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Abstract
A proper vertex k-coloring of a graph G is dynamic if for every
vertex v with degree at least 2, the neighbors of v receive at least two
different colors. The smallest integer k such that G has a dynamic
k-coloring is the dynamic chromatic number x4(G). We prove in
this paper the following best possible upper bounds as an analogue
to Brook’s Theorem, together with the determination of chromatic
numbers for complete k-partite graphs.
(1) If A < 3, then x4(G) < 4, with the only exception that
G = Cs, in which case x4(Cs) = 5.
(2) If A > 4, then x4(G) <A+ 1L
3) xa(K1,1) =2, xd(K1,m) =3 and Xa(Km,n) =4 for m,n 2 2;
Xd(Knymg,ny) =k for k > 3.

1. Introduction

Graphs in this note are simple and finite. For a graph G and v € V(G),
de(v) and Ng(v) denote the degree of v in G and the set of vertices adjacent
to v in G, respectively. ¢ and Ag denote the smallest degree and the
largest degree in G, respectively. The subscript G may be dropped if G is
clear from the context. The cycle of k vertices will be denoted by Cj, while
C(k) denotes a set of k colors.

A dynamic vertex k-coloring of a graph G is a map ¢ : V(G) — C(k)
such that

(C1) If wv € E(G), then c(u) # c(v), and

(C2) for each vertex v € V(G), |¢(N(v))| = min{2, de(v)}-
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The smallest integer k such that G has a dynamic k-coloring is the
dynamic chromatic number x4(G).

This coloring number has been initiated and studied in [2]. In this
paper, we prove the following three theorems. Theorem 1 and Theorem 2
are analogous to Brook’s Theorem and provide best possible upper bounds
for the dynamic chromatic number. Theorem 3 completely determines the
dynamic chromatic numbers for complete k-partite graphs.

Theorem 1 If A < 3, then xa(G) < 4, with the only exception that
G= Cs, in which case Xd(CS) = 5.
Theorem 2 If A > 4, then x4(G) < A+1.
Theorem 3 x4(K1,1) = 2, xa(K1,m) = 3, for m > 2, and Xd(Kmzn) = 4
for m,n > 2;

Xd(Kny ng, i) =k for k> 3.

2. Proof of Theorem 1

We start with a lemma. An arc of G is an (z, y)-path P from a vertex
T to a vertex y (or a cydle if £ = y), where z,y € V(G), such that all the
internal vertices of P have degree 2 in G, while z and y have degree at least
3.
Lemma 1 Let G be a connected graph with § = 2. Then there exists an
arc of length > 2 or G is a cycle.
Proof of Lemma 1 Let v € V(G) be such that d(v) = 2 and let P =
a---v---b be the longest path through v such that any internal vertex is
of degree 2. Since & > 2, then d(a), d(b) > 2. But any internal vertex is of
degree 2 and this path is the longest, thus either ab € E, or d(a), d(b) > 3.

If d(a) = d(b) = 2, then G is a cycle since it is connected.

If d(a), d(b) > 3, then P is an arc of length > 2.

Otherwise we may assume that d(a) = 2,d(b) = 3. Then ab € E and so
bP is an arc of length > 3. This completes the proof of Lemma 1.
Proof of Theorem 1 We may assume that G is connected. We argue by
induction on |V(G)|. The conclusion holds trivially if [V(G)| < 4. So we
assume that |V(G)| > 5.
Case 1 G has a cut vertex v.

Then G has two connected subgraphs G, and G, each having at least
2 vertices, such that V(G1) N V(Gz) = {v}. By induction, either G; = Cs
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or x4(G;) < 4.

Suppose G % Cs and G2 ¢ Cs. Then by induction, there are dynamic
4-colorings ¢; : V(G;) — C(4), for each i = 1,2. We may assume that
¢1(v) = c2(v), and since each G; is connected with at least two vertices,
we may also assume that one neighbor of v in G; receives a different color
from a neighbor of v in G3. Therefore, a dynamic 4-coloring of G can be
obtained by combining ¢; and cs.

Suppose Gy = vvousvavsv is a Cs and G2 2 C. Let ¢ : V(Ga) — C(4)
be a dynamic 4-coloring of G2. We may assume that cz(v) = 1 and for
some u € V(G2) with uv € E(G2), c2(u) = 4. Then define ¢(z) = ¢(2) if
z € V(Gz) and c(v2) = ¢(vs) = 2, ¢(vs) = 3 and ¢(v4) = 4. Then coloring
¢ is a dynamic 4-coloring of G.

Finally, we notice that since A < 3, we can NOT have G; = G5 =2 Cj
for in this case we will have d(v) = 4. This completes Case 1.

Below we assume that G is 2-connected. |V| > 5, hence 6§ > 2. Yet
A<3,306<L3.

Case 2 G is 2-connected and 6§ = 2.

Thus Lemma 1 holds.

Case 2A G = C,,.
One can easily verify that for n > 3,

3 ifn=0 (mod3)
xd(Ca) =4 4 ifn#0(mod3)andn+#5
5 ifn=>5.

Case 2B G has an arc P = v1v2 ¥y, forsome m > 4. Let G' = G —
{v2,*++,Ym-1}. By induction, either G' 2 Cj, or x4(G) < 4. Since G is
2-connected, then v; # vy, for otherwise v; = vy, is a cut vertex.

Case 2B1 G' = Cs.

If v1v,, € E(G'"), then let G' = V1V uquguzv; and c: V(G') — C(4) is
given by c(u;) = i, for 2 < i < 4, ¢(v1) = 1 and ¢(vy,) = 2; if vivm & E(G'),
then let G’ = viusugvmuev; and ¢ : V(G') — C(4) is given by c(u;) = 1,
for 3 <i <4, c(ug) =3, ¢(v1) =1 and c(vm) = 2.

For 2 < i < m — 1, define

4 ifi=2(mod 3)
c(v;) =< 3 if i=0 (mod 3)
1 ifi=1 (mod 3).
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Then ¢ is a dynamic 4-coloring of G.

Case 2B2 G’ % Cs.

Then by induction, x4(G') < 4. Let ¢: V(G') — C(4) be a dynamic
4-coloring of G'. Now we extend ¢ to G. Note that both v, and v,, have
degree at least 2 in G', and so each of v, and vy, is adjacent to vertices in
G’ with at least two colors.

If ¢(v1) = ¢(vm), then we assume that c(vi) = c(vm) = 2; if c(v1) #
¢(v,), then we assume that c(v;) = 1 and c(vn) = 2. Define, for 2<i <
m-1,

4 ifi=2 (mod 3)
c(v;)=< 3 ifi=0 (mod3)
1 ifi=1 (mod 3).
Then ¢ is a dynamic 4-coloring of G. This completes the proof for Case 2B.
Case 2C Every arc in G is of length < 2 and there is at least one arc of
length 2.

Note that in this case there could not exist an edge zy in G such that
d(z) = d(y) = 2 for otherwise a reasoning similar as in the proof of Lemma
1 will lead to the existence of an arc of length > 3 or G is a cycle, either of
which is a contradiction with the assumption of this case.

Let d(v) = 2 and assume that N(v) = {z,y}. Then by the assumption
of this case, d(z),d(y) > 3; thus, d(z) = d(y) = 3. Denote N(z) - {v} =
{a,}, N(y) — {v} = {c, d}. Since G is simple, z # y.

Case 2C1 zy € E. Let G' = G—v. Then either G’ = Cs, or x4(G’) < 4.

We have G’ £ Cs, for otherwise we can find an arc of length 4. Hence, by
induction we may assume that ¢ : V(G') — C(4) is a dynamic 4-coloring
for G'. Since G is simple, then dg/(z),dg:(y) = 2. Therefore each of
z and y is adjacent to vertices in G’ with at least two different colors.
Since zy € E(G"), thenc(z) # c(y). Pick k from C(4) \ ¢(z,y) and define
¢(v) = k. Then ¢ is a dynamic 4-coloring for G.

Now we assume that zy ¢ E. Then {a,b,¢,d} N {z,y} = 0.

Case 2C2 zy ¢ E and {a,b} N {c,d} # 0.

Assume that ¢ € N(z) N N(y) \ {v}. Let G' = G —v +zy. Then G
is still connected and dg» = d(G) = 3; hence, G' £ Cs. By induction, let
¢: V(G') — C(4) be a dynamic 4-coloring for G', then ¢(z) # c(y). Pick
k from C(4) \ ¢(z, y, a) and define ¢(v) = k; then ¢ is a dynamic 4-coloring
for G.
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Case 2C3 zy ¢ F and {a,b} N {c,d} = 0.

In this case we have: a,b,¢c,d are distinct and a,b ¢ N(y), ¢,d ¢ N(z).
6§=2,A=3.

We may assume, by symmetry, that d(e) < d(b).

Case 2C3.1 d(a) = 2 = d(b).

Note that in this case a, b are not adjacent as we have mentioned at the
beginning of Case 2C.

If N(a) = N(b) = {z,z}. Let G' = G — {a,b} + xz. Then G’ is still
connected and since a,b € N(y), da'(y) = dg(y) = 3. Hence, G' ¢ Cs. By
induction, we may assume that ¢ : V(G') — C(4) is a dynamic 4-coloring for
G'. zz € E(G'), thus ¢(z) # ¢(2). We may assume that c(z) = 1, ¢(2) = 2.
Define c¢(a) = 3, ¢(b) = 4. Then c is a dynamic 4-coloring for G.

Now we assume that N(a) = {e,z} and N(b) = {f,z}, where e # f.
By assumption of Case 2C, d(e) = d(f) = 3.

Let G' = G—{a, b, z,v}, then §(G') = 2. What’s more, G is connected
for otherwise x will be a cut-vertex for G, contrary to G being 2-connected.
By induction, either G’ 2 Cs or x4(G’) < 4.

If G' = Cs, then the three vertices e, f,y are symmetric in term of
z. Among them there is at least one pair of adjacent vertices since they
are vertices of Cs. Assume that e and f are adjacent. Note that the two
vertices in G’ other than e, f,y are not adjacent, for otherwise we have an
arc of length 3. So G’ = efv;yve. Thus, c¢: V(G) — C(4) can be given by
e(f) = c(vz) = 1, ¢(e) = ¢(v) = c(v1) =2, ¢(a) = c(b) = c(y) = 8,¢(x) = 4.

Now we assume that G’ £ Cs. By induction, we may assume that
¢ : V(G') — C(4) is a dynamic 4-coloring for G’. We may assume that
C(E) =1, C(f) €{1,2},¢(y) € {11 2, 3}' Define c(a) =2, c(:z:) =4, c(b) =3,
and pick ¢(v) from C(4) — {4,¢(y)}; then ¢ is a dynamic 4-coloring for G.
This completes the proof for Case 2C3.1.

Case 2C3.2 d(a) = 2,d(b) = 3.

Suppose @, b are adjacent. Let G' = G —v + zy. Then G’ is connected
and since G' has a triangle abz, thus G’ £ Cs. By induction, we may
assume ¢ : V(G') — C(4) is a dynamic 4-coloring for G'. Since ab,zy € E,
so ¢(z) # c(y), c(a) # c(b). We may assume that c(z) = 1,¢(y) = 2.
d(y) = 8, hence y has a neighbor colored differently from 1 or 2. We may
assume that the neighbor receives color 3. Define c(v) = 4, then c is a
dynamic 4-coloring for G.
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Otherwise, a,b are not adjacent. Denote e as the neighbor of a other
than z. Let G' = G — {a,z,v}. G' must be connected for otherwise z
will be a cut-vertex in G. If G' 2 Cs. By induction, we may assume that
¢: V(G") = C(4) is a dynamic 4-coloring for G'. Since dgr(e) = der(b) =
dc'(y) = 2, then each of e, b,y is adjacent to vertices of at least 2 different
colors. We may assume that c(e) = 1, c(y) € {1, 2}, ¢(b) € {1,2,3}. Define
c(e) = 2, ¢(z) = 4,¢(v) = 3, then ¢ is a dynamic 4-coloring for G.

Now assume that G' = C5s. Note that e,y are symmetric with respect to
z. If eb ¢ E, yb ¢ F, then ey € E; otherwise, we may assume that eb € E.
Denote the two vertices other than e, b,y as w, 2. By the assumption of
Case 2C, w and z are not adjacent. Therefore, it suffices to deal with the
following two cases:

(). G' = eywbz. Then c: V(G) — C(4) is given by c(e) = c(w) =
1,¢(a) = c(y) = 2,¢(z) = ¢(2) =3, ¢(b) = c(v) = 4.

(ii). G' = ewyzb. Then ¢ : V(G) — C(4) is given by ¢(b) = c(v) =
1, ¢(z) = c(w) = 2,¢(a) = c(y) = 3,c(e) = c(z) = 4.

This completes the proof for Case 2C3.2.

Case 2C3.3 d(a) = 3 = d(b). By the symmetry of  and y, and
the previous two cases, we may assume also that d(c) = 3 = d(d).

Let G' = G—{z,v}. G' is simple and G is still connected, for otherwise
v will be a cut-vertex in G. dg'(c) = 3 implies that G’ £ Cs. Thus, by
induction we may assume that ¢ : V(G’) — C(4) is a dynamic 4-coloring
for G'.

We may assume that c(y) = 1,c(a) € {1,2},¢(b) € {1,2,3}. Define
¢(x) = 4, ¢(v) = 3; then ¢ can be extended to a dynamic 4-coloring for G.

This completes the proof for Case 2C3.3 as well as the proof for Case
2C.

Case 3 G is 2-connected and § = 3.

Since A < 3, then A = § = 3 and G is cubic. Let z,y be an adjacent
pair of vertices in G and assume that N(z) = {a,b, ¥}, N(y) = {c,d;y}.
Since G is simple, then a # b, ¢ # d and {a,b, ¢, d} N {z,y} = 0.

Case 3A {a,b}N{c,d} #0.

Assume that @ € N(z) N N(y). Let G' = G —z. Then G’ is still
connected for G is 2-connected. Since dgr(w) = 3 for any w ¢ {a, b, z,y},
hence G’ 2 Cs. By induction, we may assume that ¢: V(G') — C(4) is a
dynamic 4-coloring for G'.
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Since ¢ and y are adjacent, then c(a) # ¢(y). Since dg'(a) = de:(b) =
der(y) = 2, then each of a, b,y is adjacent to vertices of 2 different colors.
Pick k from C(4) \ ¢(a, b, y) and extend c to G by defining ¢(z) = k. Then
¢ is a dynamic 4-coloring for G.

Case 3B {a,b} N {c,d} =0.

Let G' = G—x —y. G is cubic and so dg' (w) = dg(w) = 3 for every w
in G' expect for a,b,z,y. Thus G’ can not have a component isomorphic
to Cs. By induction we may assume that ¢ : V(G') — C(4) is a dynamic
4-coloring for G'.

Suppose ¢(a) # ¢(b), c(c) # ¢(d). Pick m from C(4)\ {a, b}, pick n from
C(4)\ ¢(c,d) \ {m} and extend c to G so that c(x) = m,c(y) =n. Then ¢
is a dynamic 4-coloring for G.

Otherwise, without loss of generality, we may assume that c(a) = c(b).
Pick n from C(4) \ ¢(a, ¢, d), pick m from C(4) \ ¢(a,c) \ {n} and extend c
to G by assigning c(x) = m, c(y) = n. Then ¢ is a dynamic 4-coloring for
G.

This proves Case 3 and thus completes the proof of Theorem 1.

3. Proof of Theorem 2

We use induction on |V (G)|. Note that A > 4 implies that A +1 > 5.
The conclusion holds trivially if |V| < 5. Assume that |V| > 6.

Let H be a subgraph of G with a fewer number of vertices. Then
A(H) < A(G). If A(H) < 3, then by Theorem 1, xa(H) <5< AG) + 1;
otherwise, A(H) > 4 and by induction, x4(H) < A(H) +1 < A(G) + 1.
So, in either case we have x4(H) < A(G) +1.

Caselé=1.

Let v be a vertex in G with d(v) = 1 and consider G’ = G —v. By
induction, x4(G') £ A(G) + 1. Let c be a dynamic (A(G) + 1)-coloring for
G'. Denote the only neighbor of v as w. We may assume that d(w) > 2.
Let u be a neighbor of w other than v. Pick k from C(A(G) + 1) \ ¢(w, u).
Then we can extend ¢ to G by assigning c(v) = k.

Case 2 6§ =2.

Let d(v) = 2 and denote N(v) = {z,y}. Consider G' = G—v+zy. Then
by induction, x4(G') < A(G) + 1. Let ¢ be a dynamic (A(G) + 1)-coloring
for G'. Since d(z),d(y) = 2, then we can choose z’ and 3’ from N(z) —
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{v} and N(y) — {v}, respectively. Pick k from C(A(G) + 1)\ ¢(z, y,2',¥/).
Then we can extend ¢ to G by assigning c(v) = k.
Case 3 6 >3.
Denote z,¥ as a pair of adjacent vertices in G.
Case 3A N(z)N N(y) #0.

Let 2 € N(z) N N(y) and denote G' = G — z. By induction, x4(G’) <
A(G)+1. Let ¢ be a dynamic (A(G)+1)-coloring for G'. Then c(y) # ¢(2).
Pick k from C(A(G)+1)\¢(N(z)). Then we can extend ¢ to G by assigning
c(v)=k.

Case 3B N(z) N N(y) =0.

Let G' = G — z — y. By induction, x4(G") < A(G) +1. Let cbe a
dynamic (A(G) + 1)-coloring for G'.

Denote N, = N(z)\{u}, N, = N(y)\{z}. Then [N.| < A(G)-1,N,| <
A(G) —-1.

¥ |c(Nz)| 2 2,le(N,)| = 2. Pick m € C(A(G) + 1) \ ¢(N;) and pick
n € C(A(G) + 1) \ ¢(Ny) \ {m}. Then we can extend c to G by assigning
e(z) =m,c(y) =n.

Otherwise we may assume that |c(N,)| = 1. Let z’ be a neighbor
of = other than y. Pick m € C(A(G) + 1) \ ¢(N, UN,) and pick n €
C(A(G) + 1)\ ¢(Ny) \ {m} \ c(z'). Then we can extend ¢ to G by assigning
c(z) = m,c(y) = n. This proves Case 3 and thus finishes the proof of
Theorem 2.

The following example shows that the result is best possible. Denote
SK,, as a graph obtained from K,, by subdividing every edge in the com-
plete graph. It is easy to verify that A(SK,) = n— 1 and every pair of
vertices in the original complete graph must be colored differently. There-
fore, we need at least n colors, that is, A + 1 colors in 2 dynamic coloring
for SK,,. Also, by the Theorem, we know that we need exactly n colors for
n > 5.

4. Proof of Theorem 3

It is easy to verify the first equality. For K} ,, with m > 2, denote the
two bipartitions as {a} and {b1,b2, --,bn}. Then a dynamic 3-coloring
¢ : Ky ;m — C(3) can be given by defining ¢(a) = 1,¢(b;) = 2 and ¢(b;) = 3
for i > 2. On the other hand, a has at least two neighbors and so its
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neighbors must receive at least two distinct colors different from the color
of a. Hence, it is necessary to use 3 colors. So, x4(K1,m) = 3.

Now we show that x4(Km,n) = 4 for m,n > 2. Denote the two biparti-
tionsof K nas X and Y. Let X = {23, %2, ,Zm}, Y = {¥1, %2, -, U}
Then a dynamic 4-coloring ¢ : X UY +— C(4) can be given as follows:
e(z1) = 1,¢(z;) = 2, fori > 2 and ¢(y1) = 3,¢c(y;) = 4, for j > 2. This
shows that x4(Km,n) < 4. On the other hand, let ¢’ be a dynamic coloring
for Kmn. Since m,n > 2, then each vertex has degree at least 2, so its
neighbors must receive at least two different colors. Hence |¢/(X)], |¢'(Y)| 2
2. Also, by the definition of proper coloring, ¢/(X) N¢'(Y) = 0, as any ver-
tex in X is adjacent to any vertex in Y. Thus, |¢/(Kmx)| = 4 and so
Xd(Km,n) 2 4. Therefore, xa(Km,n) = 4.

If k& > 3, then it suffices to use k£ colors in a dynamic coloring of
Ko, gy, fOr we can assign to vertices in each partition a distinct color
and it is easy to verify that this is a dynamic k-coloring of the graph. It is
also necessary to use k colors since the complete k-partite graph obviously
contains a clique Kj. Hence, the dynamic chromatic number for complete
k-partite graphs is k.
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