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Abstract

Halin’s Theorem characterizes those locally finite infinite graphs that
embed in the plane without accumulation points by giving a set of six
topologically-excluded subgraphs. We prove the analogous theorem for
graphs that embed in an open Mdbius strip without accumulation points.
There are 153 such obstructions under the ray ordering defined herein.
There are 350 obstructions under the minor ordering. There are 1225
obstructions under the topological ordering. The relationship between
these graphs and the obstructions to embedding in the projective plane is
similar to the relationship between Halin’s graphs and {Ks, K33}.!

1 Introduction

A fundamental result in graph theory is Kuratowski’s Theorem [13], which says
that a finite graph embeds in the plane if and only if it does not contain a
subdivision of either K5 or K33. We are concerned here with embeddings of
locally-finite infinite graphs. For the requisite background on embedding finite
and infinite graphs see [15] and [6] respectively (see [7] for related work on
embedding infinite graphs).

Halin [12] proved that a locally finite, infinite graph embeds in the plane
without an accumulation point if and only if it does not contain a non-isomorphic
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subdivision of one of six graphs. These graphs are shown in Figure 1. In this
figure the circled vertices are to be identified with the tails of disjoint one-way-

infinite induced rays.
Figure 1: Halin’s six obstructions (add rays to the circled vertices)

The graphs are closely related to those of Kuratowski’s Theorem. In partic-
ular, for an infinite graph to embed in the plane without accumulation points it
must first embed in the plane. Hence it cannot contain a K or K33 subgraph
(see [9, 10)). The next two graphs are formed from K5 and Kj3,3 by deleting a
single vertex and adding disjoint one-way-infinite paths attached to each vertex
adjacent to the deleted one. Finally, the last two graphs are formed from Kp
and K3 3 by first subdividing an edge, deleting the resulting degree-two vertices,
and adding disjoint one-way-infinite paths attached to each vertex adjacent to
the deleted one.

An equivalent form of Halin’s Theorem says that the exclusion of these
graphs characterize all locally-finite graphs that embed on a 2-sphere (the one-
point compactification of the plane) with a single accumulation point.

Our goal in this paper is to give a similar forbidden subgraph characterization
for those graphs that embed on the Mé&bius strip without an accumulation point.
(We mean the open Mobius strip, that is, the one that is non-compact and
without boundary.) In the spirit of the previous paragraph, this is equivalent
to characterizing graphs that embed on the real projective plane with a single
accumulation point. As we will show, these graphs are related to the obstruction
set for finite graphs to embed on the projective plane. The latter set is known
and we exploit this knowledge to prove our main theorem. The topological
obstructions were first found by Glover, Huneke, and Wang [11]; their set was
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proved complete by Archdeacon (1, 2). The latter two works implicitly give the
minor obstructions.

In any “excluded subgraph” theorem it is important to specify the par-
tial order. In general, you can consider any partial order that preserves the
property—in this case that there is an embedding on the open Mdbius band
without accumulation points. The finer the partial order, the fewer the number
of obstructions. We consider three respectively coarser partial orders: the ray
order, the minor order, and the topological order. We determine the obstruc-
tion set for this property under all three orders. This turns out to be equivalent
to characterizing rooted projective-planar graphs using three different partial
orders.

In Section 2 we make the above more precise. In particular, we discuss
embeddings of infinite graphs and their relationship with embedding rooted
projective-planar graphs. We give the partial orderings on these two classes
and prove various equivalences under these partial orders. In Section 3 we give
the statements and proofs of our main theorems. In Section 4 we describe some
double-checks on our results and discuss directions for future research.

2 The related graphs and their partial orders

In this section we give an equivalence between our desired characterization of
infinite graphs on an open Mdbius band without accumulation points and a
characterization of rooted non-projective-planar graphs. We begin with three
basic partial orders.

The subgraph order is the transitive closure of the following two elementary
operations. Write H C G if and only if you form H from G by:

1) deleting an isolated vertex, or
2) deleting an edge.

The topological order includes the following elementary operation, called
smoothing a degree-two vertex:

3) Delete a degree-two vertex and add an edge joining its neighbors.

Kuratowski’s Theorem [13] characterizes the planar graphs by giving two
subgraphs excluded under the topological order. Halin’s Theorem [12] charac-
terizes the locally-finite (possibly infinite) planar graphs by giving six subgraphs
excluded under the topological order.

The minor order is the transitive closure of the topological order and the
following operation of contracting an edge e:

4) Delete the two vertices u, v incident with an edge ¢, and adding in a new
vertex w and edges joining w to all verticies adjacent to u or v.
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The inverse of Operation 4) above is called splitting ¢ vertez. It is well-
defined only if you specify which edges incident with w are to be incident with
u, or equivalently with v. Wagner’s Theorem [17] says that planar graphs are
characterized by excluding K5 and K3 3 as minors. It is easy to see that Halin’s
Theorem characterizes planar graphs without accumulation points by excluding
the six graphs under either the topological or the minor order. In general, the
sets of excluded obstructions are different for these two orders.

In an infinite graph G, a proper topological subgraph or minor H may be
isomorphic to G. For example, any vertex smoothing or edge contraction in an
infinite path leaves an infinite path. A strict minor or topological subgraph is
one that is not isomorphic to the original graph.

A tail of an infinite graph G is a one-way-infinite ray where every interior
vertex is of degree 2 in G. The tail is attached to the unique vertex incident
with one edge of the tail. The residue of G is formed by simultaneously deleting
all tails. Call G residually finite if the residue is a finite graph, that is, if G is a
finite graph with a set of tails attached.

Bonnington and Richter [6] have shown the following.

Proposition 2.1 Let G be an infinite graph. Suppose that G does not embed
on a surface S without accumulation points, but that every strict topological
subgraph does so embed. Then G is residually finite and each vertez is attached
to at most one tail. W

Let G* be a residually finite graph. Form a finite graph G* by deleting
all tails from G, adding a new vertex v+, and edges from v* to all vertices
attached to tails in G®. The new vertex v* is called the root vertex, and G*
is called a rooted graph. Conversely, given a rooted graph G*, we can form the
associated infinite graph G*.

Bonnington and Richter [6] have also shown the following.

Proposition 2.2 A residually finite graph G* embeds on a closed surface with
a single accumulation point if and only if G* embeds on that surface.

‘We now describe two partial orderings on the class of rooted graphs G+. We
use operations similar to those defining the topological order, except that we
replace 1) and 3) with the following restricted versions.

1r) delete an isolated vertex that is not the root,
3r) smooth a degree-two vertex that is not the root.

* The partial order defined by Operations 1r), 2), and 3r) is called the restricted
topological ordering. Also, define the operation:

4r) contract an edge not incident with the root.
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Adding Operation 4r) to the restricted topological ordering makes the restricted
minor ordering.

Lemma 2.3 H® is a strict topological subgraph of G® if and only if HY is a
restricted topological subgraph of G*. Likewise, H*® is a strict minor of G if
and only if H is a restricted minor of G*.

Proof: Deleting an edge in the residue of G™ corresponds to deleting an edge
in G* not incident with the distinguished vertex. Deleting an edge in a tail of
G corresponds to deleting an edge in G* incident with root (we can delete
the component that is a one-way-infinite path). Smoothing a degree 2 vertex in
G not in a tail corresponds to smoothing the corresponding degree 2 vertex
in G*. Contracting an edge in G* not in a tail corresponds to contracting the
inGt. m

The restrictions on smoothing the root vertex or contracting an edge incident
are not entirely natural. Let’s examine the effect on the corresponding infinite
graphs if we remove these restictions on G+.

Let Gt be a graph with a root v+ of degree 2, and let H* be the unrooted
graph formed by smoothing v. Then H® is formed from G* by the following
Operation 5):

5) Delete the only two tails in G and add an edge joining the vertices where
they were attached.

Similarly let G+ be a graph with a root v* incident with an edge uv*. Let
N~ (u) denote the neighbors of u except for v+. Let H* be formed from G*
by contracting the edge e, and making the new vertex the root. Then H® is
formed from G by the following Operation 6):

6) Delete a tail attached to u, delete u and all its incident edges, and add
new tails attached to each vertex in N~ (u).

The ray order on residually finite graphs allows Operations 1)-6). We call
H a ray minor of G.

Lemma 2.4 H® is a strict ray minor of G if and only if H* is a minor of
Gt.

The ray order is finer than the minor order on residually-finite graphs. How-
ever, the property of embedding on a surface with a single point is closed under
this order. In other words, if H is a ray minor of G and G embeds in S with
at most one accumulation point, then so does H. Hence it makes sense to look
for the graphs that are strictly minimal under this order that do not have such
embeddings.

We summarize the results of this section as follows.
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Theorem 2.5 Let G™ be a residually-finite graph and let G* be its associated
rooted graph. Then:

a) G*= does not embed in a closed surface S with a only one accumulation
point if and only if G does not embed in S.

b) If every strict topological subgraph of G™ embeds in S with at most one ac-
cumulation point, then every restricted topological subgraph of Gt embeds
inS.

¢) If every strict minor of G* embeds in S with at most one accumulation
point, then every restricted minor of Gt embeds in S.

d) If every ray-minor of G® embeds in S with at most one accumulation
point, then every minor of Gt embeds in S.

3 The main results

In this section we give our main results: the analogues to Halin’s Theorem for
graphs that embed on the open M&bius band. These results rely on some lengthy
calculations; in Section 4 we give some double checks on these calculations.

Theorem 3.1 There are ezactly 153 graphs that do not embed in the projec-
tive plane with at most one accumulation point, but such that every strict ray
minor does so embed. Equivalently, excluding these graphs under the ray order
characterizes graphs that embed in the open Mdibius band.

Proof: Any infinite graph embeds on the projective plane if and only if every
finite subgraph does [9, 10]. For finite graphs the ray order is the same as the
minor order. There are exactly 35 minor-minimal graphs that do not embed in
the projective plane (1, 2, 11].

If the infinite graph does embed in the projective plane, then by Proposition
2.1 it is a residually finite G*. The corresponding graph G* is minor minimal
for embedding in the projective plane. The proof now reduces to examining
each of these 35 graphs and finding the possible roots. This is equivalent to
finding the vertex orbits of each graph under the action of the automorphism
group.

The number of vertex orbits for these graphs are given in Appendix 2. The
35 graphs are those marked with a star x. The column ||V|| gives the number
of vertex orbits, or equivalently the number of ways to distinguish a root. The
35 graphs are also given in Appendix 1, where a representative of each vertex
orbit has been circled.

There were exactly 118 vertex orbits in these minimal graphs. These 118
graphs plus the 35 finite obstructions give the 153 graphs as claimed. ®
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Theorem 3.2 There are ezactly 350 graphs that do not embed in the projective
plane with at most one accumulation point, but such that every strict minor does
so embed. Egquivalently, excluding these graphs under the minor order charec-
terizes graphs that embed in the open Mobius band.

Proof: Let G* be the graph as described. If G* does not embed in the
projective plane, then it contains one of the 35 minor-minimal obstructions.

If G* does embed in the projective plane, but only with more than one
accumulation point, then G does not embed in the projective-plane. Moreover,
every minor does so embed, except that we cannot smooth the distinguished
vertex or contract an edge incident with the distinguished vertex. Hence G+
is topologically-minimal with respect to not embedding in the projective plane.
Call an edge contractible if G* /e is not projective planar.

If the distinguished vertex is of degree 2, then it must be incident with all
contractible edges. In other words, the smoothed graph is topologically minimal,
and there is no contractible edge other than possibly the one that contained the
root. There are exactly 103 topologically-minimal non-projective graphs. We
examined the edge orbits of each and identified the edges that were not disjoint
from a contractible edge. The results are given in Appendix 2 under the column
]

If the root vertex is of degree exceeding 2, then G* is topologically minimal
and the root is incident with all contractible edges. Again, we examined the
103 graphs in turn and found all such vertex orbits. The results are given in
Appendix 2 under the column ||V¢||.

The 35 projective planar obstructions, the 155 graphs with roots of degree
2, and the 160 graphs with the roots of degree exceeding 2 give the 350 graphs
as claimed. m

Theorem 3.3 There are exzactly 1235 graphs that do not embed in the pro-
jective plane with at most one accumulation point, but such that every strict
topological subgraph does so embed. Eguivalently, exzcluding these graphs under
the topological order characterizes graphs that embed in the open Mdébius band.

Proof: The number comes from the 103 topologically minimal graphs, their
488 vertex orbits, and their 644 edge orbits. See Appendix 2 for details under
the columns [|V]| and ||E||. ®

4 Conclusion

The calculations of vertex- and edge-orbits required for our results are tedious,
and in any such calculations errors may creep in. We describe some of the
double-checks we employed to ensure our calculations are correct.
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First and most importantly, every entry in Appendix 1 and 2 was calculated
both by hand and by computer. For roughly 60% of the graphs the hand calcula-
tions were done independently by at least two of the authors. The numbers ob-
tained agreed, and also agreed with some earlier work (see for example [5]). We
used a well-tested computer list of the 35 minor-minimal non-projective-planar
graphs. Together with a projective-planarity tester developed by the second
author, we were able to generate the 103 topological-minimal non-projective-
planar graphs, verifying the results of [11). We then tested which such G' and
edges e had G/e projective-planar. It was then straightforward to calculate the
entries in Appendix 2, and to check these results against the hand calculations.
This independent computer verification gives us confidence that the calculations
are correct.

The techniques of this paper easily generalize to other related results. How-
ever, we rely heavily on the known obstruction set for embedding in the projec-
tive plane. Complete sets of obstructions for embedding in other surfaces are
not known.

There is another partial order that has received some attention. A YA
transformation on a graph deletes a vertex of degree three and adds 3 edges
joining pairs of edges adjacent to that vertex. If G is a YA transformation of
H and H embeds in a surface, then G embeds in that same surface. It would
be possible to find the relationship between Y A transformations and residually
finite graphs, but we choose not to pursue this.

Halin’s Theorem [12] characterizes connected locally-finite infinite graphs
that embed in the plane without accumulation points. We ask a similar ques-
tion: Which locally-finite infinite graphs embed in an annulus (the plane with a
point removed) without accumulation points? Boza, Gugindez, Marquez, and
Revuelta answer this question under the added condition that the rays of the
obstruction are assigned particular ends of the annulus. The complete obstruc-
tion set for cubic graphs without this restriction is given in [4], see (3] for related
material.

We close by noting that J. Céceres [8] has results similar to those in this
paper.
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