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Abstract

In [5] Pila presented best possible sufficient conditions for a regular o- con-
nected graph to have a 1-factor, extending a result of Wallis [7]. Here we
present best possible sufficient conditions for a o-connected regular graph to
have a k-factor for any k > 2.

1 Introduction

All graphs considered are finite, undirected and simple. For a graph G = (V,E)
let n(G) = |V(G)| denote the order of G. For any vertex z € V(G) let d(z,G)

denote the degree. We call G d-regular, if d(z,G) = d for every vertex z. For
disjoint X,Y C V(G) let eg(X,Y’) denote the number of edges in G with one
endvertex in X and one endvertex in Y. A graph G is c-connected if G — Y is

connected for any Y C V(G) with |Y| < c¢. The connectivity o(G) of G is de-

fined as the maximum c such that G is c-connected. A k-factor of a graph G is a

k-regular spanning subgraph of G.

Wallis [7] presented graphs of minimum order without a 1-factor, thus giving
sufficient conditions for a regular graph to have a 1-factor. Two years later Pila
[5] improved these conditions in case the connectivity of the graph is known.

Theorem 1.1 (Pila [S]) Let n,d,o be integers withn > d > 1, n evenand d >
o > 1. Define 0* € {0,0 + 1} such that 0* =d (mod 2). A d-regular graph
of order n and connectivity o has a 1-factor if

e deven and

(i) d=o*+2andn < o* + (6* +2)(d + 1);
(i) c=1,d>0" +4andn <1+ 3(d+1);
(iii) 0 =2,d>0* +4andn <2+ 4(d+1);
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(iv) 0 =3,d€ {0" +4,0* + 6} andn < 3+ 5(d +1);
(v)o>3d>0*+8o0ord>0*+4forc >4 andn<2d-14(1+
2)(d +1);
e doddand

() c=1d>0"+2andn <o+ (0 +2)(d+2);

(ii) 0 =2,d€ {o* +2,0* +4}andn < g + (o + 2)(d + 2);
(iii)) 0 =2,d > 0* + 6 andn < 3(d + 2);

(iv) 0 >3, d=0c*+2andn < o* +(c* +2)(d+2);

(v) o€{3,4},d=o0*+4andn <o+ (I +2)(d+2)+d;

(vi) 0 >8,d>0*+6,ord>c*+4foro >5andn<2d—1+ (I +
2)(d + 2),

withl .= |'d2_aa“|'

These conditions are best possible.
In our work we extend Pila’s result to k-factors with k£ > 2. Our main result is

Theorem 1.2 Forintegersn,d,k,o withd—1>k > landn > d > o > 1such
that nd and nk are even, let G be a d-regular graph of order n and connectivity
0. Define * € {0,0 + 1} such thato* =d (mod 2), p € {1,2} such that
p#Zd (mod 2)and

k, fordandk odd ;

. min{k,d — k}, fordevenandkodd;
k=
d—k, ford odd and k even .

The graph G has a k-factor if
o dand k even, or else
e ifeitherd < ko*, or
(i) d=ko* +2andn < o* + (ko* +2)(d + p);
(i) 0 =1,d> ko* +4andn < 1+ (k + 2)(d + p);
(iii) 0 =2,d=3k+4andn < 2+ (2k + 2)(d +p);

(iv) 0=2d=2k+4andn < 2d— 1 + (kl + 2)(d + p);

(v) o >2d> ko +6, ord > ko* +4foroc >3, andn <2d—1+
(k1 +2)(d+p),
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where l := [ 20. -l
d - ko*

These conditions are best possible.

We restrict ourselves to connected graphs only, since the disconnected case presents
no new results. Further, we exclude the cases that nd or nk are odd where either
G or the k-factor cannot exist. The restrictiond—1 > k > 1 can be made because
of Pila’s result on 1-factors and the fact that a d-regular graph has a k-factor if
and only if it has a (d — k)-factor.

Theorem 1.2 bears close resemblance to a result of Niessen and Randerath. In [3]
they determined all quadruples (n,d, k, X) for which a d-regular graph of order
n and edge-connectivity A has a k-factor. Due to the fact that the connectivity of
a graph is always less than or equal to its edge-connectivity, it is plausible that
our conditions will allow higher orders in most cases. Note that neither result can
be used to prove the other, since there exist regular graphs which have arbitrarily
high edge-connectivity but are only one-connected.

2 Proof of the Main Theorem

The proof of Theorem 1.2 uses the k-factor Theorem of Belck [1] and Tutte [6],
which we cite in its version for regular graphs. .

Theorem 2.1 The d-regular graph G has a k-factor if and only if
O(X,Y,k) == k|X| - kY| + dIY| —ec(X,Y) - qc(X, Y, k) 2 0

for all disjoint subsets X,Y of V(G). Here qc(X,Y, k) denotes the number of
components C of G — (X UY) satisfying

ec(Y,V(C) +EV(C)|=1 (mod 2).

We simply call these components odd.
It always holds ©(X,Y, k) = k|V(G)| (mod 2) for all disjoint subsets X,Y of
V(G), wether G has a k-factor or not.

We further need the following Theorem of Menger.

Theorem 2.2 (Menger [2]) A graph G has connectivity o(G) = c if and only if
there exist ¢ paths between any two vertices .,y of G, which only have z and y in
common.
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Proof of Theorem 1.2. By the well known Theorem of Petersen [4] every regular
graph of even degree has a 2-factor, and thus the case that d and k are even is
proved. In the remaining cases we may assume without loss of generality that
k = k > 3 odd. This holds since G has a k-factor if and only if G has a (d — k)-
factor. We proceed by presenting lower bounds on the order of G, if G does not
have a k-factor.

If G does not have a k-factor, then by Theorem 2.1 there exist disjoint subsets
X,Y of V(G) such that

kI X| = kY] +dlY] - ec(X,Y) +2 < gc(X,Y, k) =: ¢ €Y

We follow the ideas of [3], [5] and [7] and call an odd component C of Z :=
G — (X UY) a small component, if |V (C)| < d. Let s denote the number of
small components of Z. It is easy to see that

e [V(C)| > d + p for every odd component C of Z which is no small com-
ponent;

e eg(X UY,V(C)) > o* for every odd component C of Z, and even
e eg(X UY,V(C)) > d for every small component C.

This leads to
eg(XVUY,V(2)) > sd+ (g —s)o* =go* +(d—a")s. )
Counting the edges between X and Y in two different ways leads to
2eq(X,Y) <d|X|+d|Y| —eg(X VY, V(2)). 3
(2) and (3) yield
d|X|+d|Y|—2ec(X,Y) 2 go* + (d—")s.
With (1) it follows
(d-2k)(IX| - Y]) 2 g(o* —2) + (d - 0%)s + 4. O]

We now consider two cases.
Casel.o"* > 2.

Claim: | X| - Y] > 0.

Proof of the Claim. The righthand-side of (4) is positive, so for even d we get

|X|-1Y]>0.

If d is odd, we use the fact that for every odd component C it holds
ec(X,V(C)) = dV(C)|~-es(Y,V(C)) —2|E(C)|

kEV(C)| +ec(Y,V(C)) =1 (mod 2)
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and in particular eq(X, V(C)) > 1. This gives us
ec(X,Y) < d|X| - ec(X,V(2)) < d|X| - ¢

which together with (1) results in | X| — Y| > 0. This completes the proof of the
claim. O

Due to (1) we have
g2 k(X|-Y)+22k+2 (5)

and with (4)
(d—ka*)(X|-|Y]) 2 20" +(d—0")s > 0. (6)

Since | X| — |[Y| > 0 we getd > ko™ + 2, proving the statement that G has a
k-factor if d < ko™. We can rewrite (6) as

20* d-o*

- >
IX|-1y| 2 d—-ko* + d-ko* $ ™
20"
- > —_— | =1l >1.
= X[ -1Yt 2 [d—ka*_’ 1>1

The next two subcases complete our discussion of Case 1.
Subcase 1.A.d = ko* + 2,ord > ko* +2forod =1,ord =3k + 4 foro = 2.

In this subcase we have ! > o. We get

n(G) = [X|+[Y|+][V(2)]
> l+s+(g-s)d+p)
@®Lm . (—k—(Za' +(d=0")s)+2— s) (d+p)
= d— ko*
> l+(2%+2)(d+p)
= (@G > I+ (kl+2)(d+p) (8)

Ifd = ko* + 2 than | = o* and thus n(G) > o* + (ko* + 2)(d + p),
proving statement (i) of our theorem. If 0 = 1 and d > 2k + 4, we have
L+ (Kl +2)(d+p) > 1+ (k+ 2)(d + p), proving (ii), if d is even (d odd
and o = 1 yield Case 2). If o = 2 and d = 3k + 4, than [ = 2 = ¢ and it follows
n(G) > 2+ (2k + 2)(d + p), giving us (iii).

Subcase 1.B.o > 2andd > ko* + 6,0ord > ko* + 4 foro > 3,0r0 = 2 and
d=2k+4.
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As in Subcase 1.A we have

V(Z) 2 s+(g-s)(d+p)
(* 20"
2 v8+(km+28+2) (d+p)
= V(Z)] > s+ (kl+2s+2)(d+p)

Inequality (*) holds, since %(E_——,fr*—)s —s>2sfork > 3.

If there exists at least one small component, |[V(Z)| > 2d + 3 + (k! + 2)(d + p)
and

n(G) = |X|+|Y|+[V(2)
5
> o+2d+3+(kl+2)(d+p)

> 2d-1+ (kl+2)(d+p).

~
~

If Z does not have any small component, then

V(@) 2 a(d+p) > (K(X| = Y1) +dIY| - ea(X,Y) +2)(d+ )
I d|Y| — ec(X,Y) > 2, than
nG) > 1+2(d+p)+ (kl+2)(d+p)

> 2d-1+ (kl+2)(d+Dp).
Ifeg(X,Y) =d|Y| -1, than | X| > d — 1 and we get
n(G) 2 |X|+|Y]+(d+p)+ (kK +2)(d+p)

> 2d—1+ (kl+2)(d+p).
It remains the case d|Y| = eg(X,Y"), which can only occur for either
e |[Y|=0and|X|>a;0r
e 1L |Y| < |X|-1with|X]|>d.

Since o >  for Subcase 1.B, a short calculation shows 2d — I + (kI +2)(d+p) <
o+ (ko +2)(d+p). So | X| = d and [Y| = d - yields the lowest possible case,
and we get

n(G) > 2d — l + (kl + 2)(d + p).
These cases prove (iv) to (vi) of our theorem and complete the discussion of Case
1.
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Case2.0* = 1.

Here we have 0* = ¢ = 1 and d odd. In this case we make use of the result of
Niessen and Randerath [3] and getd > k+2as wellasn > 1+ (k + 2)(d + p).
This proves (ii) for odd d.

In Cases 1 and 2 we have given lower bounds for the order of G, under the as-
sumption that G does not have a k-factor. It remains to show that we can construct
d-regular o-connected graphs of these orders which do not have a k-factor.

Analogous to Pila [5] we first construct graphs C(d, h) on d + p vertices with h
vertices of degree d — 1 and d + p — h vertices of degree d. These graphs will
function as our odd components of G — (X UY). For thislet 1 < h < d such
thath=d (mod 2).

If d is even, then p = 1 and let V(C(d, b)) = {z,y1,...,y4} where {§1,...,¥4}
induces a complete graph with a matching of size h/2 removed. Further let = be
connected to y; forevery1 < i < d.

Ifdisodd, thenp = 2andlet V(C(d, b)) = {z,2,¥1,...,ya} Where {y1,...,¥4}
induces a complete graph with a cycle of length h removed. Further let z and 2
be connected to y; forevery 1 <: < d.

In both cases C(d, h) is (d — 2)-connected with h vertices of degree d — 1.

The following Cases A to-D are exhaustive:
Case A:d =ko* +2:

Take a set X of o* independent vertices and d copies of C(d, o*). Connect each
vertex T € X with vertices of degree d — 1 such that m(x, U) = 1 holds for every
vertex = and every copy U of C(d,o*). By Theorem 2.2 the resulting graph is
o-connected and has order n = ¢* + (ko* + 2)(d + p). It has no k-factor, since
O(X,0,k) = —-2.

CaseB:o=2andd = 3k + 4:

Here the following construction is possible (for which we need d > ko™ + 4):
Take a set X = {z;,z,} of 2 independent vertices, k + 2 copies of C(d, 2) and
k + 2 copies of C(d,4). Connect x;, 23 to the vertices of degree d — 1 such that
m(z;, C(d,2)) = 1 and m(z;,C(d,4)) = 2 fori = 1, 2. The resulting graph is
d-regular, 2-connected with order 2 + (2k + 2)(d + p) and has no k-factor since
O(X,0,k) = -2.

CaseC:o0=1andd > ko* + 4:
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Here an analogous construction to that in Case B is possible: Take a vertex ¢, k+1
copies of C(d, 0*) and one copy of C(d,h) with1 < h =d — (k + 1)o* < d.
Notethat h =d (mod 2). Connect x to every vertex of degree d — 1 with one
edge. The resulting graph is connected, d-regular of order 1 + (k + 2)(d + p) and
has no k-factor, since ©({z},0,k) = —2.

CaseD: o0 > 2andd > ko* +6,0ord > ko* +4foro > 3,0oro = 2 and
d=2k+4:

Under the conditions of Case D it holds d > ¢ > I. Construct a graph G as fol-
lows: Take a complete bipartite graph with partitions X and Y such that | X| = d
and |Y'| = d—1 > 0. Take lk + 1 copies of C(d, 0*) and one copy of C(d, h) with
h =dl — o*(kl + 1). Note thatd > h > o* due to the definition of I. Connect
the vertices of X with the vertices of degree d — 1 in such a way, that each copy
of C(d,0*) is joined to exactly o* vertices of X. By Theorem 2.2 the resulting
graph is o-connected. It is d-regular of order 2d — I + (kl + 2)(d + p) and has no
k-factor, since (X, Y, k) = —2.

This concludes the proof of our theorem. O
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Abstract

Halin’s Theorem characterizes those locally finite infinite graphs that
embed in the plane without accumulation points by giving a set of six
topologically-excluded subgraphs. We prove the analogous theorem for
graphs that embed in an open Mdbius strip without accumulation points.
There are 153 such obstructions under the ray ordering defined herein.
There are 350 obstructions under the minor ordering. There are 1225
obstructions under the topological ordering. The relationship between
these graphs and the obstructions to embedding in the projective plane is
similar to the relationship between Halin’s graphs and {Ks, K33}.!

1 Introduction

A fundamental result in graph theory is Kuratowski’s Theorem [13], which says
that a finite graph embeds in the plane if and only if it does not contain a
subdivision of either K5 or K33. We are concerned here with embeddings of
locally-finite infinite graphs. For the requisite background on embedding finite
and infinite graphs see [15] and [6] respectively (see [7] for related work on
embedding infinite graphs).

Halin [12] proved that a locally finite, infinite graph embeds in the plane
without an accumulation point if and only if it does not contain a non-isomorphic
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