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ABSTRACT: In this paper we define the concept of generalized Fi-
bonacci polynomial of a graph G which gives the total number of all & -
stable sets in generalized lexicographical products of graphs. This concept
generalize the Fibonacci polynomial of graph introduced by G.Hopkins and
W .Staton in [3].
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1.Introduction

By a graph G we mean a finite, undirected, connected graph without
loops and multiple edges. V(G) and E(G) denote the vertex set and the
edge set of G, respectively. The length of the shortest path joining ver-
tices £ and y in G we will denote by dg(z,y). Recall that the length
of the path is the number of edges in it. By P, and Cj, for n > 2 we
mean graphs with the vertex sets V(P,) = V(Cy) = {t1,...,tn} and the
edge sets E(P,) = {{ti,tit1};i = 1,..,n — 1} and E(C,) = E(Pa)U
{tn,t1}, respectively. In addition C; = P, where P, is a graph consi-
sts the only one vertex. Let G be a graph on V(G) = {t1,..,ta},n > 2
and H;,i = 1,..,n are graphs on V(H;) = V = {y1,.., ¥z}, > L
By generalized lexicographical product of G and Hy,...,Hp, n > 2, we
mean a graph G[H\, ..., Hy] such that V(G[Hy,..., H,]) = V(G) x V and
E(GlHy, -, Ha) = {{(t:9p), (%)} (s = &; and {3y, 4} € B(HL)) or
{ti,t;} € E(G)}. If H; = H,i = 1,...,n then G[H), ..., Hp] = G[H] where
G[H] is a lexicographical product of two graphs.

Let k£ be a fixed integer, k > 2. A subset S C V(G) is said to be a k -
stable set of G if for each two distinct vertices z,y € S, de(z,y) > k. In
addition a subset containing only one vertex and the empty set also is meant
as a k - stable set of G. Note that for ¥ = 2 the definition reduces to the
definition of a stable set of the graph G. By Fi(G) we denote the number
of all k - stable sets of G and we put F3(G) = F(G). The number F(G)
also is named as Fibonacci number of graph G. Moreover by fg(k,n,p)
we denote the number off all p - elements, p > 0, k - stable sets of a
graph G on n vertices and also we put f¢(2,n,p) = fe(n,p). Consequently
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E Je(k,n,p).

For n > 0 we define the set X as follows: if n = 0 then X =0, if n > 1
then X = {1,...,n}. Let Y C X where Y does not contain two consecutive
integers. By f(n,p) we denote the number of all subsets Y having exactly
p elements and
(1) f(n,p) = (*72*)
The number F,, = 3 f(n,p) is called the Fibonacci number, see [1]. In
p20
a graph interpretation, given in [5), the number Fy,, for n > 0 is equal to
the number of all stable sets S C V(P,), i.e.
- (2) F, = F(P,), and also
(3) f(n,p) = fp. (Tl,p).
For graph interpretation of the number Fy we introduce the empty graph
Py having a unique stable set X = 0.
Let Y* C X such that Y* does not contain either two consecutive integers
or both 1 and n simultaneously. The number of all subsets Y* having exactly
p elements is denoted by f*(n,p).
Moreover, for n > 3 it holds, see [1].
(4) F*(n,p) = f(n —3,p— 1) + f(n — 1,p) = 2(*77Y).
Of course f*(n,p) = f(n,p), for n = 0,1,2. The number F;; = Z f“(n P)

is called the Lucas number, see [1], and in the graph mterpret.atlon given
in [5], we have
() Fy = F(Cyp) and also
(6) f*(n,p) = fe,(n,p)-
In [4] it was given the generalized Fibonacci and Lucas number. Let
k > 2 be an integer and let the set X is defined as above. Let Y C X
such that 7,7 € Y if and only if | — j| < k. By f(k,n,p) we denote
the number of all such subsets Y having exactly p elements and further
let F(k,n) = Z f(k,n,p). The number F(k,n) we called the generalized

Fibonacci number It easy to see that for k = 2 we obtain f(2,n,p) =

f(n,p) and F(2,n) = F,. It has been proved:

Theorem 1.[4].Let k,n,p be integers, k >2,n>0,0<p < n. Then
flk,n,p) = ("7 (P-l)(k 2)+1)

Remark 1. f(2,n,p) = (" :)""1) f(n,p).
Let Y* C X such that i,j € Y* if and only if k¥ < |¢—j| < n—k. Further we
denote by f*(k, n,p) the number of all subsets Y* on p elements and we put

F*(k,n) = Z f*(k,n,p). The number F*(k,n) we called the generalized

Lucas number It easy to see that for k = 2 we obtain f*(2,n,p) = f*(n,p)
and F*(2,n) = F,;. It has been proved:
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Theorem 2.[4].Let k > 2 and 0 < p < n be integers. If n > 2k and p > 2
then we have
£ (k,m,p) = (k= 1)f(k,n = (2k = 1),p— 1)+ f(k,n — (k= 1), p).
Ifn < 2k then f*(k,n,1)=n, f*(k,n,0)=1.
Using the Theorems 1 and 2 we can write for n > 2k and p > 2 that
(7) f*(k,m,p) = 2("PED-Y),

For others classes of graphs the total number of stable sets and & -
stable sets were determined, see [4],[5],[6].

In (3] G.Hopkins and W.Staton introduced the concept of the Fibonacci
polynomial of a graph which gives the total number of stable sets of the
lexicographical product of two graphs. They define the Fibonacci polyno-
mial Fg(z) of the graph G by Fg(z) = F(G[K]), for integer =, where K,
is a complete graph on z vertices.

It has been proved:

Theorem 3.(3]. For an arbitrary graph G on n vertices Fg(z) = E fe(n,p)z?.

Consequently in case G is a graph P, by (1),(3) and Theorem 3 they

give
(8) Fp.(z) = Z fp.(n,p)z? = Z ("3t

In case G is a graph Cn by (6) and Theorem 3 they give
(9) Fe, (=) = 2 Jea(mp)er =1+ o3 B (n=p1)ge,

Evidently the degree of Fg(z) is the stabxhty number of G. Moreover
for an establish integer z, z > 1

(10) F(P (K.]) = Z): (""’“)x" and
0
(11) F(ChlKz]) =1+ Z 2("PTher.
2.Generalizations

In [7] it was proved the following theorem:
Theorem 4.[7].Let (t;,5,), (tj,v,) € V(G[Hy, ..., Hp)). Then
daiH,,...,.Hal((ti, ¥p), (8, 9g)) =

dg(ti,t;) for i# 5,
1 for  i=j and dg,(yp,y) =1,
2 otherwise.

This theorem gives that we propose the following generalizations of the
Fibonacci polynomial:

For an arbitrary integers k£ > 3, £ > 1 we define the generalized Fi-
bonacci polynomial Fg(k,z) of the graph G on n vertices, n > 2, by
Fg(k,z) = Fi(G[Hy, ..., Hp]), where Hj,...,H, is an arbitrary sequence
of graphs on |V(H,)| = |V] = z.
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Theorem 5.Let k > 3, z > 1 be integers. Then for an arbitrary graph G
on n, n > 2 vertices, Fg(k,z) = E fa(k,n,p)zP.

Proof: Let G be a given graph on n vertices. We shall show that if

k > 3 then for an arbitrary sequence of Hy, ..., H, the generalized Fibonacci

polynomial Fg(k,z) = Y fe(k,n,p)zP. It sufﬁcies to calculate the number
>0

p2

Fi(G[Hy, ..., Hy)). From the definition of the graph G[H\, ..., Hy] and by
Theorem 4 we deduce that to obtain a p - elements, p > 0, k - stable set of
G[H,, ..., Hy) first we have to choose a p - elements k - stable set of the graph
G. Of course we can do it on fg(k, n, p) ways. Next we have to choose one of
the z vertices in each of the p choosen copies of H;, ¢ = 1,...,n. Evidently,
from Theorem 4 and by k£ > 3 we have that for an arbitrary graph H;,
i = 1,...,n only one vertex from its copy can be choosen to a k - stable
set. Because every vertex of p - copies can be choose on = ways, so we have
fc(k,n,p)z? k - stable sets having exactly p elements in G[H}, ..., Hy).
Hence Fi(G[H,, ..., Hn)) = E fe(k,n,p)z?.

Thus the theorem is proved

Note that to study of the generalized Fibonacci polynomial it suffices
to study the coefficients of Fg(k,z). For example the constant coefficient
of Fg(k,z) is 1, the linear is n. The degree of Fg(k, z) is the cardinality of
the largest k - stable set of G.

Hence if §(G) < k-1 then Fg(k,z) = 1+nz, where §(G) = max de(z,v).
z,y

v(G)
Using the Theorems 1,5 and by (7) we obtain
Theorem 6.Let k >3, 2> 1, n> 2. Then

Fp,(k,z)= Y ( Zp- (P—l)(k 2)+1)
p20

Theorem 7.Let k>3, 2> 1,n> 2. Then
Fe,(k,z) =1+nz + z B (Pl DY) er

Using the definition of Fg(k,z) and by the above Theorems we have:
Corollary 1.Let k > 3, x > 1, n > 2. Then for an arbitrary sequence of
graphs Hy, ..., H, we have:

F(PalHy, ., Hol) = 3 (PP (- D=2+ p gnd

p20

F(CnlHy, ..., Hp)) = 1-+ nc+ Y %(n—p(k 1)- ) gP,
p22
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3. The total number of k-stable sets of Pn[H{, ..., Hn]
and Cn[Hl, ...,Hn].

Now we present numbers Fi(P,[H}, ..., Hy)) and Fi(Cp(H), ..., Hy]) by
the linear recurrence relations.

Theorem 8.Let k > 3, n > 2, x > 1 be integers. Then for an arbitrary
sequence of graphs Hy,...,Hp on |V(H;)|=|V| =z, i=1,...,n the number
Fy(P,[H,, ..., Hy)) satisfy the following reccurence relations:
Fi(Po[Hy, ..., Hp]) = Fi(Paca[Hy, ..., Hooi]) + 2 Fi(Pacik[Hy, ..., Hn-t)),
forn>k+2

with the initial conditions:

Fe(Po[Hy,..wHp])=nz+1,n=2,.. kand

Fo(Pegr[Hy, oo Hea)) = z? 4+ (k+ 1z +1.

Proof: Let k, n, z be as it was mentioned in the statement of the theorem.
Let n = 2,..., k. Then every vertex of V(P,[H, ..., Hn]) and the empty set
is a k - stable set of the graph P,[H}, ..., Hp). Moreover there no exist a k -
stable set of P,[{H}, ..., H,] having at least two elements. This implies that
Fy(Pn[Hy, ..., Hp]) = nz + 1.

If n = k+1 then in this case we have also k- stable sets having exactly two

elements. Every two elements k - stable sets has the form {(¢1, ¥;), (tk+1, %)},
where 1 < j <z and 1 < ¢ < z. So we have z2 such subsets and consequ-

ently Fk(Pk+1[H1, ey Hn]) =z2 4 (k + 1)1: +1.

Now suppose that n > k + 2 and let S be an arbitrary & - stable set of

P,[Hy, ..., Hp]. Because at most one vertex from each copy of H;,i =1, ...,n

can belong to the k - stable set of Pn[H}, ..., Hy), by Theorem 4 and & > 3,

so two case can occur now:

Case 1. for each j = 1,...,z holds (tn,y;) ¢ S.

If S is the family of all such sets S, then its cardinality |S;| is equal to

the total number of k - stable sets of the graph P,[H}, ..., Hy] — 0 (tn, i),
j=1

J = 1,..,z isomorphic to P,_1[Hi,..., Hy-1]. In other words we obtain
|S1| = Fi(Pn-1[Hy, ..., Hn-1]).

Case 2. there exists 1 < j < z such that (t,,y;) € S.

Then by the definition of the graph P,(H),..., H,] we have (tn—i,y;) € S,
foreachi=1,...,k—1and j = 1,...,z. This implies that S = S*U{(t,, y;)},
where S* is an arbitrary k - stable set of the graph P.[Hj,...,H,] —

k-1 =
U U (tn-i,y;) isomorphic to P,_g[H1,..., Ho—k]. Consequently we have
=0 j=1

Fy(Pa-i[H1, .., Ha-t]) sets S*. Moreover because vertex (f,,y;) can be
taken among of z vertices, so if we denote by S, the family of all k
- stable sets such that the condition in Case 2 is fulfilled, then |S;| =
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zFi(Pn-k[H1, ..., Ha-k]). Consequently for the number Fip(P,[H\, ..., Hy))
we have the linear recurrence Fi (P, (Hy, ..., Hp]) = Fe(Po-1[H1, ..., Hp-1])+
2Fg(Pa-i[H:, ..., Ha—k]), which completes the proof.

Theorem 9.Let k > 3, n > 2, z > 1 be an integers. Then for an arbitrary
sequence of graphs Hy,...,Hp on |[V(H;)| = |V|==z,i=1,...,n the number
Fi(Cn[H\, ..., Hy)) satisfy the following reccurence relations:

Fie(CnlHy, ..., Hy)) = z(k = 1) Fi(Pa—2k-1)[H1, s Hao(2e-1)))+
Fk(Pn—(k-l)[Hl, sy Hn-(k-l)]). forn Z 2k+1

with the initial conditions

Fir(CalHy,....Ha)=nz+1,n=2,..,2k— 1 and

Fk(Czk[Hl, very sz]) = kz? + 2kz + 1.

Proof: Let k, n, z be as it was mentioned in the statement of the theorem
and let Hj,...,H, be an arbitrary sequence of graphs. Suppose that n =
2,...,2k — 1. Then every vertex of V(Cyp[Hy, ..., Hn]) and the empty set is
a k - stable set of the graph C,[H), ..., H,]. Moreover there no exist a k -
stable set of Cy,[Hy, ..., Hy] having at least two elements. This implies that
Fi(Cn[Hy, ..., Hy]) = nz + 1 in this case.

If n = 2k then every vertex of V(Cax[Hy, ..., H2]), the empty set and also
sets of the form {(%;,y;), (ti+x,y,)}, where 1 < j < z,1 < ¢ < z and
t=1,..,k is a k - stable sets of Cyx[H\, ..., Hat]. Evidently we have that
Fk(sz[Hl, ey sz]) = kz? + 2kz + 1.

Now suppose that n > 2k + 1 and let S be an arbitrary k - stable set of
CalH\, ..., Hy). Because at most one vertex from each copy of H;,i = 1, ...,n
can belong to the k - stable set of C,[Hy, ..., Hy], by Theorem 4 and k > 3,
S0 two case can occur now:

Case 1. foreach i =1,...,k—1and j =1,...,z holds (¢,y;) € S.

If S; is the family of all such sets S, then the cardinality |S; | is equal to the

total number of k - stable sets of the graph C,[H}, ..., H,) — U U (ti, y;)
=1i=1

isomorphic to P, _(k—1)[H1, ..., Hn_(x-1)). In other words usmg Theorem 8
we obtain that |S;| = Fi(P, _(k VA1, o Hao =)

Case 2. there exists 1 <i<k—1and 1 < J < z such that (¢;,y;) € S.
Then by the definition of the graph C,,[Hl, «oy Hy] we have (tp,y,) € S,
where p = 1,...,i—1,i+1,. ,i+k—1andp—n—lc+z+1 .,n and
g=1,..,z. ThlS means that S = S"U{(t,, y,)} where S*i 1s an arbltrary k-

stable set of the graph C,[H}, ..., Hp]— ( U ( U (t,,,y,)U U (tn._,,yj)))

isomorphic to Pn_(2k_1)[H1, ..., Ho— (22— ,)] Because vertex (t,, yj) can be
taken among of z(k — 1) vertlces, so if we denote by S, the family of all
k - stable sets such that the condition in Case 2 is fulfilled, then |S;| =
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z(k~1)Fe(Pn-(2e-)[Hy, ..., H,_(2k-1)])- In a consequence, for the numbers
Fi(Ca[H1, ..., Hp)) we have the recurrence relation

Fi(CalHy, ..., Hp)) = Fe(Pace-0)H1, -, Hoo )]+

z(k — D) Fe(Po—2k-1)[H1, ..y Hy,_(2k-1)]), which completes the proof.
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