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Abstract: In Minimal Enclosings of Triple Systems
I, we solved the problem of minimal enclosings of
BIBD(v, 3, A) into BIBD(v+1, 3, A+tm)for 1 <A <6
with 2 minimal m > 1. Here we consider a new
problem relating to the existence of enclosings for
triple systems for any v, with 1 £ A <6, of BIBD(v,
3, A) into BIBD(v+s, 3, A+1) for minimal positive s.
The non-existence of enclosings for otherwise
suitable parameters is proved, and for the first time
the difficult cases for even A are considered. We
completely solve the case for A < 3 and A = 5, and
partially complete the cases A = 4 and 6. In some
cases a l-factorization of a complete graph or
complete n-partite graph is used to obtain the
minimal enclosing. A list of open cases for A = 4 and
A = 6 is attached.
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1. Introduction

We regard this paper as a continuation of the general program which is
to determine the conditions under which a general enclosing of a BIBD can
occur. We started our part in this program in [13] by looking at minimal
enclosings into BIBD's with one extra point. Here, we explore a new type of
minimal enclosing. We must introduce some terminology and notation
before going further with this discussion. A balanced incomplete block
design, or BIBD(v, b, 1, k, 1), is a collection B of b subsets or blocks of a
set V of order v such that all blocks have size k, each element appears in r
blocks, and each pair of elements appears together in A blocks. The
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conditions imply that bk = vr and A(v — 1) = r(k — 1), and we usually write
BIBD(v, k, A) for short. We refer the reader to [8], [15], and [23] for well
known facts about BIBD’s and triple systems.

A design injection of X = BIBD(v, b, 1, k, ) into Y = BIBD(v+s, b,
I, k, A+m) is a mapping ¢ such that ¢ is a one-to-one map from V, to V,,
and for each block B; of X, ¢(B;) is a block of Y. The injection is an
.embedding if m = 0 and an enclosing if m > 0. We will always regard the
injection as the inclusion map so that Y is based on the points of X and s
additional points. In this paper, k will usually be 3 and m will be 1.
Previously, an enclosing of a triple system X = BIBD(v, 3, 1) into a triple
system BIBD(v+s, k, A+m) was said to be minimal if s = 1 and X could not
be enclosed in any BIBD(v+1, 3, A+n) with 0 < n < m. We solved the
problem for such minimal enclosings having small index in [13], and in the
present note deal with a related type of enclosing which may be called a
minimal point-enclosing. A design X = BIBD(v, 3, A) is minimally point-
enclosed in Y = BIBD(v+s, 3, A+1) if X can not be enclosed in a BIBD(v+t,
3, a1 forO<t<s.

It is curious that so apparently slight a change in point of view turns out
to make a large difference in results and techniques. A construction in [13]
using a PBIBD on the points of X to effect the enclusion into Y was used
many times but is not used here. Instead, however, great use is made of
embeddings (Lemma 3.1) and graph factorizations (Lemma 3.7). Also, here
we will frequently refer to new necessary condition (Corollary 1.2), but a
corresponding result in [13] for the case s = 1 played almost no role since
the index was usually less or equal to 6.

There is a large body of literature on embeddings, and we refer the
reader to [5, 7, 10, 11, and 14]. However, enclosings, the subject of this
note, have been studied less extensively, and the reader is referred to [1, 2,
4,6, and 13].

The previously considered type of enclosings [13] overlap the present
case when s = 1. Thus, we will be interested in the present paper only in
designs which may not be minimally enclosed into some Y = BIBD(v+1, 3,
A+1). In other words, s > 1 in all cases here.

Some cases here overlap results in [1, 2], but there the interest is in
faithful enclosings, a very restrictive condition. An enclosing of X into Y is
Jaithful if every new block for Y has at least one new point. Also, the only
general case considered in [1, 2] is for odd A. We not only complete these
results, as regards minimal enclosings, but begin the consideration of
designs with even index. We completely solve the case for index 2 and have
neatly complete results for index 4 and 6. Open cases, all for L. = 4 or 6, are
listed in Table 3.

To motivate further the type of problem here, we quote the comments
in [8], p. 155-156: "Enclosing of partial systems have not been seriously
studied; in fact, as we sec next, even enclosings of triple systems
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themselves have not been determined. ... Both the enclosing and the faithful
enclosing problems appear to be far from a solution at this point. The
situation is worse for simple enclosings."

We will refer to Table 1 below frequently [15, p.50]. It gives necessary
and sufficient conditions for the existence of a A-fold triple system of order
V.

Table 1: The A-v Spectrum of Triple Systems
A =0 (mod 6) Allvz2
A= 1,5 (mod 6) Allv=1, 3 (mod 6)
A =2, 4 (mod 6) Allv=0, 1 (mod 3)
A =3 (mod 6) Allodd v

In general, we will use the variables x and y to denote the elements
added to the set V in order to create the enclosing design. We will refer to a
type of group divisible design, a GDD, in which the points are partitioned
into disjoint sets of equal size called groups. Points within a group will
have index zero with each other, i.e., they will not appear in a common
block. All pairs of points not in a common group will have the same index
A, i.e., pairs of points not in a common group will appear in exactly A
blocks. We use simplified superscript notation GDD(g") to denote a GDD
on v elements with u groups of size g, index one, and block size 3, with v/g
= u. A design is resolvable if its blocks can be partitioned in classes such
that each point occurs exactly once in each class. A resolvable GDD is
referred to as a RGDD. See [9, 12, 17, 18] for existence results and
background.

We next establish a critical necessary condition for general point-
enclosings along similar lines as in [13].

Theorem 1.1 A necessary condition for enclosing X = BIBD(v, k, A) into Y
= BIBD(v+s, k, A+1) is that
(v —1) 2 s(A + 1)k - D[2v - (s - Dk -D]/2

Proof: Suppose that R is the replication number for Y and that {a,, a,, ...,
a,} are the points of Y which are not in X. We count the “new” blocks of Y
which are not in X. The point a, will appear in R distinct new blocks. Point
a, must appear in R~(A+1) new blocks without a,. Point a; must appear in at
least R-2(A+1) new blocks (that is, without either a, or a,; more new blocks
are required if a,, a,, and a; appear together in the same block), and so on.
By adding these, it follows that at least sR — (A+1)s(s — 1)/2 new blocks are
needed. Now let B and b denote the number of blocks in Y and X
respectively. Since for any BIBD, vr = bk and A(v-1) = r(k-1), we get
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W+ A+DV+s5s-1) B Av(v-1)

k(k-1) k(k-1)
The result follows on simplification.

B-b=

2sR-(A+Ds(s-1)/2.

Corollary 1.2 A necessary condition for enclosing a triple system (v, 3, 1)
into a triple system (v+s, 3, A+1) is that v(v-1) 2s(A+1)(v - s+1).

[ |

In [13], when s = 1, the specialization of Corollary 1.2 ledtov -2 2

A/m, an easily satisfied condition for small index. However, in the present
paper, the Corollary 1.2 is vital and will be referred to frequently.

2.A=1.

Using Table 1, we see v = 1, 3 (mod 6) when A = 1. It is known (see
[13]) that X = BIBD(6t+3, 3, 1) may be minimally enclosed into Y =
BIBD(6t+4, 3, 2). Since this is a minimal point-enclosing as well, there is
nothing further to do for v = 6t+3. However, X = BIBD(6t+1, 3, 1) may be
minimally enclosed only in Y = BIBD(6t+2, 3, 6) — no enclosings are
possible for smaller index, from Table 1. Thus, we need to consider a point-
enclosing for BIBD(6t + 1, 3, 1), with t > 0.

Example 2.1 Suppose A = 1. We give an example of an enclosing of X =
BIBD(7, 3, 1) into Y = BIBD(9, 3, 2). We take the pointsof X as 1,2, ..., 7
and add points x and y. First add the following blocks to X:

{x, 1,3}, {x, 1,4}, {x, 2, 5}, {x, 2, 6}, {x, 3, 5}, {x, 4, 6},

{, 1,5} 4y, 1,6}, {y, 2,3}, {y, 2,4}, {y, 4, 5}, {y, 3.6},

{1,2,7},{3,4,7}, {5,6, 7},
next add 2 copies of the block {x, y, 7}. In contrast to this example,
Corollary 1.2 can be used to show that no BIBD(7, 3, 3) may be enclosed
into a BIBD(9, 3, 4).

Example 2.2 We give an enclosing of X = BIBD(13, 3, A) into Y =
BIBD(15, 3, A+1) for A = 1 or 3. First suppose A = 1. We take the points of
X as 1, 2, ..., 13, and add points x and y. To the blocks of X we add the
blocks of Z = GDD(4*) which has groups {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10,
11, 12} and which we may assume is resolvable [17; Lemma 3.2]. We
further add the blocks:

{13, 1, 2}, {13, 3, 4}, {13, 5, 6}, {13, 7, 8}, {13, 9, 10}, {13, 11, 12};

{13, x, y}, {13, x, y}.
Now the index is 2 for point 13. For the element x and the remaining
needed pairs from the 3 groups we further add

{x, 1,3} {x, 1,4}, {x, 2,3}, {x, 2,4}, {x,5, 7}, {x, 5, 8},

{x,6,7}, {x, 6, 8}, {x,9, 11}, {x,9, 12}, {x, 10, 11}, {x, 10, 12}.
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Lastly, in one of the resolution classes from Z, replace each block {a, b, c}
with the 3 blocks {y, a, b}, {y, a, c}, {y, b, c}. Note this does not raise the
index for elements of X, but this creates index 2 for elements y and any s in
X. (We call this expanding the resolution class with new point y.)

Now suppose A = 3. We use the same construction as for A = 1, but we
add the following additional blocks. First, we add 2 more copies of block
{x, y, 13}. Next we expand a second resolution class from Z with y just as
before, and we expand a third resolution class with x. This completes the
(15, 3, 4) triple system. The method does not extend to, say, enclosing
BIBD(13, 3, 5) into BIBD(15, 3, 6) because Z has only 4 resolution classes.

The conclusion of Theorem 2.3 below also follows as a result of
Theorem 2.4 of [2], but the proof here is different and the construction is of
independent interest.

Theorem 2.3 If t 2 I, then any BIBD(6t+1, 3, 1) may be minimally point-
enclosed into Y = BIBD(6t+3, 3, 2).

Proof: We may suppose t > 2 in view of Examples 2.1 and 2.2. Suppose X
is based on the points V = {1, 2, ..., 6t+1}. Since t > 2, there exists a GDD,
say Z, on 6t points with group size 6. We identify the points of Z with the
first 6t points of X arbitrarily. The points of Y are the points V U {x, y}.
The blocks of the design Y consist of the blocks of X, the blocks of Z, and
the following blocks based on the groups of Z. Suppose G = {a,, a, ..., 35}
is any group of Z. Then, by associating point a; in the group with point i in
Example 2.1, for i = 1,..., 6, we add the corresponding blocks indicated by
the list for Example 2.1, where, for every group, 6t+1 plays the role of point
7. But note the block {x, y, 6t+1} is added 2 times only, not twice for each
group.

3.A=2

When A = 2, there are four cases (mod 6) to consider, by Table 1. For
three of these cases, triple systems (6t+3, 3, 2), (6t+4, 3, 2), and (6t, 3, 2),
all have minimal point-enclosings [13] for t > 0. The general case in this
section deals with one of the main results of this paper, the enclosing (6t +
1, 3, 2) - (6t + 3, 3, 3). Lemma 3.1 below collects several results which we
will use here and in later sections. Lemma 3.1 can be used to construct an
enclosing when the parameters are compatible — just add a Steiner triple
system to the embedding to increase the index by 1. Further, when the
enclosing design has 2v+1 points, Corollary 1.2 is automatically satisfied
since the quantity v-s+1 is zero. Part (a) is known but (b) and (c) may be
new.

Lemma 3.1 (a) [16, 18] If there exists a BIBD(v, 3, 2) then it can be
embedded into a BIBD(2v+1, 3, 2). If there exists a simple BIBD(, 3, 2), A
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X v-2, then it can be embedded into a simple BIBD(2v+1, 3, A). If there
exists a BIBD(v, 3, 6) and v = 10, then it can be embedded into a
BIBD(2v+4, 3, 6). If there exists a BIBD(v, 3, 6), then it can be embedded in
a BIBD(2v+2, 3, 6). (b) Any BIBD(v , 3, 4+6r) can be embedded into a
BIBD(2v+1, 3, 4+6r) and can be enclosed into a BIBD(2v+1, 3, 5+6r). (c)
If a BIBD(v, 3, 2) exists, then a BIBD(v, 3, 6) can be embedded in a
BIBD(2v+1, 3, 6) and can be enclosed in a BIBD(2v+1, 3, 7).

Proof: We prove part (b). Let X be the given BIBD(v, 3, 4+6r). Let X, be
any BIBD(v, 3, 2). Let X; denote the design formed from 2+3r copies of X;.
Since X; may be embedded into Y, = BIBD(2v+1, 3, 2), from part (a), X
can be embedded into Y, = BIBD(2v+1, 3, 4+6r) which is formed from
2+3r copies of Y;. Let Y3 denote the design formed by deleting from Y>
those blocks also in X; and replacing them with the blocks of X. This
embeds X into Ys. Let Y denote the design formed from the blocks of Y3
augmented with the blocks of a BIBD(2v+1, 3, 1), and X is enclosed into Y.

For part (c), apply the argument in part (b).
n

Example 3.2 Any design X = BIBD(4, 3, 2) encloses into BIBD(S, 3, 3).
Just add blocks {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5},and {3, 4,
5}. X might be enclosed in some Y = BIBD(7, 3, 3) as well since the
necessary conditions in Table 1 are satisfied. However, Corollary 1.1 does
not allow this. The next point-enclosing goes into a BIBD(9, 3, 3) by
Lemma 3.1.

Example 3.3 We (minimally) enclose BIBD(7, 3, 2) into Y = BIBD(9, 3,
3). The blocks of Y will consist of the blocks of X and the following blocks:
{1’ 2’ 3}’ {X, Yy, l}: {X, Yy, 2}, {X, Y, 3}: {xa l’ 4}: {x’ ls 5}9 {x’ 2, 6}$
{x,2,7}1{x,3, 4}, {x, 3, 5}, {x, 6, 4}, {x, 7, 5}, {x, 6, 7}, {y, 1, 6},
Ey, ‘:, 57}} {,2,45 {5, 2,55 {y, 3,6}, {5, 3,7}, {, 5,6}, {y, 4. 7},
y, 4, 5}.

Example 3.4 We enclose X = BIBD(13, 3, 2) into Y = BIBD(15, 3, 3). The
blocks of Y include those of X and those of the resolvable Z = GDD(43)
constructed in Example 2.2. In addition, we add the blocks of a triple
system (7, 3, 1) on the points {1, 2, 3, 4, x, y, 13}, a triple system on the
points {5, 6, 7, 8, x, y, 13}, and a triple system on the points {9, 10, 11, 12,
X, y, 13}. Finally, we expand a resolution class of Z using the point y (as in
Example 2.2) and expand a resolution class using the point x.

Lemma 3.5 Any X = BIBD(6t+1, 3, 2) may be minimally point-enclosed in
some Y = BIBD(6t+3, 3, 3) if there exists a Z = BIBD(6t+3, 3, 1) with a
resolution class R; and a partial resolution class R, with 6t points and
which omits the 3 points from precisely one block of R;.
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Proof: Suppose X is the given BIBD(6t+1, 3, 2) and Z is the required
BIBD(6t+3, 3,1). We may suppose R; is a partition of {1, 2, ..., 6t} and take
B = {6t+1, 6t+2, 6t+3} as the block of the parallel class R, omitted by R,.
The blocks of Y are those of X and those of Z supplemented as follows. We
add two more copies of block f; we use the partial parallel class R, and
replace each block with 3 blocks using 6t+2; we use R, and replace each
block except f with 3 blocks using 6t+3.

n
Example 3.6 The previous Lemma can be applied to enclose BIBD(19, 3,
2) into a BIBD(21, 3, 3). We let Z be the Kirkman Triple System(21, 3, 1)
whose parallel classes are numbered as m; to m on page 78 of [15). The
blocks of Y are those of X and those of Z supplemented in the following
way. In parallel class n;, we note that {19, 20, 21} is a block. We add two
more copies of that block. We use the other blocks of that same class to
expand 21, as in Example 2.2. One may note that the set of first blocks in
each of the classes m, to ns together gives a partition of points 1, 2, ..., 18.
We use these blocks to expand point 20. Now the index is 3 for points 1 to
21

We will make use of Wilson's Construction [14, p.30] to show that the
method of Lemma 3.5 can be made to apply to every BIBD(6t+1, 3, 2) for t
> 2. First, however, we will give a solution for the special case v = 25 in
order to develop a technique that will be applied in later sections and in
order to introduce some ideas needed here. Our discussion is taken from
Section 3 of [19] using results also in [21]. The complete graph K, on n
vertices consists of all C(n, 2) edges. A one-factorization of K,, is a partition
of these edges into one-factors, i.e., sets of edges in which each vertex
appears once and only once. A one-factorization of K,, consists of 2n-1
one-factors which are disjoint (as sets of pairs). The edges of K,, also can
be put into disjoint classes Py, P,, ..., P, where edge (i, j) is in Py if and only
if i-j =k (mod 2n).

Lemma 3.7 With respect to the complete graph K,,, we have:

(a) The triangles {1+i, 2+i, 4+i} for i = 1, 2, ..., 2n contain exactly the
edges from P, P, and P; and the graph K., may be factored into 2n-1
one-factors such that six of the I-factors can be combined into 2n triangles.
(b) The triangles {1+i, 1+x+i, 1+x+y+i} fori = 1, 2, ..., 2n contain exactly
the edges from P, P,, and P.., where x+y < n. (c) The pairs in Py, (for
2x+1 < n) split into two one-factors. The pairs in P,, split into a two-factor

if 2x <n. (d) If 2x+1 < n; then P, U P, ,, splits into four one-factors. P,
is a single one-factor. If n is odd, the set Pn_l U P, can be split into three

one-factors. (e) For the complete graph Ks, the set P, U P,  forms 4s
distinct triangles and the set Py forms 2s distinct triangles.
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Example 3.8 To enclose X = BIBD(25, 3,2) into Y = BIBD(27, 3, 3), we
first observe that there are 151 new blocks to add to X to create Y. We use
K4 and apply Lemma 3.7 in the following way. From K, use P4 U Pg to
create 16 triples, Ps L Ps U Py; to create 24 triples, Py U Py L Py to create
24 blocks, P, U P; to create four one-factors, P; to create two one-factors,
and P,, to create one one-factor. By using each P;, we insure the index is
increased by 1 for all points of X except 25. We use the 12 edges in a one-
factor to create 12 blocks with v = 25 as the third point. We use three one-
factors with x to create 36 blocks and three other one-factors with y and
build 36 blocks. We use three copies of the block {25, x, y}. An easy count
verifies that the index is 3 for all points of Y.

The Deficiency Graph of (Z,, +), where n = 1 or 5 (mod 6), is defined
to be the graph G = (V, E) where V = Z,\{0} and E = {{x, -x}, {X, -2x}. X €
V}. It is immediately seen that the Deficiency Graph is three-regular and
has a 1-factorization into three 1-factors [15, p.26]. Wilson’s Construction
for a Steiner Triple System on the set {0, 1, 2, ..., 6t, X, y} uses the block {0,
x, y} and uses one one-factor with 0, one with x, and one with y. The other
blocks are from T, where T denotes the set of blocks {a, b, c} such that a +
b+ c=0 (mod 6t+1) and 1 < a, b, c < 6t. We will use the blocks from T to
prove the following theorem.

Theorem 3.9 Every X = BIBD(6t+1, 3, 2) can be minimally point-enclosed
intoaY = BIBD(6t+3, 3, 3).
Proof: For t = 1 or 2, the examples give a solution. When t > 2, we use
Wilson’s construction and the blocks of T to build the needed Z as in
Lemma 3.5. We form two parallel classes for the points 1, 2, ..., 6t. For the
first parallel class, use blocks

{1, 2, 6t-2}, {3, 4, 61-6}, ..., {2t-1, 2t, 2t+2}, and

{2t+1, 4t+1, 613, {2143, 4113, 614}, ..., {4t-1, 6t-1, 2t+4}.
For the second parallel class, use blocks

{6t, 6t-1, 3}, {6t-2, 6t-3, 7}, ..., {4t+2, 4t+1, 4t-1}, and

{4t, 2, 1}, {41-2, 2t-2, 5}, ..., {2t+2, 2, 4t-3}.
We take the first parallel class and the block $ = {6t+1, x, y} as the class R,
and the second partial parallel class is the class R,. The result follows from
Lemma 3.5.

[ |

4.2=3

In this case BIBD(v, 3, 3) exist for v= 1, 3, 5 (mod 6). Point-enclosings are
known for v = 6t+3 and 6t+5, from [13] for t > 0. The only general case in
the section is that for v=6t+1 and t > 0.
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Example 4.1 We investigate the minimal point-enclosing of X = BIBD(7,
3, 3). First, from Table 1, we observe that X may possibly be enclosed into
a design Y = BIBD(v, 3, 4) for v =9, 10, 12, 13. But none of these cases
satisfy the inequality in Corollary 1.2. The minimal enclosing occurs for a
(15, 3, 4) triple system by Lemma 3.1.

The proof of Theorem 4.2 below is similar to that of Theorem 2.5 of
[2].

Theorem 4.2 Suppose 2 < t. Any BIBD(6t+1, 3, 3+2m) may be minimally
point-enclosed into Y = BIBD(6t+3, 3, 4+2m) provided m <(3t-5)/2.

Proof: With the restriction on m, Corollary 1.2 is satisfied. Let Z be a
resolvable GDD(2*) which exists if t > 3 [8]. Identify 6t elements of X
arbitrarily with those of Z, and refer to the remaining element as 6t+1. To
form Y we use the blocks of X and of Z. We further add, for each group {g,
h} of Z, the blocks {g, h, 6t+1}. Next we add 4+2m copies of {x, y, 6t+1}.
We expand the blocks of m+2 resolution classes of Z with point x and do
the same for y with a different set of m+2 resolution classes. Z provides 3t-1
resolution classes and 4+2m are needed, but the hypothesis on m and t
suffices. -

5. =4
For A = 4, v may be 6t+1, 6t+3, 6t+4 and 6t, by Table 1. Only the v = 6t
case is known to have a minimal point-enclosing from [12]. Thus, here we
have the following general cases to consider:;

(6t+1,3,4) > (6t+3,3,5)

6t+3,3,4) > (6t+7,3,5)

6t+4,3,4) > (6t+7,3,5).

We have a general result about v = 6t+4 for t > 3 (Theorem 5.5), but we
deal with small t first since each case is different.

Theorem 5.1 Suppose v =4 (mod 6). Then the following are minimal point-
enclosings:

(a) BIBD(4, 3, 4) — BIBD(9, 3, 5).

(6) BIBD(10, 3, 4) = BIBD(19, 3, 5).

(c) BIBD(16, 3, 4) — BIBD(19, 3, 5).

(d) BIBD(22, 3, 4) — BIBD(25, 3, 5).

Proof: Part (a) follows immediately from Corollary 1.2 and Lemma 3.1(b).
The other cases have interesting constructions.

For part (b). let B = BIBD(10, 3, 4). From Corollary 1.2, the minimal
possible s is 9. Any enclosing of B into Y = BIBD(19, 3, 5) will thus be
minimal. Let 1, 2, ..., 9 denote the new points to be added to B to form Y.
These nine points can be formed into 36 distinct pairs. We divide these
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pairs into two disjoint classes o. and B where a. is the following collection of
18 pairs:

{1,2}, {1,3}, {1,4},{1,5,}, {2, 7}, {2, 8}, {2,9}. {3, 4}, {3, 5},

{3,6}, {4,8}, {4, 9}, {5,6},{5, 7}, {6, 7}, {6, 9}, {7, 8}, {7, 9}.

Let a, b, ..., j denote the points of B. We form blocks for Y by putting each
of the points a, b, ¢, d, and e with each of the pairs of a.. We put each of the
points £, g, h, i, and j with each of the pairs of B. Each new point appears 5
times in a block with the other new points and 4 times in a block with each
point of B. We now use 9 one-factors of K;o with vertices labeled with the
points of B, and we put each new point 1, ..., 9 with the pairs of one one-
factor to form the rest of the blocks for Y.

For part (c), we use K, which gives us 15 one-factors. We use 5 one-
factors for each of the 3 new points x, y, and z, and add 5 copies of the
block {x, y, z}.

For part (d), let D = BIBD(22, 3, 4) and X, y, and z the three new
points. First we use blocks of D and five copies of the block {x, y, z}. We
factor the graph Ko, into 21 one-factors such that some six can be combined
to make triples (blocks of Y), applying Lemma 3.7. The other 15 one-
factors are used, 5 with each of new points X, y, and z, to make the
remaining triples. -

In the proof of part (b), the enclosing given is faithful, and this is also
one of the few cases we have with equality in Corollary 1.2.

Theorem 5.2 Suppose v = 1 (mod 6). Then the following point-enclosings
are minimal.

(a) BIBD(7, 3, 4) = BIBD(135, 3, 3).

(b) BIBD(13, 3, 4) - BIBD(15, 3, 3).

(c) BIBD(19,3, 4) — BIBD(21, 3, 5).

(d) Suppose t > 3 and t =0, 2 (mod 3) and m <t. If X = BIBD(6t+1, 3,
2m), then there is a minimal point-enclosing Y = BIBD(6t+3, 3, 2m+1).
Proof: Part (a) follows from the Corollary 1.2 and Lemma 3.1. For part (b),
Use a l-factorization of K, into eleven one-factors. Use one one-factor
with point 13, and use 5 with each of points x and y. Use 5 copies of block
{13, x, y}. For part (c), use a 1-factorization of K;s to build 17 one-factors.
Use six of them to make triangles (Lemma 3.7, a), use one with point 19,
and use 5 each with x and y.

For part (d) the construction is more elaborate. We suppose t = 0,2
(mod 3) and t = 3. Since 2t # 2, 6, there exists a resolvable 3-GDD((2t)").
Since 2t+3 = 1, 3 (mod 6) a Steiner triple system (2t+3, 3, 1) exists. The
blocks for Y = BIBD(6t+3, 3, 2m+1) consist of

i) the blocks of X
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ii) the blocks of Z = 3-RGDD((2t)*) where the groups are {1, 2, ..., 2t},
{2t+1, ..., 4t}, and 4t+1, ..., 6t};
iii) the blocks of three Stemer triple systems (2t+3, 3 1). The latter
designs are based, respectively on the points

{1,2,..,2t x,y, 6t+1},

{2t+], 2t+2, ..., 4, X, y, 6t+1}, and

{4t+], 4t+2, ..., 6t, x, y, 6t+1};
iv) next, we expand m resolution classes of Z with x and expand m
different resolution classes with y. Exactly enough resolution classes
are available since m < t, 2m are needed, and 2t is the number of
resolution classes.

v) finally, we add 2m-2 copies of block {x, y, 6t+1}.
[ |

Although the theorem omits the sequence v = 18s + 7, the construction
in Example 6.3 may be used to enclose a (25, 3, 4) into a (27, 3, 5) and a
(61, 3, 4) into a (63, 3, 5).

Theorem 5.3 Suppose v =3 (mod 6). Then the following point-enclosings
are minimal:

(a) BIBD(9, 3, 4) - BIBD(19, 3, 5).

(b) BIBD(15, 3, 4) - BIBD(31, 3, 5).

(c) Suppose t > 3 and t =1, 2 (mod 3). If X = BIBD(6t+3, 3, 2m), then

there is a minimal point-enclosing into a Y = BIBD(6t+7, 3, 2m+1) if 4m <
2t+1.
Proof: Parts (a) and (b) follow from Corollary 1.2 and Lemma 3.1. For part
(c), let Z = RGDD((2t+1)*). The points of Y are those of X and w, x, y, and
z. The blocks of Y are those of X, and those of Z, those of three Steiner
triple systems based on the point sets below

{1,2,3,..,2t+1, w, X, y, z},

{2t+2, 2143, ..., 4t+2, w, X, y, z}, and

{4t+3, 4t+4, ... 61+3, w, X, y, z2}.

Also included are the blocks (m-1 times, each):

{w, x, ¥}, {w, x, 2}, {X, y, 2}, and {w, y, z}.

Finally, we expand m parallel classes with each of w, x, y, and z.
[ |

Theorem 5.4 Suppose t > 3 and t = 1, 2 (mod 3). If X = BIBD(6t+4, 3,
2m), then there is a minimal point-enclosing of X into a Y = BIBD(6t+7, 3,
2m+1) if 3m <2t+1.
Proof: The proof is the same as for Theorem 5.3(c) except we replace w
there by 6t+4 (and do not expand 6t+4 with any parallel classes).

|
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Theorems 5.3 and 5.4 can not be made to apply to BIBD(18m+3, 3, 4)
or to BIBD(18m+4, 3, 4).

6.1.=5,6

For A = 5, there are two possibilities, v = 6t+1 and 6t+3, but we need
not consider either of them since both systems (6t+1, 3, 5) and (6t+3, 3, 5)
are known to have minimal point-enclosings from [13]. Therefore, we move
to A = 6. Here v may be 0,1,..,5 (mod 6). There are minimal point-
enclosings for v = 6t+2 and 6t, from [13]. Thus, there are 4 primary cases
for us to consider in this section:

6t+1,3,6)>(6t+3,3,7)

6t+3,3,6)>(6t+7,3,7)

6t+4,3,6)>(6t+7,3,7)

6t+5,3,6)>(6t+7,3,7).

Theorem 6.1 Suppose v = 3t — 1 and t > 1. Then X = BIBD(v, 3, 6) may be
enclosed into Y = BIBD(2v+3, 3, 7).
Proof: To enclose BIBD(5, 3, 6) into BIBD(13, 3, 7), add the blocks of one
BIBD(13, 3, 1). Next we use the edges from 6 copies of Kg, based on the 8
new points, in the following way. The edges from 4 copies of K are used to
make 28 one-factors. The edges from 2 of the copies of Ks are decomposed
to get 2 copies of P;, P,, and P; which are used to make triangles (blocks)
and 2 copies of P, which give us 2 more one-factors. The 30 one-factors are
used, 6 with each original point, to make the remaining blocks. This
enclosing for v =5 is minimal.

For X = BIBD(8, 3, 6) into BIBD(19, 3, 7), add one copy of BIBD(19,
3, 1) and one copy of Z, a cyclic BIBD(11, 3, 6). We expand 8 difference
sets from Z, one with each original point (10 difference sets are available).
This is not minimal. (A minimal enclosing for BIBD(8, 3, 6) into a BIBD(9,
3, 7) can be obtained by putting each pair of points of X into a block with
new point y.)

For a minimal enclosing of BIBD(11, 3, 6) there is a separate argument
in Example 6.12. Now, for t > 4, by Lemma 3.1, X may be embedded into a
(2v+2, 3, 6) triple system and this may be enclosed into a (2v+3, 3, 7) by
Section 7 of [13] in which a (6t, 3, 6) is enclosed into a (6t+1, 3, 7) when t >

1.
|

Theorem 6.2 Suppose v = 1 (mod 6). Then the following point-enclosings
are minimal:

(a) BIBD(7, 3, 6) —» BIBD(15, 3, 7).

(b) BIBD(13, 3, 6) —» BIBD(27, 3, 7).

(c) BIBD(19, 3, 6) = BIBD(21, 3, 7).

(d) Suppose t >3 and t =0, 2 (mod 3). If X = BIBD(6t+1, 3, 6), then
there is a minimal point-enclosing Y = BIBD(6t+3, 3, 7).
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Proof: Parts (a) and (b) follow by Corollary 1.2 and Lemma 3.1. Part (c)
follows from. Theorem 6.9, below. Part (d) follows immediately from
Theorem 5.2.

|

This leaves the cases X = BIBD(18s+7, 3, 6) incomplete. However, we
have constructions for the first three of these as we now show in Example
6.3 and for some of the remaining cases in Theorem 6.4.

Example 6.3 For v = 18s+7 and s = 1, 2, or 3, there is a minimal point
enclosing of X = BIBD(v, 3, 6) into Y = BIBD(v+2, 3, 7). First suppose s =
1, and X = BIBD(25, 3, 6). The blocks of Y are those of X and those of Z, a
resolvable GDD(6"). We may assume the groups are {1, ..., 6}, {7, ...12},

. {19, ...24}. We augment each group with 25, x, and y and form four (9,
3, 1) triple systems. We add three copies of the block {25, x, y}, and expand
each of x and y with three resoluuon classes (9 are available). When s = 2
and v = 43, we use Z = RGDD(6"), and the rest is similar. Whens =3, v=
61, and in this case Z = RGDD(12%). To continue this idea, Z must have
18s+6 points, the number of groups must be less or equal to seven, and the
group size must be 0 or 4 mod 6. This is all accomplished in the next
theorem.

Theorem 6.4 Suppose s =1 (mod 4). Then X = BIBD(18s+7, 3, 6) can be
minimally point-enclosed into Y = BIBD(185+39, 3, 7).
Proof: Use RGDD((3s+1)%). Since s is odd, 3s+1 = 4 (mod 6) and the
necessary triple systems exist. Since s is 1 mod 4, the RGDD exists (that is,
g # 10 mod 12). The rest follows as in Example 6.3. We note that the same
proof works for s = 3+4j provided the GDD((10+12j)") exists.

|

Theorem 6.5 Suppose v =3 (mod 6). Then the following point-enclosings
are minimal:

(a) BIBD(9, 3, 6) —» BIBD(19, 3, 7).

(b) BIBD(15, 3, 6) - BIBD(31, 3, 7).

(c) BIBD(21, 3, 6) = BIBD(43, 3, 7).

(d) Suppose t > 3 and t =1, 2 (mod 3). If X = BIBD(6t+3, 3, 6), then
there is a minimal point-enclosing into a Y = BIBD(61+7, 3, 7).
Proof: Parts (a), (b), and (¢) follow from Corollary 1.2 and Lemma 3.1.
Part (d) follows immediately from Theorem 5.3. -

This leaves the case X = BIBD(18s+3, 3, 6) incomplete. However, see
Example 6.8 and Corollary 6.9, below.
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Theorem 6.6 Suppose v =4 (mod 6). Then the following point-enclosings
are minimal.

(a) BIBD(4, 3, 6) — BIBD(9, 3, 7).

(b) BIBD(10, 3, 6) - BIBD(21, 3, 7).

(c) BIBD(16, 3, 6) - BIBD(31, 3, 7).

(d) BIBD(22, 3, 6) = BIBD(25, 3, 7).

(e) Suppose t > 3 and t = 1, 2 (mod 3). If X = BIBD(6t+4, 3, 6), then
there is a minimal point-enclosing of X into a Y = BIBD(6t+7, 3, 7).
Proof: For part (a) and part (b) follow from Corollary 1.2. Part (c) follows
from Theorem 6.10, below. For part (d), use the 21 one-factors from K,
seven with each of the three new points. Add 7 copies of block {x, y, z}.
Part (¢) follows immediately from Theorem 5.4. -

Theorem 6.7 (a) Suppose that A is even, v = g(A+l), and that a
RGDD(**") exists. Ifg+s =1, 3 (mod 6) and g 2> s, then X = BIBD(, 3, 3)
can be enclosed into Y = BIBD(v+s, 3, A+1).

(b) Suppose that A is even, v-1 = g(A+1), and that a RGDD(g""") exists.
Ifg+s=1, 3 (mod 6) for g 2s > 0, then X = BIBD(v, 3, A) can be enclosed
into Y = BIBD(v+s, 3, A+1).

Proof: For part (a), let Z=RGDD(g*""). The blocks of Y are those of X, of
Z, and of A+1 Steiner triple systems on the groups whose point sets are each
augmented by the s points, and each new point is expanded with A/2
resolution classes. For part (b), the argument is the same except that point v
replaces one of the s points from the part (a) solution. -

Example 6.8 As an application we might hope to enclose a BIBD(21, 3, 6)
into a BIBD(25, 3, 7) using Z = RGDD(3") and form 7 Steiner triple
systems on the sets {1, 2, 3, w, X, ¥, z}, .., {19, 20, 21, w, X, y, Z}.
Unfortunately, there are not enough resolution classes. In fact, Corollary 1.2
also forbids this enclosing. BIBD(21, 3, 6) minimally encloses into
BIBD(43, 3, 7). However, we illustrate part (b) by enclosing BIBD(22, 3, 6)
into BIBD(25, 3, 7). The 7 triple systems, adapted from the v = 21 almost-
solution, are based on the points {1, 2, 3, 22, x,y, z}, ..., {19, 20, 21, 22, x,
y, z}, and so on. Only 9 resolution classes are needed and 11 are available.
This may be contrasted by the solution in Theorem 6.6d.

Theorem 6.7 can be applied in several of the otherwise unresolved

cases provided the needed GDD exists, and in the next corollary we indicate
the appropriate parameters.
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Corollary 6.8 Suppose n =1 (mod 7) and n > 1. Then BIBD(18n+3, 3, 6)
and BIBD(18n+4, 3, 6) can be minimally enclosed into Y = BIBD(18n+7, 3,
7).

Proof: Here 18n+3 = 21+126t = 7(3+18t). Use Z = RGDD((3+18t)").

We note that when u = 7, the necessary conditions for RGDD(g")
require g = 0, 3 (mod 6). When u = 5, then g must be a multiple of 6. For
example, Theorem 6.7 can not be applied to enclose X = BIBD(18k+7, 3, 4)
into Y = BIBD(18k+9, 3, 5) if k = 1 (mod 5) since the needed
GDD((5+18t)°) does not exist.

Theorem 6.9 Suppose that v-1 = mt, that a Steiner triple system (m, 3, 1)

exists, and that there are 2A+3 I-factors in the l-factorization of the

point-enclosed into Y = BIBD(v+2, 3, A+1). With these hypotheses, X may
. be written as X = BIBD(mt+1, 3, [m(t-1)-3]/2).

Proof: In addition to the blocks of X, we write x with A+1 1-factors, y with

A+l l-factors, and v with one 1-factor. We add the block {v, x, y} A+l

times, and for each partition of size m we add a triple system (m, 3, 1).

As an example of the theorem, we may enclose BIBD(19, 3, 6) into
BIBD(21, 3, 7). There are 15 1-factors using a 1-factorization of K3333.33.
We write x with 7 one-factors, y with 7 one-factors, and 19 with the
remaining 1-factor. Now add the block {x, y, 19} seven times, add 6 triple
systems (3, 3, 1) that form the partition for the vertices, and add the blocks
of X, the original design.

Theorem 6.10(a) below sharpens the enclosing results for some cases
also dealt with in Lemma 3.1 and applies to this section since A = 6. Parts
(b) and (c) are more general and take the idea of the proof as far as possible,
i.e., for the largest possible index for a point-enclosing. Theorems 6.11 and
6.13 are also quite general but are needed here for small values of n.

Theorem 6.10 (a) Suppose v 2 14 and v =2, 4 (mod 6). Then X = BIBD(¥,
3, 6) may be enclosed in Y = BIBD(2v-1, 3, 7).

(b) Suppose v 2 16 and v = 4 (mod 6). Then X = BIBD(v, 3, 2t) can be
enclosed into Y = BIBD(2v-1, 3, 2t+1) for 2 < 2t < (v-2)/2.

(c) Suppose v =14 and v = 2 (mod 6). Then X = BIBD(v, 3, 6t) can be
enclosed into Y = BIBD(2v-1, 3, 6t+1) for 6 < 6t < (v-2)/2.

Proof: We prove part (a). Since v is even, a 1-factorization of K, exists and
there are v-1 1-factors, say F,, F, ..., F..1. For each edge {a, b} in F;, we
will add block {v-+i, a, b} to X. Here the new points are v+i fori = 1,..., v-1.
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Suppose v = 4 (mod 6). Then a resolvable Z = BIBD(v-1, 3, 1) exists, and
we add 7 copies of Z. Z is based on the new points {v+1, v+2, ..., 2v-1}. We
expand each x in {1, 2, ..., v}with 3 resolution classes of Z. Now suppose v
= 2 (mod 6). Here we use the 1-factors as before, but this time we use a
cyclic Z = BIBD(v-1, 3, 1). For each x in {1, 2, ..., v} use a different
difference set {a, b, c} and the blocks developed from it to expand with
point x. Since each point of Z will appear in 3 blocks developed from the
difference set, each point of X will appear with each new point 6 times
using these blocks. The first construction requires the number of resolution
classes available, 7(v-2)/2, to be greater or equal to 3v. In the second we
need the number of difference sets, 7(v-2)/6, to be greater or equal to v.
Each is satisfied if v 2 14.

For each of parts (b) and (c), let v = 2n. For part (b), we create Y from
the blocks and points of X by adding 2n-1 new points and adding several
sets of blocks which we will describe. Since 2n-1 = 3 (mod 6), there exists a
resolvable Z = BIBD(2n-1, 3, 1) based on the new points. We add new
blocks from 2t+1 copies of design Z. Each one has (2n-2)/2 = n-1 resolution
classes. Thus, we have (2t+1)(n-1) = 2tn+n-2t-1 resolution classes
altogether using all the copies of Z. We expand each point x in X with t
resolution classes (as in the proof of Theorem 2.1). This requires 2nt
classes, and these classes are available whenever n-2t-1 > 0. But this
happens here because of the hypothesis on v and t. Since each resolution
class creates index 2 between x and the points of the class, each point x of X
now appears with points of Y in 2t blocks. New points of Y appear with
each other in blocks 2t+1 times (since we used 2t+1 copies of Z). To
complete the set of blocks needed, we use the 2n-1 one-factors available
from a one-factorization of K,, (the points of X). We put each of the new
2n-1 new points with one one-factor. This complete Y.

Now suppose 2n-1 = 1 (mod 6). We use one-factors as in the previous
case, but in this case we need 6t copies of a cyclic Z = BIBD(2n-1, 3, 1).
Since each point appears 3 times in blocks generated by a difference set, Z
has 1/3 difference sets, where r is the replication number of Z. For any
BIBD, vr = bk and A(v-1) = r(k-1), and for Z this means r = n-1. Thus, 6t+1
copies of Z give (6t+1)(n-1)/3 total difference sets available. Since, for
design Y, we have index of 6t+1, we need t difference sets with which to
expand each point of X (as described in Section 1). That is, vt = 2nt
difference sets are needed. We have them provided n = 6t+1, and this is
equivalent to the condition in the hypothesis for case (c).

]

Theorem 6.11 Suppose v =3, 5 (mod 6). Then X = BIBD(, 3, (v+1)/2) can
be enclosed in Y = BIBD(2v+3, 3, (v+3)/2).

Proof: To the blocks of X we add those of Z; = BIBD(2v+3, 3, 1), where Z,
is based on the points of X and v+3 new points. We now have all the blocks
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needed which contain pairs from X. We use Z, = GDD(2“**?), which is
based on the v+3 new points. Z, and Z, exist by the congruence condition
on v. The index is 2 for new points with each other (except for points paired
with each other in the groups). Let us consider the set of groups as a one-
factor. We further create v+2 new one-factors from K,.;, and we make (v-
1)/2 copies of these one factors. Now, based on the new points, we have a
total of
1 + (vH2)(v-1)/2 = v(v+1)/2
one-factors available. We use (v+1)/2 of them for each of the v points of X.

An easy count shows the new index is (v+3)/2 for all points.
|

Example 6.12 As an example of the previous theorem, we minimally
enclose X = BIBD(11, 3, 6) into Y = BIBD(25, 3, 7) - the minimality is
from Corollary 1.2. Use the blocks of X, the blocks of Z;, = BIBD(25, 3, 1),
the blocks of Z, = GDD(2"), and the following. We use five one-
factorizations of K,4 giving 65 1-factors. The groups of Z, give the 66
needed 1-factor. For each point of X, construct blocks using six 1-factors.

Theorem 6.13 If the complete graph K, can be decomposed into 2A+3 I-
Jactors and the remaining edges into triangles, then X = BIBD(2n+1, 3, 2)
can be minimally enclosed into Y = BIBD(2n+3, 3, A+1).

Proof: Using the decomposition of Ky, one 1-factor is used to make blocks
with point 2n+1, and A+1 1-factors are used with each of x and y. Use A+1

copies of the block {2n+1, x, y}.
|

Corollary 6.14 The design X = BIBD(2n+1, 3, n-5) can be minimally point-
enclosed into Y = BIBD(2n+3, 3, n-4).

Proof: The blocks of Y are those of X, n-4 copies of the block {2n+1, x, y},
and the following. Decompose K, into 2n-7 one-factors and 2n triples
(Lemma 3.8). Form new blocks from v = 2n+1 and one one-factor, and

from x and y with n-4 one-factors each.
|

Example 6.15 We minimally point-enclose a BIBD(23, 3, 6) into a
BIBD(25, 3, 7). Decompose Ky, into twenty-one 1-factors. Use seven I-
factors with each new point x, y, and one with 23. The rest follows by
Theorem 6.14 and Lemma 3.7a.

Example 6.16 We minimally point-enclose X = BIBD(29, 3, 6) into Y =
BIBD(31, 3, 7) by applying Theorem 6.13 to K.s. The fifteen 1-factors
needed come from P,UP; and PsUP; (eight 1-factors), one from Py, and
two each from Ps, P);, and Pys. Triples come from PsUPgUP;; and
P]UPQUP[O.
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Theorem 6.17 Suppose v = 6t+5 and t = 2m. Then X = BIBD(v, 3, 6) may

be minimally point-enclosed into Y = BIBD(v + 2, 3, 7).

Proof: Note v = 4(3m+1) + 1. Let Z be a cyclic GDD(4*™"). For each

group {a, b, ¢, d} of Z, we add the following blocks to those of X and Z:
{v,a, b}, {v,c,d}, {x,a,c¢}, {x,b,d}, {y,a,d}, {y, b, c}.

We expand a difference set (and the blocks developed from it) with x and

another one with y.
|

In Table 2, which we hope will be useful for the reader, we list several
cases for small v which are either special cases, the first case of a general
theorem, not within the scope of some general theorems, or taken from [13]
for completeness. Each entry gives the least possible point-enclosing
allowed by Table 1 and by Corollary 1.2, and the construction is referenced.
Unresolved sequences are listed for A = 4 or 6 in Table 3.
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