaur [19], [4],
and for all remaining A < 34 by Weisz [20]. S. S. Shrikhande and Singhi
[17]) proved the conjecture for prime A and Seress [16] proved it when X is
twice a prime.

Investigating the conjecture as a function of v rather than A, Ionin and
M. S. Shrikhande [8], [9] proved the conjecture for v = p+1,2p+1,3p+1,
and 4p+ 1, where p is any prime, and Hein [6], [7) proved it for v = 5p+1,
where p # 2 or 8 (mod 15) is prime. The conjecture has also been verified
by computer for all v < 85 [23]. Continuing along these lines, in the present
paper we will prove the following result.

Theorem 1.2 All A-designs on v = 8p+ 1 points, p=1 or ¥ (mod 8) a
prime, are type-1.

The method employed to prove Theorem 1.2 is a slight extension of the
method of Ionin and M. S. Shrikhande developed in [8] and [9] and used
in [6], [7). However, whereas they were always able to reduce to the case
of designs having at most two distinct block sizes, we examine a minimal
counterexample and will have to deal with designs potentially possessing
three different block sizes.

2 Preliminary results

Definition 2.1 Given a A-design D = (X,B) and a point z € X, the
replication number of z is the number of blocks A € B which contain z.

Ryser [12] and Woodall [22] independently proved the following theorem
concerning these replication numbers.

Theorem 2.2 If D = (X,B) is a A-design on v points, then there exist
integers r > 1 and »* > 1, r # »*, such that every point 2 € X has
replication number r or #* and r 4+ r* = v+ 1. In addition, the integers r
and r* satisfy the equation

1 1 (v=1)?
YA T e ST (1)

We will also need the following three theorems concerning the integers
r and r*. The first was stated without proof in [23]. For a proof see [14].

18



Theorem 2.3 A A-design on v points with replication numbers r and r*
is type-1 if and only if +(r — 1)/(v — 1) or r*(r* — 1)/(v — 1) is an integer.

Theorem 2.4 (8], [9] Let D be a A-design with replication numbers r and
r* and put g = ged(r — 1,7* = 1). If g =1,2, or 4, then D isgype-1.

Theorem 2.5 [18], [16] Let D be a A-design with replication numbers r
and r*, r > *. Pul g = ged(r—1,7* = 1). Ifged(\, (r—7*)/g) =1 o0r2,
then D is type-1.

Additionally, we will need the following three theorems concerning the
validity of the A-design conjecture for certain values of A.

Theorem 2.6 [5)], [12], [1], [10], [3], [15], [19], [4], [20] The A-design con-
Jjecture is true for A < 10 and A = 12, 14,15, 16, and 18.

Theorem 2.7 [17] The A-design conjecture is true for prime A.

Theorem 2.8 {16) The A-design conjecture is true when ) is twice a prime.

3 The Ionin-Shrikhande method

Let D = (X,B) be a A-design on v points. Then Theorem 2.2 implies
that every point of D has replication number r or r* for some integers
r # r*. Therefore, the underlying set X of our A-design is partitioned
into two subsets, E and I*, of points having replication numbers » and »*,
respectively. Let |E] = e and |E*| = e*, so e + ¢* = v. Also, for any block
A€B, putmqy = |ANLE| and T3 = |AN E*|, so T4 + 74 = [A]. We will
frequently use the trivial inequalities 0 < 74 < e for all A.

The following simple relation among these parameters is the starting
point of the Ionin-Shrikhande method developed in [8] and [9).

Lemma 3.1 Let D = (X,B) be a A-design on v points with replication
nunibers r and r*. Then the following relation holds for all blocks A € B:

(r = D(1Al = 274) = (v = 1)(J4] = X = 7). (2)

Proof: Fixing a block A € B, we will count in two different ways all of the
pairs (z, B) € X x (B\A) such that z € AN B. This gives us the equation
Ta(r=1)+713(r* — 1) = Av —1), which is easily transformed into equation
(2).

m]
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Now, let g = ged(r — 1,7* — 1). Then, since (r— 1)+ (r* —1)=v -1
by Theorem 2.2, we also have g = ged(r — 1,v — 1) = ged(r* — 1,0 = 1).:
We put

(3)
Then, since ged((r — 1)/g, ¢) = 1, equation (2) implies that ¢ divides |A| —
274 for all blocks A € B. Therefore, for each block A we define an integer
OA by

goa = |A| = 2ra. 4)
Next, we define the quantity

s = Z CA. (5)

Ag€B

Also, equations (2) and (4) imply that

rt =1

TA=A— oA (6)

r—1

= A+ —04 )

for all A. Adding equations (6) and (7) we obtain

r—r*
g

|A]=2X+ oA (8)
for all A.

Remark 3.2 Note that equation (8) implies that for any two blocks A, B €
B, |A| = |B| if and only if 64 = 0.

The next three equations are easily verified:

Z |A| =er+e°r", (9)

AeB
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Z TA = er, | (10)

AeB

and

E Ty =e'r'. (11)

AeB

Equations (4), (9), and (10) then imply that sq¢ = ) 45 (|4 - 274) =
e'r* —er = (v—e)(v—r+1) - er, which can be transformed into

sg=gq(gg—e—r+3)— (2e+1r-2). (12)
Equation (12) then implies that ¢ divides 2e + r — 2. Therefore, we define -
a positive integer m by
gm=2e+r—2. (13)
Similarly, equations (4), (9), and (11) imply that g divides 2¢* + r* — 2.
Thus, we define a positive integer m* by
gm* =2¢" +r* =2, (14)
Adding equations (13) and (14), we obtain

m+m* = 3g. (15)
Finally, equations (12), (13), and (15) imply that

s=g’q—gle+r)+3g—m. (16)

Remark 3.3 Upon further manipulation of the above equations, we even-
tually arrive at

(r=7")(m* —m) = glv— (4 - 1)). 1n

Note that equation (17) and the fact that r # r* imply that v = 4\ — 1 if
and only if m = m*.
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The next lemma establishes formulae for e and r in terms of the param-
eters A, g,q, and m. They follow easily from equations (13) and (17).

Lemma 3.4 [8) If D 1s a A-design on v # 4\ — 1 points, then

gr-(g-m)g+g-m

€= 39— 2m

and

_ (29 - m)(9g +2) — 29A
- 3g-2m ’

The next result gives a way of constructing new A-designs from old ones
by complementing with respect to a fixed block. For a proof see [8].

r

Remark 3.5 In what follows, if we complement with respect to the block
A, the parameters of the new design will be denoted by A(A), r(4), m(4),
ete.

Lemma 3.6 Let D = (X,B) be a A-design on v points with replication
numbers r and " and let A € B. Put

B(A) = {A}U{AAB: B€ B,B # A}.

Denote by D(A) the complemented set system (X, B(A)). Then we have
(1) If A= E or E*, then D(A) is a symmetric (v, |A|,|A] — A)-design,
(4) If A# E and A # E*, then D(A) is a A(A)-design on v points with

r(A) =r, r*(A) = r°, and m(A) = m + 204, where A\(A) = |A| - ),

(i11) If A# E and A # E* and D is type-1, then D(A) is also type-1, and
(iv) (D(A))(A) = D.

Finally, we will require the following simple lemma.

Lemma 3.7 Let g be a fized positive integer and suppose that there ezists
a non-type-1 A-design with replication numbers r and +* and gcd(r—1,7r* —
1) = g. Let D be such a design with minimal X. Then all of the blocks of
D have size at least 2).

Proof: Suppose that D has a block A of size less than 2). Complementing
with respect to A, we obtain the new design D(A). Now, D(A) is non-type-
1 and has g(A) = g by Lemma 3.6 (ii), (iii), and (iv). Also, D(A) has new
A-value A(A) = |A| - A. However, |A| - A < A since |A| < 2), contradicting
the minimality of D’s A-value.

o
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4 A-designs with ¢ =8

We are now in a position to prove our main result. In what follows, the
computer program Mathematica [21] was used extensively to carry out com-
putations.

Theorem 4.1 Let D = (.X,B) be a A-design on v points with replication
numbers r and v*. If y = ged(r — 1,7* — 1) = 8, then D is type-1.

Proof: Suppose that Theorem 4.1 is false. Then there exists a non-type-1
A-design with ¢ = 8. Let D = (X, B) be such a design withi minimal A.
Then by Lemma 3.7, we know that |A| > 2] for all blocks A € B. We also
know that A > 20 by Theorems 2.6, 2.7, and 2.8.

By equation (3), we may write v = 8¢ + 1. For each integer i, let a;
denote the number of blocks A € B with g4 = i. We will frequently use
the trivial fact that a; > 0 for all i. Since the number of blocks is equal to
the number of points, we clearly have

> ai=8g+1. (18)

i€Z

Also, equations (5), (16), and (17) and the formulae of Lemma 3.4 imply
that

Ziw _ (49 +1)(m® — 24m + 128) + 32\

12-m (19)

i€Z
if m#£12.
Next, equation (4) implies that for any block A € B, we have |A| =

274 + goa. Using this and the formulae of Lemma 3.4, equation (1) is
transformed into

(m = 12)q; _
gz: Am—=12) +i(2A-4g-1) ~

4(m — 12)2¢? 1
lg(m=8)—2x+1][g(m—16)+2A—1] A

(20)
if m# 12.

Now, since 8 divides r — 1, r is odd and equation (13) implies that m is
odd as well. Also, equation (15) implies that m + m* = 24. Without loss
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of generality, we may assume that m < m*. Therefore, m = 113,5,7,9, or
11.
Case l: m=1.

In this case, the formulae of Lemma 3.4 imply that e = (8A—49¢+7)/22,
r = (60g — 8) + 15)/11, and r* = (28¢ + 8X + 7)/11. Also, equation (6)
implies that 74 = A — [(7g + 2X — 1)/22]o 4 for any block A € B. Then
the inequalities 0 < 74 < e imply that 7 < g4 < 22A/(7¢ + 2A — 1) for all
A. Now, 8 divides r — 1 and » > 1, so r > 9. This gives us the inequality
g 2 (2X + 21)/15. Combining the last two inequalities, we obtain that

= 7 for all A. Therefore, by Remark 3.2, all blocks have the same
cardinality, contradicting the definition of a A-design.

Case 2: m=3.

In this case, Lemma 3.4 implies that e= (8)\—25¢+5)/18, r = (529 —
8\ +13)/9, and r* = (20q + 8X + 5)/9. Also, equation (6) implies that
Ta = A —[(5¢ + 2\ — 1)/18]o4 for any block A. Then the inequalities
0 <14 < eimply that 5 < o4 < 18)/(5q + 2X — 1) for all A. Next,
r > 9 gives us the inequality ¢ > (2A + 17)/13. Combining the last two
inequalities, we obtain that ¢4 = 5 or 6 for all A. Hence, a; = 0 for
all 7 except possibly 5 and 6. Solving equations (18) and (19), we obtain
as = (172¢ — 32X — 11)/9 and ae = 4(8) — 25¢ + 5)/9.

Now, 04 > 0 and |A| > 2) for all A, so we must have » > r* by
equation (8). This implies that ¢ > A/2. However, this 1mplles that ag <
—2(9X - 10)/9 < 0, a contradiction.
Case 3: m = 5.

In this case, Lemma 3.4 implies that e = (8A — 9¢ + 3)/14, r = (449 —
8A + 11)/7, and r* = (12¢ + 8X + 3)/7. Also, equation (6) implies that
Ta = A —[(3¢ + 2) — 1)/14)o4 for any block A. Then the inequalities
0 <74 < eimply that 3 < 04 < 140/(3¢g+ 2X - 1) for all A. Also,
r > 9 gives us the inequality ¢ > (2A + 13)/11. Combining the last two
inequalities, we obtain that o4 = 3,4, or 5 for all A. Hence, a; = 0 for
all 7 except possibly 3, 4, and 5. Solving equations (18), (19), and (20) we
obtain

aa3g® + a32q% + 319 + a3
14A(2A - 11¢-1)(83¢+ 22 -1)’

ag =

where a3z = —10212) + 7920, sy = 4909A% — 6981\ + 60, oz = —288A3 +
14962 — 1588) — 720, and azp = —64A% — 152)3 4 10742 — 59\ — 60,

043¢° + aq2q? + @419 + Q49
TA2A-11g-1)(3¢g+22-1)’

a4 =
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where @43 = 5328\ — 7920, aq2 = —6221A2 4+ 8099) — 60, aqy = 139223 —
237622 + 1752) + 720. and asp = —642* + 288)3 — 1472 + 61 + 60, and

asaq® + asaq® + as19 + asp
14022 - 11g - 1)(3g+ 21 - 1)’

where a53 = —4140) 4 7920, ase = 574122 — 8783X + 60, a5 = —2048)3 +
258422 — 1692) — 720, and aso = 1922% — 368)3 + 13172 — 49 — 60.

Replacing ¢ by a real variable z in the above expression for a5, we obtain
the function as(x). Now, 64 > 0 for all A, so r > »*. This implies that
g > A/2. Also, the inequality e > 1 implies that ¢ < (8 — 11)/9. This
implies 2X — 11g — 1 < 0. Therefore, as(z) is a continuous functions of z
on the interval [A\/2, (8X — 11)/9).

Now, the function as(x) has zeros only at (3A — 5)/20, (8A + 3)/9, and
z51 = (8/\2 = 5A +4)/(23X — 44). Clearly, (3X — 5)/20, (8X + 3)/9, 251 ¢
[A/2, (8 = 11)/9], so as(z) has no zeros on this interval. However,

as =

as(3) = ZEAF 12122+ 5)(37A% — 112X — 16)
R 14A(17A = 4)(25) + 4)

where A/2 < 3A/4 < (8X —11)/9. Therefore, as(z) is negative on the
interval [A/2, (8)\ — 11)/9], a contradiction.
Cased: m=1.

In this case, Lemma 3.4 implies that e = (8X — ¢ + 1)/10, r = (369 —
8A +9)/5, and r* = (4¢ + 8A + 1)/5. Also, equation (6) implies that
a4 = A—=[(g+2) — 1)/10]Jo4 for any block A. Then the inequalities
0 <74 <eimplythat 1 < o4 <10A/(g+2X—1) for all A. Also, r > 9
gives us the inequality ¢ > (2A+9)/9. Combining the last two inequalities,
we obtain that o4 = 1,2,3, or 4 for all A. Therefore, since ¢4 > 0 for
all A, we must have » > »*. From this we obtain the inequality X < 2g.
Now, suppose there exists a block A with 04 = 4. Then the inequality
T4 2 0 implies that A > 2¢ — 2. Therefore, A\ = 29 — 2,2¢ — 1, or 2q.
If A = 2¢ — 2, then (r — »*)/8 = 1, a contradiction by Theorem 2.5. If
A = 2¢ — 1, then » = (20g + 17)/5 is not an integer, a contradiction. If
A = 2g, then » = (20¢ + 9)/5 is not an mteger a contradiction, Therefore,
we must have a4 = 0. Hence, a; = 0 for all i except possnbly 1, 2, and 3.
Solving equations (18), (19), and (20) we obtain

<0,

a130® + a129% + o119 + a1g
10A(2A - 9¢ - 1)(¢ + 21 - 1)’

where a3 = —924)4-216, ;2 = 33122 -997A—138, a;; = 512)3—-280)2—
444X - 72, and a9 = ~192X* 4+ 5613 — 1102 — 35\ — 6,

a =
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azaq® + a229® + @219 + @20
5A(2) —9g - 1)(g+ 22 - 1)’

as =

where asz = 168\ — 216, ag2 = —1387A2 4 1615\ + 138, ag = 33673 —
4082 4 576\ + 72, and aao = 64A* + 9623 — 4542 + 41X + 6, and

- a33q® + as2q® + @319 + azo
3T 10A(2A-9g - 1)(g+ 22 -1)’

where a3z = —132) + 216, az» = 116342 — 1683) — 138, a3 = —864A3 +
616A2 — 548\ — 72, and aag = 64A% — 2083 + 6112 — 37\ — 6.

Replacing g by a real variable z in the above expressions for a; and
as, we obtain two functions, a;(z) and az(z). Now, we already know that
g > A\/2. Also, the inequality e > 1 implies that ¢ < 8\ — 9. This implies
that 2\ — 9g — 1 < 0. Therefore, a;(z) and as(z) are continuous functions
of z on the interval [A/2.8A - 9)].

Now, the function ag(z) has zeros only at (A —3)/12, 82 + 1, and

8AZ=3A+2
11A-18

Clearly, (A —3)/12,8A+1 ¢ [A/2,8) — 9], so aa(z) has at most one zero on
this interval. However,

231 =

A (A+2)(5A+3)(15)+2)
a3(3) = 10A(BX - 2) >0
and
w8r_g) = THA=DN=21)

27X — 8)

Therefore, as(z) has exactly one zero on the interval [A\/2,8\ — 9] at za3;.
Then the above inequalities imply that as(z) is negative on the interval
(231,8X — 9]. Hence, we must have q € [A/2, z3)].

Next, the function a;(z) has zeros only at —(3A +1)/4 and

128)% — 116X — 24 F 5v/641% — 6803 + 492 + 204) + 36
231X — 54 ’

211,212 =
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Clearly, —(3X 4+ 1)/4, 211 € [A/2, z31], so a;(x) has at most one zero on this
interval. However,

A, —(5A+1)(5)% — 52X - 12)
(2 =

(3)= T0A(BA = 2) <0

and

7(13A + 2)

112 -18 >0.

ar(z31) =

Therefore, a; (z) has exactly one zero on the interval [A/2, z31] at z12. Then
the above inequalities imply that a, (z) is negative on the interval [\/2, z;5).
Hence, we must have ¢ € [z12, 231).

Now, we easily obtain the inequality 23, < (8 + 12)/11, Next, the
inequality 64X — 680A3 + 49A% + 204\ + 36 > (82 — 43\ — 144)? implies
that zj» > (168)% — 331X — 744)/(231\ — 54). This in turn implies that
z12 > (8X — 16)/11. Therefore, we have g € ((8)\ — 16)/11, (8A + 12)/11).
Thus, since ¢ is an integer, we must have g € {(8\+k)/11: —15 < k < 11}.

Then r = (200X + 36k + 99)/55 and e = (80X + 11 — £)/110 for some
integer —15 < k < 11. So, 5 must divide 36k + 99 and 10 must divide
11 — k. Therefore, we must have k = -9,1, or 11. If q = (8\ = 9)/11,
then (r — 1)/8 = (5 — 7)/11, so 11 divides 5\ — 7. But, then r(r —
1)/(v = 1) = 5(5A = 7)/11 is an integer, a contradiction by Theorem 2.3.
If ¢ = (8A 4 1)/11, then (»* — 1)/8 = (3A — 1)/11, so 11 divides 3X — 1.
But, then r*(r* —1)/(v — 1) = 3(3)A — 1)/11 is an integer, a contradiction
by Theorem 2.3. So, we must have ¢ = (8) + 11)/11. However,

8\ + 11) _ —4(A—22)(17)A + 33)
1 - 33A(5A + 11)

for A > 23. Therefore, we must have A = 20,21, or 22. But, the only
such value of A that makes g integral is A = 22. Since 22 is twice a prime
number, we obtain a contradiction by Theorem 2.8.

Case 5: m = 11.

If there exists a block A with 04 < -2, then m(4) < 7 and D(4) is
non-type-1 with g(A) = 8 by Lemma 3.6 (ii), (iii), and (iv). Thus, we
obtain a contradiction by cases 1,2, 3, and 4. If there exists a block A with
oa 2 3, then m(A) > 17, so m*(A) < 7 and once again we are done by
previous cases. Therefore, we must have o4 = —1,0,1, or 2 for all blocks
A. Hence, a; = 0 for all i except possibly —1,0,1, or 2. Now, if r > r*,
then by equation (8) we must have o4 > 0 for all A since |A| > 2) for all

as( <0
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A. Similarly, if r < »*, then we must have o4 < 0 for all A. Thus, we have
the following two subcases.
Subcase 5a: o4 <0 for all A.

In this subcase, o4 = —1 or 0 for all A. Solving equations (18) and
(19) we obtain a_; = 60¢ — 32\ + 15 and ag = 32\ — 52¢ — 14. Now,
r < r*, which implies that ¢ < (A — 1)/2. However, this implies that
a1 < —(2X +15) < 0, a contradiction.

Subcase 5b: o4 > 0 for all A.

In this subcase, ¢4 = 0,1, or 2 for all A. Solving equations (18), (19),

and (20), we obtain

_ a029% + @019 + @00
T 22A-5¢-1)(22 -3¢ -1)’

ao

where ags = —323) — 30, ag = 28822 — 136X — 16, and ago = —643 +
6422 — 130 — 2,

@ = o3¢ + a12¢® + ang + o
' (2x=5g-1)(2A-3¢-1)"’

where a3 = 1140, a)s = —1373X + 893, ay; = 528)2 — 696 + 228, and
ajo = —64)23 + 132)2 — 871 + 19, and

a23q® + a22¢® + ang + azo
220 =59 —-1)(2A -3¢ - 1)’

Ga =

where a3 = —2040, ag = 2813\ — 1598, az; = —1280A% + 132X — 408,
and agg = 19223 — 32042 + 179X — 34.

Replacing ¢ by a real variable z in the above expressions for a; and a3,
we obtain two functions, a;(z) and a2(z). Now, the inequalities r > »* > 9
imply that A/2 < ¢ < (2A—3)/3. This implies (2A-5g—1)(2A-3¢—1) < 0.
Therefore, ay(z) and aa(z) are continuous functions of z on the interval
[7/2, (22 = 3)/3].

Now, the function a;(z) has zeros only at (A — 1)/4 and

136X — 76 F V25612 — 1292) + 361
285 '

Clearly, (A —1)/4, 211 € [A/2,(2X - 3)/3], so a;(z) has at most one zero on
this interval. However,

211,212 =
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1(%) - A+ 1B -38) 1,\)(_'?‘2_ % 50

and

220 -3 —(5A — 9)(7A? —56) + 114
al( 3 )= ( )é(/\_3) ) <0.

Therefore, a;(z) has exactly one zero on the interval [A/2, (2A — 3)/3] at
z12. The above inequalities then imply that a,(z) is negative on the interval
(z12,(2X — 3)/3]. Hence, we must have ¢ € [A/2, 212).

Next, the function as(z) has zeros only at (3A — 2)/8 and

128) — 68 F v/64)% — 1088) + 289
255 '

Clearly, (3 — 2)/8, 221 ¢ [A\/2, z12], s0 a2(z) has at most one;zero on this
interval. However,

221,222 =

A —A? 4+16) + 68
ao( =

AP =359 <O

and

64X + 19 — 4v/256A2 — 1292A + 361 S
38

Therefore, aa(z) has exactly one zero on the interval [A\/2,z19] at zas.
The above inequalities then imply that a(z) is negative on the interval
[/\/2, 222). Hence, we must have ¢ € [222, 212].

Now, the inequalities 64A% — 1088\ -+ 289 > (8A — 96)? and 256A2 —
1292X + 361 < (16 — 40)2 imply that zp, > (8A — 10)/15 and 22 <
(8X — 6)/15. Therefore, since ¢ is an integer, we must have ¢ = (8 —
9)/15, (8 — 8)/15 or (8X — 7)/15. If ¢ = (8 — 9)/15, then

az(z12) = 0.

. (8A - 9) _ —(2X = 51)(19) — 42)
2T T T -3)(A +2)
for A > 26. Therefore, we must have 20 < A < 25. However, no such

value of A makes ¢ integral, a contradiction. If ¢ = (8\ — 8)/15, then
e = (16A+9)/10 is not an integer, a contradiction. If ¢ = (81 —7)/15, then

<0
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BA—7, _ (TA—38)(17A—13)
5 ) Be-20+])

Therefore, we must have a,((8A — 7)/15) = 6 or 7. If a;((8X — 7)/15) = 6,
then X is not an integer, a contradiction. If a;((8A — 7)/15) = 7, then
A = 44. But, then (r — r*)/8 = 5 and we apply Theorem 2.5 to obtain a
contradiction.

Case 6: m=9.

" If there exists a block A with 04 < —1, then m(A) < 7 and we are done
by previous cases. If there exists a block A with o4 > 4, then m*(A) < 7
and we are done. If there exists A with 04 = 1, then m(A) = 11 and we
are finished by case 5. If there exists A with o4 = 2, then m*(4) = 11
and we are finished. Therefore, 04 = 0 or 3 for all A. Hence, a; = 0
for all i except possibly 0 and 3. Solving equations (18) and (19), we
obtain ap = 4(25¢ — 8\ +4)/9 and a3 = (32 — 28¢ — 7)/9. Inserting these
expressions for ap and a3 into equation (20) and manipulating the result,
we arrive at

5 < a( < 8.

(2 — 4¢ — 1)?[175¢% — (256 — 200)q + 6472 — 64X + 25] = 0.

Now, 2\ —4g — 1 # 0 since v # 4X — 1 because m # 12. Therefore, we
obtain that

175¢% — (256X — 200)q + 64A% — 64X + 25 = 0.

Now, the left-hand-side of the above equation is a quadratic polynomial
in g, and therefore its discriminant must be a perfect square. This yields
the equation

5762 — 1600\ + 625 = N2

for some integer N. This equation can then be transformed into

(31104) — 6N — 43200)(31104) + 6N — 43200) = 17500.

However, by considering all possible ways of factoring 17500 into the prod-
uct of two integers, the above equation can be shown to have no integral
solutions, a contradiction. This concludes the proof of Theorem 4.1.

]
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Corollary 4.2 All X-designs on v = 8p + 1 points, p=1or7 (mod8)a
prime, are type-1.

Proof: If p does not divide g, then ¢ = 1,2,4, or 8 and D is type-1 by
Theorems 2.4 and 4.1. If p does divide g, then p also divides r — 1 and
** —1. Without loss of generality, we may assume r > 7*. Therefore, either
r=Tp+land " =p+1,r=06p+1andr* = 2p+1,orr=5p+1 and
” =3p+1.

Ifr=6p+1and r* =2p+1, then (r—r*)/g = 2 and D is type-1
by Theorem 2.5. If » = 5p+ 1 and r* = 3p+ 1, then (r — r*)/9 =2 and
D is type-1 by Theorem 2.5. Thus, we may assume that r = 7p+ 1 and
™ =p+1.

If p =1 (mod 8), then 8 divides 7p+1, so r(r=1)/(v-1) =7(Tp+1)/8
is an integer and D is type-1 by Theorem 2.3. If p = 7 (mod 8), then 8
divides p+1, so #*(r* - 1)/(v~1) = (p+1)/8 is an integer and D is type-1
by Theorem 2.3.

a
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