On a Problem on Generalised Fibonacci Cubes

Titus Hilberdink
Reading University, Whiteknights, PO Box 217, Reading
Berkshire RG6 2AH, U.K.
e-mail t.w.hilberdink@reading.ac.uk

Carol Whitehead
Goldsmiths College, London SE14 6NW, U.K.
e-mail:c.whitehead@gold.ac.uk

Norma Zagaglia Salvi
Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
e-mail:norzag@mate.polimi.it

June 14, 2001

Abstract

A Fibonacct string of order m is a binary string of length n with
no two consecutive ones. The Fibonacci cube Ty, is the subgraph of
the hypercube @, induced by the set of Fibonacci strings of order
n. For positive integers i, n, with n > i, the ith eztended Fibonaccs
cube is the vertex induced subgraph of Q, for which V(I'y) =V} is
defined recursively by

Vise = 0Viy, + 10V,

with initial conditions Vi = B;, Vi{,; = Bit1, where By denotes the
set of binary strings of length k. In this study, we answer in the
affirmative a conjecture of Wu [10] that the sequences {| V;i |}3%, 42
are pairwise disjoint for all i > 0, where V;? = V(T',).

1 Introduction and notation
The hypercube (or n-cube) @, is the graph with 2" vertices, each cor-
responding to a unique binary string of length n, where two vertices are

adjacent if and only if the corresponding binary strings differ in exactly
one bit. These graphs have been used extensively as architectural models
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for parallel processors, where each vertex represents a processor and each
edge represents a direct link between two processors. For the purposes of
message routing, @, has the advantages of being Hamiltonian and of con-
taining a Hamming path connecting every pair of vertices. Further, the
degree of each vertex is only n, so there are relatively few links into each
processor.

However, the hypercubes have the disadvantage that they allow only a
limited choice for the number of vertices. In recent years, various subgraphs
of Qn have been proposed as alternative models. Among these are the
Fibonacci cubes proposed by Hsu [5], and the eztended Fibonacci cubes
proposed by Wu [10], which are the subject of this article.

A Fibonacci string of order n is a binary string of length n with no two
consecutive ones. The Fibonacei cube Iy, is the subgraph of @, induced by
the set of Fibonacci strings of order n.

We use the following notation. Let a, 3 be two binary strings. Denote
by af the string obtained by concatenating o and 8. More generally, if S
is any non-empty set of binary strings, then aS8 = {aofB : o0 € S}, and
afB = aB. Let B, denote the set of binary strings of length n and let V,,
be the subset of B, containing all strings with no two consecutive ones, so
that V(Q,) = B, and V(I'y,) = V,,. For n > 0, the set V,, satisfies the
recursive relation

Varz = 0oy + 10V4, (1)

with initial conditions Vp = {0}, Vi = {0,1}. Let G, = |V,], n > 0. Then
it follows from (1) that the sequence {Gn}3%, satisfies

Gn+2 = Gn+1 + Gm

and hence it is a generalised Fibonacci sequence, with initial terms Go = 1,
G1 = 2. Clearly {Gn}2, is a subsequence of the Fibonacci sequence
{Fn}3, with initial terms Fy = 0, Fi = 1, where G, = Fy42. The
Fibonacci cubes I'y,, n = 0,1, 2,3 are illustrated in Figure 1.1 below.

The extended Fibonacci cubes are constructed by the same recursive
relation as the Fibonacci cube, but with different initial conditions. For
positive integers ¢,n, with n > i, the ith eztended Fibonacci cube of order
n, denoted by I'%, is a vertex induced subgraph of Q,, where V(I%) = Vi
is defined recursively by the relation

Vise = 0Vnyy + 10V, (2)
with intitial conditions V} = B;, V{,; = Biy1. ThusT% = Q;, %, = Qina

and in general, when n > i+ 2, the vertices of I'}, are (0,1)-strings in which
the last ¢ + 1 positions are vertices of @;+; and the first n — ¢ positions are
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vertices of I',_;. The extended Fibonacci cubes I'}, for n = 1,2,3,4, are
illustrated in Figure 1.1 below.
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r! I} T} ¥
Figure 1.1

Let Gi denote [V(I'})|, for n > i > 0, where we define I'Q = I‘,,,
V=1V, "and G? = G,. Then for fixed i > 0, the sequence {G %,
satisﬁes the Fibonacci recurrence relation

G;.1+2 = Gi,+1 + G;‘ (3)

for n > i, with initial conditions Gt = 2!, Gi,, = 2¢+!. For other definitions
and notation, the reader is referred to [2].

Wu [10] has shown that the sequence {G,}32, and {G2 1}, are disjoint,
so that the graphs ', and I'} together considerably widen the choice for
the number of vertices in an interconnection structure. He conjectured that
the sequences {G%}%2;,, are disjoint for all i > 0, and in Section 3 of this
study we prove this conjecture is correct.

The structural properties of Fibonacci cubes have been studied in [1]
and [7]. Although they have many of the useful properties of @, for mod-
elling an interconnection structure, including the Hamming path property,
it is shown in [3] and [6] that less than one third of Fibonacci cubes are
Hamiltonian. However, all extended Fibonacci cubes have been shown by
Wu [10] to be Hamiltonian. Other structural properties of these graphs are
discussed in [9] and their applications in [8].
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2 Structure of the extended Fibonacci cubes

In this section, we establish two decompositions of the extended Fibonacci
cube I'}. The first of these gives a recursive construction for the sequence
of extended Fibonacci cubes, starting from the Fibonacci cube. The con-
struction of I'} from I',_; by this method, for n = 1,2, 3,4, is illustrated
in Figure 1.1.

Theorem 2.1 Let i,n be positive integers with n > i. Then
Ii =TI x Ko,
where [ =T,,.
Proof. We show that for all n > i > 1, we have
Vi=Vislo+ Vil

The case when n = ¢ = 1 is trivial, so we assume n > 2 and proceed
by induction. The result clearly holds when n = i and n = 7 + 1, since
V¥ = Br and V¥, = By, for all k > 1, by definition. From the induction
hypothesis and (2), we have

Vi o= OVi_, +10Vi_,
= O{ViZ30+ViZi1} +10{ViZi0+ Vi-i1}
{OViZ) +10Vi3}0 + {OV:iz) + 10Vl
= ViZlo+ Vi1,

n-1

and the result follows. B
Corollary 2.2 Let i,n be integers such thatn >i > j > 1. Then

(i) T =T x Qj;

(il) G =2'Gp—i = 2 Fppa—;. ]
Lemma 2.3 Let i,n be integers such thati >0 andn > i+ 3. Then

V,:. = V,,_i_goV,-fH + Vn...,'_3010V‘~i.
Proof. Using the recurrence relation (2), we have
A = OV, +10VY,

{00 + 10}V{,, + 010V}
VIOV, + Vo010V,

42



where Vp = {@}. Using this expression for Vi, 3, a similar analysis gives
Viie = {00+01+10}0V, + {0+ 1}010V}
= Va0V}, + V1010V,

Hence the result is true when n =i + 3 and i + 4. So we assume n2i+5,
and again proceed by induction. Thus

Vi = Vi, +10Vi_,
= {0Vaeios + 10Vaiq}OVE, + {O0Vyi_q + 10V,,_;_5 }010V}
= Vaic20V},, + Vo_i 3010V},
and the result follows. B

Theorem 2.4 Leti,r,n be integers such thati >0, n > i+3 and 2 <r<
n —2. Then ' ) )
Vo =V OV + V,_,010V}

n—r—1-

- Proof. Let v € V;. It follows from Lemma 2.3 that given r such that
2 <r < n-2, wecan write v = zy, where z is a Fibonacci string of
length r —1 and y € V;;_,.,,. Two cases arise: if the first bit of y is 0, then
y € OV;i__; otherwise, the first bit of y is 1 and then the last bit of z and
the second bit of y are both 0. In this case, v € V;—2010Vi___,. Hence
Va € Va0V + V,_5010V;i_,_,. It is immediate from Lemma 2.3 that
Vee10Vi_, + V, 5010V} i_,_, C V, establishing the result. B

Lemma 2.3 and Theorem 2.4 yield relations between the numbers Gi
and Gy,. In particular, from Lemma 2.3, we have

Gy = Gnoi2-Gi +Gpn_isz- G:
2'(2Gn-i_2 + Gn—i_3),
using Corollary 2.2. Putting n — i = s, this reduces to the relation
Gs =2Gs-2 + G,_3,

which is of course an immediate deduction from the basic Fibonacci recur-
rence relation. Similarly, Theorem 2.4 implies

G:‘ = Gr_l . G;—r + Gr—2 * Gi.—r—ls

which, on using Corollary 2.2 and putting n — i = s as before, reduces to
the following well-known relation for generalised Fibonacci numbers:

Gs = Gr-l : Gs—r + Gr-2 . Ga—r—l-

This process can of course be reversed, so that multiplying through a
relation for generalised Fibonacci numbers by 2¢, for i € Z*, and applying
Corollary 2.2(i) yields a relation between the numbers G} and G,,.

43



3 Wu’s conjecture

Wu [10] has conjectured that the sequences {G%}32 ;. , are disjoint for all
i > 0, and in this section we prove this is true.

In view of the relation G = 2iGn_; = 2iFp40-, for n > i > 1,
established in Corollary 2.2(ii), it suffices to show that the only instance of
a relation of the form

Fy =2'F,

with N > n > 3, is when N = 6, n = 3 and k = 2. The proof uses some

well-known properties of the Fibonacci sequence and a relation connecting

the Fibonacci and Lucas sequences, which we give below as Remark 3.1

and Remark 3.4 respectively. Proofs of can be found in [4], for example.
Recall that the Fibonacci sequence

0,1,1,2,3,5,8,13,21,...
with initial terms Fp = 0 and Fj = 1, has the following properties.
Remark 3.1 For all n,
(i) (Fa,Fot1) =1;
(ii) for all d,n, withd > 3, Fq | Fy, if and only if d | n;
(iii) if (m,n) =d, then (F, Fp) = Fy.

The following Lemma can be deduced from Remark 3.1, using the facts
that F3 = 2 and Fg = 8, and the Fibonacci recurrence relation. However,
the shortest proof is to note that {F,} (mod 4) is the cyclic sequence

0,1,1,2,3,1,0,1,...
with period 6.
Lemma 3.2 Letn € Z*. Then
() Fant1 =1 (mod 2);
(ii) Fen =0 (mod 4); Fgne3 =2 (mod 4).
Recall that the Lucas sequence {L,} is the generalised Fibonacci se-

quence .
2,1,3,4,7,11,18,29, . ..

with intitial terms Lo =2 and L, = 1.

Lemma 3.3 Letn € Z+. Then



(i) Lp #0 (mod 8);
(ii) Lans1 =1 (mod 2);
(iii) Lgn =2 (mod 8); Lgn+3 =4 (mod 8).
Proof. We note that {L,} (mod 8) is the cyclic sequence
2,1,3,4,7,3,2,5,7,4,3,7,2,1,...

with period 12. B

Remark 3.4 Foralin, F5, = F, - L

Lemma 3.5 Let m be an odd integer and let t be a non-negative integer.
Then

(1) Foe(amx1) is odd;
, _[2n  ift=0
(1) Fotom ‘{ 242h  otherwise ’

where h is an odd integer.

Proof. (i) This result follows from Lemma 3.2(i).
(i) When ¢ = 0, the result follows from Lemma 3.2(ii). When ¢ > 1,
repeated application of Remark 3.4 gives

th.sm = F2:—1.3m . Lgt-1.3m = F3m . L3m . Lg.sm . L22.3m s L2“1-3m-

For 1 <i < t—1, each term of this product of the form L:.3,, is congruent
to2 (mod 8) and L3, =4 (mod 8), by Lemma 3.3; F3,, =2 (mod 4),
by Lemma 3.2. Hence Fye.3,, = 2¢+2h, for some odd integer h. Bl

Theorem 3.6 Given integers n, N, with3 < n < N, there ezists a positive
integer k such that

Fy =2FF,
only when N=6,n=3 and k = 2.

Proof. Since F,, | Fy with n > 3, we have n | N, by Remark 3.1(ii). In
particular,

n < N/J2. @)
Since Fiv is even , we have 3 | N, by Lemma 3.2. Hence N = 3 - 2°m, for
some m,s where m is odd and s > 0. Thus by Lemma 3.5, Fy = 2¢+2h,
for some odd integer h. Then F,, = 2°+2~%h where s + 2 > k.
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Case (a) Assume k > 3. This implies s > 1 and hence 6 | N by Lemma 3.2.
Then
Fn = Fynya - Lnjs = 28F, < 28 Fys,

from equation (4). Hence
Ly < 28 (5)

However, N/2 > 3-2°"1 > 3.2F3 It is easﬂy verified that L, > &
when r > 6, and hence Lyjp > Lzqr-s > 2%, when k > 4. But thlS
contradicts equation (5) and hence there is no solutlon when k >4.

We may thus assume k£ = 3. Then from equation (5), Ly/2 < 8 and
hence N < 8. Since 6 | N, this gives N = 6. But n > 3 and hence there is
no solution in this case either.

Case (b) Assume k < 2. From equation (4), we have Fiy > F,,,, and hence
Fy > F,-L,. Thus L, < 2%,

When k = 2, this gives L, < 4 and hence n < 3. Thus the only
possibility is n = 3, yielding the solution Fg = 22 - Fj.

When k£ = 1, we have L, < 2, giving n = 1 and hence there is no
solution in this case. B

Corollary 3.7 The sequences {G%}%; ., are disjoint for all i > 0.
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