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Abstract

ABSTRACT. Let S be a simple polygon in the plane whose vertices
may be partitioned into sets A’, B’, such that for every two points
of A’ (of B'), the corresponding segment is in S. Then S is a union
of 6 (or possibly fewer) convex sets. The number 6 is best possible.
Moreover, the simple connectedness requirement for set S cannot be
removed.

1 Introduction.

We begin with some familiar definitions. Let S be a set in the plane. For
points z,y in S we say = sees y via S (z is visible from y via S) if and
only if the corresponding segment [z,y] lies in S. Of course S is conver if
and only if for every pair z,y in S, z sees y. Set S is starshaped if and only
if for some point p in S, p sees each point of S, and the set of all such
points p is the (convex) kernel of S, denoted ker S. Set S is called a simple
polygon if and only if S is a connected, simply connected union of convex
polygons. Clearly the boundary of S will be a closed polygonal curve A
and we consider the vertices of S to be the vertices of A together with those
points at which S fails to be locally convex.

In case the edges of the simple polygon S are parallel to the coordinate
axes, set S is called an orthogonal polygon. Moreover, replacing the usual
notion of segment visibility above with the idea of staircase path visibility
(see [7],[2],[3]), we may define sets which are convex or starshaped relative
to staircase paths. In particular, set S is called orthogonally conver if and
only if every two of its points lie on a common staircase path in S.
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It is fairly common for results concerning visibility via segments to mo-
tivate analogous results concerning visibility via staircase paths. However,
here we have the situation reversed. In [1] it was proved that for a simply
connected orthogonal polygon S, an assignment of vertices of S to orthog-
onally convex subsets A, B of S induces a decomposition of S into two or
three orthogonally convex sets. While the bound three fails for segment vis-
ibility, the analogous result holds when the bound is raised to six. That is,
if § is a simple polygon whose vertices may be assigned to convex subsets
A, B of S, then S is a union of six (or possibly fewer) convex sets.

Throughout the paper, ¢l S, conv S, and ker S will denote the closure,
convex hull, and kernel, respectively, for set S. For distinct points z and y, L
(z, y) will be their corresponding line. The reader may refer to Valentine [8],
to Lay [6], to Danzer, Griinbaum, Klee [4], and to Eckhoff [5] for discussions
concerning visibility via segments and corresponding convex and starshaped
sets.

2 The Results

. We will establish the following theorem.

Theorem 1. Assume that S is a simple polygon in the plane whose
vertices may be partitioned into sets A’, B’ such that for every two points
of A’ (of B'), the corresponding segment is in S. Then S is a union of 6 (or
possible fewer) convex sets. The number 6 is best possible.

Proof. If S is convex, there is nothing to show, so assume that S is not
convex and hence A’, B’ are nonempty. Since S is simply connected, clearly
sets A = conv A’ and B = conv B’ liein S. There are two cases to consider.

Case 1. Suppose that A and B are not disjoint. Observe that for each
point p in K = AN B, p sees via S each vertex of S, and hence it is easy
to show that p € ker S. Certainly sets A\B, B\ A are nonempty. Let A, be
a component of A\K. Fix p in K, let R; be a ray from p which meets A,
and order the rays at p in a clockwise direction, beginning at R;. Relative
to our clockwise order, these rays impose an order on the components of
A\K and B\K, alternately meeting component A; of A\K, component
B; of B\K, component Az of A\K, and so on.

Moreover, for any component C of S\(A U B) cl C will meet cl 4;
and cl B; for some A;, B; which are consecutive relative to our clockwise
order. We assume that components of S\(AU B) exist, for otherwise S will
be a union of two convex sets, finishing the argument. For convenience of
notation, we let C; denote the C set whose closure meets cl A; and cl B»,
if it exists. Otherwise, let C; = ¢. Let C» denote the C set whose closure
meets cl By and cl Ag, if it exists. Otherwise, let C; = ¢. In this way we
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define A4),Cy, B2,Cy, ... ,Chy, Ay, where cl C,, meets cl Byn and cl A (oris
empty) and where n is even, n > 2. Observe that each nonempty set cl C;
is a triangular region having one vertex in A\ K, one in B\K, onein ANB.
Hence each cl C; and each C; will be convex. For future reference, we define
the distance between sets C;,C; to be the shortest distance between their
subscripts when the subscripts are adjusted modulo n.

To prove the theorem, we will assign every C; set to one of four col-
lections, each having its convex hull in S. As a preliminary result, we
show that when the distance from C; to C; is at least three, then conv
(Ci UCj) C S. For convenience of notation, we let i = 1, j = 4,
where n > 6. Since S is simply connected, clearly it suffices to show that
for ¢; in C; # ¢,i = 1,4,[c1,ca) C S. In case point p lies on the line
L = L(cy,c4), the result is immediate. Hence we assume that p lies in one
of the corresponding open half planes L; or L, say L;. Certainly relative
to our clockwise ordering there are points from sets B,, A3, and B4 which
follow C; and precede Cj, while there are points from A,_,, By, and A,
which follow C4 and precede C). (See Figure 1.) Thus if p € L,, then for
one of the triples By, Az, B4 or A,_1, By, A, each set has points which lie
in Lj. Since the situations are symmetric, without loss of generality assume
that B, A3, B, all contain points in L,, and select b2,a3,b4 in B, A3, By,
respectively, each in L,. Since a3 ¢ B,a3 ¢ conv {b2, b4, p}, so by our
clockwise ordering (a3, p] meets [b2, b4] at some point p’ in (AN B) N L,.
Hence [p’,p] C AN B C ker . Moreover, agdin by our ordering [p’, p| meets
[c1,¢4), say at p”, and since p” € ker S, it follows that [c1,c4] C S, estab-
lishing our preliminary result.

We are ready to assign sets C;, 1 < i < n, to collections T;,1<j<4.1If
n < 4, the procedure is trivial, so assume that n > 4. Since n is even, this
implies that n > 6. There are several cases to consider:

If n = 3k (for some k > 2), define
T = {C;:iE 1mod3}.

T, = {Ci:i=2mod3)},
Ty = {Ci:i=0mod3),
T4 = ¢.
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Figure 1.

If n = 3k + 1 (for some k > 2), define

Ty = {Ci:i=1mod3,i< 3k+1},
T, = {Ci:i=2mod3},

T3 = {Ci:i=0mod3},

Ty = {Csk41}
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If n = 3k + 2 (for some k > 2) and 4 divides n, define

T, = {Ci:i=1mod4},
T, {Ci:i=2mod 4},
T3 {Ci:i=3mod 4},
Ty = {Ci:i=0mod4).

Finally, if n = 3k + 2 (for some k > 2) and 4 fails to divide n, then
since n is even, 3k + 2 = 2 mod 4. We define

i = {Ci:i=1mod4,i< 3k+1},

T {Ci:i=2mod4,: <‘3k + 2} U {Csk 41},
Ts {Ci :i=3 mod 4} U {Cax+2},

Ta = {C;:i=0mod4}.

It is easy to check that every C; is assigned to some collection Tj. More-
over, for each Tj, any two corresponding C sets are at least distance two
apart. Using our preliminary result together with the simple connectedness
of S, it follows that conv T; C S, 1 < j < 4. These four sets, together with
A and B, provide a decomposition of S into 6 (or possibly fewer) convex
sets, finishing Case 1.

Case 2. Suppose that sets A and B are disjoint. Then for some line L, A
and B lie in distinct open halfplanes determined by L. For any edge of S,
either both endpoints lie in the same set A or B, or one vertex lies in A, one
in B. Edges neither in A nor in B must be of the second type, and since S is
simply connected, clearly S has either one or two such edges, say [, b] and
[a’,']. Region D bounded by the closed curve [a,a’] U[a’,b')U [0/, 5] U [b, a]
is either convex or a union of two convex sets, and every point of S\(AU B)
is in D. Hence S is a union of four (or possibly fewer) convex sets. This
finishes Case 2 and completes the proof of the theorem.

Example 2 in [1] demonstrates that the bound in Theorem 1 is best
possible, for the corresponding set satisfies our hypothesis and is a union
of no fewer than 6 convex sets. Using segment visibility instead of staircase
visibility, the set in [1, Example 1] shows that no bound is possible when
the simple connectedness condition is removed.
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