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Abstract. We find a maximal number of directed circuits (directed co-
circuits) in a base of a cycle (cut) space of a digraph. We show that this
space has a base composed from directed circuits (directed cocircuits) if and
only if the digraph is totally cyclic (acyclic). Furthermore, this basis can
be considered as an ordered set so that each element of the basis has an arc
not contained in the previous elements.

1. Preliminaries

We consider graphs with multiple edges and loops. Endowing each edge
of a graph G by an orientation, we get a digraph D which is called an
orientation of G. The vertex and arc sets of D are denoted by V(D) and
E(D), respectively. A subgraph D’ of D is called a component of D if it is
an orientation of a component of G. The arcs of D arising from loops and
bridges of G are called loops and bridges of D, respectively.

By a circuit C in D we mean any subgraph which is an orientation of a
connected 2-regular subgraph of G. Furthermore, if no two distinct arcs of
C are directed to the same vertex, then C is called a directed circuit. Let F
be a minimal cut in G (i. e., there is no cut F/ C F). Then the set B of arcs
of D associated with the edges of F is called a cocircuit in D. Furthermore
let B contain only arcs directed out from a new component arising from D
after deleting the arcs of B. Then B is called a directed cocircuit. Every
arc-disjoint union of (directed) circuits and (directed) cocircuits are called
(directed) cycle and (directed) cocycle, respectively.

Let Fy denote the field of two elements. It is well known (see, e. g.,
{1, 2]), that the function E(D) — F2 form the edge space £(G) of D
(its elements are subsets of E(D), vector addition amounts to symmetric
difference, @ C E(D) is the zero, and X = —X for every X C E(D)). The
sets of all cycles and cocycles in D are subspaces of £(D) called cycle and
cut (or cocycle) spaces of D and denoted by C(D) and C*(D), respectively
(for simplicity, we shall not distinguish between the subgraphs of D and
their edge sets in this paper). It is known that C(D)t = C*(D), C(D).
has dimension m(D) = |E(D)| — |V(D)| + ¢(D), C*(D) has dimension
r(D) = |V(D)| — ¢(D), where ¢(D) denotes the number of components
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of D (note that (D) is the number of edges in a spanning forest of D, i. e.,
a maximal subgraph of D not containing a circuit, and m(D) is the number
of edges of its complement). It is known that C(D) and C*(D) have basis
consisting of circuits and cocircuits, respectively. Now we study how many
of them can be directed.

Let D¢ (D 4) be the subgraphs of D such that V(D¢) = V(D) = V(D)
and e € E(D¢) (e € E(D 4)) iff e is contained in a directed circuit (directed
cocircuit) in D. By Minty [5] (see also [1]), E(D¢) U E(D4) = E(D)
and E(Dc) N E(D4) = 0. D is called totally cyclic (acyclic) if D = D¢
(D = D,p).

Lemma 1. A digraph D is totally cyclic iff for every pair of distinct ver-
tices (u,v) from one component of D there exist a directed u-v-path in D.

Proof: Sufficiency is trivial. If D is totally cyclic, then there exists an
directed u-v-trial in D, thus also a directed u-v-path. 0O

Contract in D all arcs from D¢ (i. e., contract in D the subgraphs
D,,...Ds which are components of D¢ to vertices vy, ..., Vs, respectively).
We get an acyclic digraph D’ called a condensation of D. Clearly D = D’
iff D is acyclic. Usually we shall not distinguish between the arcs from D’
and the arcs from D4 in this paper.

2. Bases in cycle and cut spaces

An n-tuple (D, ..., Dy,) of subgraphs of a digraph D is called triangular if
every D; contains an arc e; (1 =1,...,n) such that e; ¢ C; for each j < i.
Clearly, the graphs Dy, ..., D, are independent in the edge space £(D).

Lemma 2. Let D be a totally cyclic digraph. Then there erists a triangular
m(D)-tuple (C1,...,Crn(py) of directed circuits in D.

Proof: We use induction on m(D). The statement holds if m(D) = 0
(i. e., if E(D) = 0). Let e be an arc of D, Dy,...,D; be the compo-
nents of (D — e)¢, and D’ be the digraph arising from D after contract-
ing Dy,..., D, to vertices vy, ...,vs, respectively (note that D’ — e is the
condensation of D — e). If we take spanning forests in Dy,..., Dy, and
D', then their union is a spanning forest in D (e cannot be a bridge, be-
cause D is totally cyclic), whence m(D) = m(Dy) + -+ + m(D;) + m(D’)
and m(Dy),...,m(D;),m(D’) < m(D). Thus, by the induction hypoth-
esis, Dy,...,D;, and D’ have the required sets (C1,1,...,C1,m(y))s -+ »
(Cs,15+++,Csm(p,)), and (Cy, .. ., C’:n( D,)), respectively. Directed circuits in
D,,..., D; are directed circuits in D. By Lemma 1, every directed circuit C}
in D’ can be extended to a directed circuit C; in D (i = 1,...,m(D’)). Thus
the m(D)-tuple (C1 1, - - -, Cl,m(D,)y cesCs1yae ey Cs,m(D,), Clyeoes Cm(Dl))
has the required properties. 0O
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Lemma 3. Let D be an acyclic digraph. Then there exists a triangular
r(D)-tuple (C\,...,Crp)) of directed cocircuits in D.

Proof: Without abuse of generality we can suppose that D has one com-
ponent. We use induction on r(D). The statement is trivial if 7(D) = 0
(i. e., E(G) = 0). Otherwise D has a sink v (i. e., there is no arc di-
rected out from v). Let Dy,...,D; be the components of D — v. Then
r(D) = t+r(D;) + --- 4 r(D;). Let C; be the set of arcs directed from
V(D;)tov (i =1,...,t). Then C; is a directed cocircuit in D. By the induc-
tion hypothesis, there exists a triangular r(D;)-tuple of directed cocircuits
(Cip,- -2 Cir(py)) in D;. Let Dy ; be the component of D; —Cj,; so that the
arcs of C; ; are directed out from V(D; ;) (i =1,...,¢, j =1,...,m(Dy)).
Let C;; be the set of arcs of D directed out from V(D;,;). Then Cj; is
a directed cocircuit, C;; € C};, C;; \ Ci;; C C;i, and the m(G)-tuple of
directed cocircuits (Cy, ..., Ct, C1 1, -+, Cf rpyys -+ Ct1s -+ -1 Cor,y) hias
the required properties. O .

Note that Lemma 2 cannot be improved so that every circuit C; contains
an arc e; satisfying e; ¢ C; for all j # 4. It suffices to consider a digraph
D having two vertices u© and v and four arcs, two of them directed to u
and the other two directed to v. Then m(D) = 3, and if we take three arcs
ey, ez, e3 of D, then two of them, say e, ez, are directed to the same vertex,
and every directed circuit in D must contain at least one of ej, e2. Since D
is planar, we can apply duality (see [1, 2]) and show that Lemma 3 cannot
have a similar improvement either.

Theorem 1. Let D be a digraph and D’ be the condensation of D. Then
the mazimal number of directed cycles (resp. directed cocycles) in a base of
C(D) (resp. C*(D)) is m(D¢) (resp. r(D’)). On the other hand there exists
a base of C(D) (resp. C*(D)) containing a triangular m(Dc)-tuple (resp.
r(D')-tuple) of directed circuits (resp. directed cocircuits).

Proof: Let Ci,...,Cp(p) be a base of C(D) such that Cj,...,C;, are di-
rected cycles. The union of Cj,...,Cs is a subset of De. Thus s < m(Deg).
Conversely, by Lemma 2, there is a triangular m(D¢)-tuple of circuits
(C1,...,Cm(pe)) in De (thus also in D) which can be extended to a base
in C(D).

Let Cy,...,Cr(p) be a base of C*(D) such that C),...,C; are directed
cocycles. The union of Cjy,...,C; is a subset of D4. Furthermore, C
is a directed cocircuit in D iff it is a directed cocircuit in D’. Thus ¢t <
r(D'). Conversely, by Lemma 3, there is a triangular r(D’)-tuple of circuits
(C1,y...,Crpy) in D’ (thus also in D) which can be extended to a base in
C*(D). This proves the statement. O
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Theorem 2. Let D be a digraph and b(D) (I(D)) be the digraph arising
from D after deleting all bridges (loops). Then the cyclic (cut) space of
D has a basis consisting of directed circuits (directed cocircuits) iff b(D)
(1(D)) is totally cyclic (acyclic). Furthermore, the base can be a triangular
m(D)-tuple (r(D)-tuple).

Proof: Sufficiency holds by Lemmas 2, 3, and the fact that C(D) = C(b(D))
(C*(D) = C*(I(D))). Suppose that b(D) (I(D)) is not totally cyclic (acyc-
lic). Then m(b(D)¢) < m(D) (r(D’) < r(D), where D’ is the condensation
of {(D)). Thus the necessity holds by Theorem 1. O

Note that we cannot replace D’ by D 4 in Theorem 1. For example, let
D be an orientation of K4 so that D4 has exactly 3 arcs which are directed
to one vertex and let D’ be the condensation of D. Then r(D4) = 3,
(D'} = 1, D4 has three cocircuits of cardinality one and these are not
cocircuits in D. The arcs of D4 form a directed cocircuit in D which is a
directed cocycle (but no directed cocircuit) in D 4.

In accompanied papers (3, 4], we use that, by Lemmas 2 and 3, the
minimal number of directed cycles (directed cocycles) in a totally cyclic
(acyclic) digraph D is m(D)+1 (r(D)+1). This estimate is the best possible
in general. For example take two trees T and T» with two distinguished
vertices v; and v, respectively. Orient the edges of T} (T2) in the direction
towards v, (away from v3), add n new arcsey, ..., e, directed from V(73) to
V(T1) and a new arc e directed from v to v2. We get a totally cyclic digraph
D, so that m(D,) = n, D, — e is acyclic, and every arce; (1 =1,...,n)
is contained in exactly one directed cycle in D,. Thus D, has exactly
m(Dy) + 1 directed cycles () € E(D,) is one of them). Furthermore, if
D, is planar, we can apply duality and get a digraph D}, having exactly
n+1=r(D}) +1 directed cocycles.

Finally note that similarly as in Theorem 1 we can show that every
digraph D has at least m(D¢) + 1 directed cycles and r(D’) + 1 directed
cocycles, where D’ is the condensation of D.
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