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ABSTRACT. Given graphs G and H, an edge coloring of G is
called an (H,q)-coloring if the edges of every copy of H C G
together receive at least g colors. Let r(G, H,q) denote the
minimum number of colors in a (H, g)-coloring of G. In [6]
Erdés and Gyirfés studied r(Kn, Kp,q) if p and q are fixed
and n tends to infinity. They determined for every fixed p
the smallest g for which 7(Kn, Kp,q) is linear in n and the
smallest ¢ for which 7(Kn, Kp,q) is quadratic in n. In [9] we
studied what happens between the linear and quadratic orders
of magnitude. In [2] Axenovich, Fiiredi and Mubayi generalized
some of the results of (6] to r(Knn,Kpp,q). In this paper
we adapt our results from [9] to the bipartite case, namely we
study 7(Kn,n, Kp,p,q) between the linear and quadratic orders
of magnitude. In particular we show that that we can have at
most logp + 1 values of ¢ which give a linear 7(Knn, Kp.5,9).

1 Introduction

1.1 Notation and definitions

For basic graph concepts see the monograph of Bollob4s [3]. V(G) and
E(G) denote the vertex-set and the edge-set of the graph G. K, is the
complete graph on n vertices, and Km m is the complete bipartite graph
between two m-sets. In a forest F the set of leaves is denoted by L(F). In
this paper logn denotes the base 2 logarithm.
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1.2 Generalized Ramsey theory

In the classical multicoloring Ramsey problem we are looking for the min-
imum number n such that every k-coloring of the edges of K, yields a
monochromatic K,. For each n below this threshold, there is a k-coloring
such that every K, is colored with at least 2 colors. A far-reaching gener-
alization of this concept leads to the following definition: given graphs G
and H, and an integer ¢ < |E(H)|, an (H, g)-coloring of G is a coloring
of E(G) in which the edges of every copy of H C G together receive at
least g colors. Let »(G, H, ¢) denote the minimum number of colors in an
(H, g)-coloring of G. Thus for example determining r(K,, Kp, 2) exactly is
hopeless, since it is equivalent to determining the classical Ramsey numbers
for multicolorings. The study of (G, H, q) has received significant atten-
tion lately (see (1], [2], [4], [6], [7], [8], [9])- It was first studied in this form
by Elekes, Erdés and Fiiredi for the special case r(Kyn, Kp, q) (as described
in Section 9 of [5]). Then Erdés and Gyérfis 15 years later returned to the
problem in [6]. Among many other interesting results and problems, in [6]
using the Local Lemma they gave the general upper bound

—2
r(Kn, Kp,q) < c,,,qn(gs""“ . (1)

“urthermore, they determined for every p the smallest g (giin = (’2') -p+3)
for which r(Kn, Kp, q) is linear in n and the smallest q (gquad = (’2’) -15]+2)
for which r(K,, K;, q) is quadratic in n.

They raised the striking question if g, is the only g value which results
in a linear r(Kn, Kp, ). In the direction of this question, in [9] we studied
the behavior of r(Kn, Kp,q) between the linear and quadratic orders of
magnitude, so for qin < g < Gquea- In particular we showed that we can
have at most logp values of g which give a linear r(K,, Kp,q). The first
interesting case is p = 5 for which g, = 8. What is the growth rate of
(K, K5,9)? In [1] it is shown by using a construction of Behrend for a
set of integers with no 3-Lerm arithmetic progressions that
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n—3<r(Kn Ks,9) <20 Visn,

See also [8] for a related article. Another interesting special case is (K, K4, 3).
In [7] (see also [4])) it is shown that

r(Kn, K4,3) < eollo8™),
The general definition (G, H, q) given above is introduced in [2] by Axen-

ovich, IMiredi and Mubayi. Among other results, in 2] by generalizing the
upper bound (1), they showed that if |[V(G)| ==, [V(H)| =, |[E(/)|=e¢
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and 1 < g < e, then there is a constant ¢ = ¢(H, q) such that
(G, H, q) < cnaet1, ()

Furthermore, for the bipartite case 7(Ky ,, Kp.p:9), they determined for
every p the smallest q (¢5,, = p®~2p+3) for which T(Knn, Kpp, q) is linear
in n, and the smallest q (¢%,,4 = P* — p + 2) for which r(Kpn », Kpp, q) is
quadratic in n.

In this paper we adapt our results from [9] to the bipartite case and
study the behavior of the function r(K, », Kp,p, q) between the linear and
quadratic orders of magnitude, so for ¢f,, < ¢ < qguad. Again we show that
we can have at most log p+1 values of ¢ which give a linear 7(Kp n, Ky p, 9)-

In order to state our results, first we need some definitions. We define
the following two strictly decreasing sequences a; and b; of positive integers
with ap = 2p, a; = p. Roughly speaking a;;, = { %] but for every second
odd a; we have to add 1.

The two sequences are defined recursively. Assuming ag,ay,...,a; are
already defined, the sequence by, by,...,...,b;, is just the subsequence con-
sisting of the odd a;-s which are greater than 1. Then we define

_ J[%1 ifa;=b; for an even j
i %] otherwise
Furthermore if a;;, is odd and greater than 1, then by = aip.

So, for example, if p = 2%, the sequence a;, 1 < 7, is just all the powers
of 2 from p to 1, while there are no bj-s. As another example, il p = 11,
thenap =22, a1 =1l,ap=5a3=8,a3=1,b, =11, by = 5 and by = 3.
Let I, be the smallest integer for which a;, = 1.

We will need the following simple lemma.

Lemma 1. For 0 <4 < lp, we have

P
a,~<2i—_1+l. (3)

The simple inductive proof is given in the next section. This lemma
immediately gives the bound

l, < flogp] +1. 1)

Our main result is the following.

Theorem 1. For positive integers p, 1 Sk < b, if ¢ 2> qb, +ax+k — 1,

then .

- 1 !
(Kon Kpp, @) > 6;7”“7"
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Using Lemma 1, we immediately get the following.

Corollary 2. For positive integers p, 1 < k < L, if ¢ > qf,, + 57 + &,
then

1 4'r
r(Knpn, Kpp,q) > @n" P,

Another corollary of the lower bound in Theorem 1 (k = I, and we use
(4)) is that we can have at most log p+1 values with a linear r(Kx n, Kpp, q).

Corollary 8. If ¢ > ¢}, +logp+ 1, then

1 tpalp
(Knn, Kpp, q) > -6p_2.nq Pl

However, it still remains an open problem whether gf,,, is the only g value
with a linear 7(Ky n, Kp p, q).
2 Preliminaries

Proof of Lemma 1: To prove Lernma 1 we use inductiononi = 1,2,..., [,.
It is true for i = 1. Assume that it is true for 7 and then for ¢+ 1 from the
definition of a;4; we get

Ait1 S ) < 2 5; + 11
and thus proving Lemma 1. a
Let I}, be the number of bj-s among ay, ..., a, — 1, and let fy(k) be 1 if
the cardinality of {ay,...,ag-1} N {b,,...,bl:,} is an even number, and 0

otherwise. Examination of the cases of the definitions of ax and by reveals
that f,(k + 1) = 2ak, — ax + f(k) for all p and k.

Lemma 2. Forany | <k <1,
k
Zaj =2p —ar— 1+ fo(k).
i=1

Proof: The lemma is clearly true for k = 1, and we assume it is true for
arbitrary k.

k41
Zaj =2p — ak1 — 1+ (20k41 — ak) + f(k) = 2p —agp1 = 1 + fu(k + 1),/
=1

0
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3 Proof of Theorem 1
Let 1 <k <!, and g > gf,, + ax + k — 1. Denote

k
h=h(nk)= 6;:)2 n®T, (5)

Assume indirectly that there is a (p, g)-coloring of K, , with at most A
colors. From this assumption we will get a contradiction.

Let us denote the two partite n-sets in Kn.n by A and B, so Knnis a
complete bipartite graph between A and B. Consider a fixed (p, g)-coloring
of K, with at most k colors. We will find a sequence of monochromatic
matchings My, Ma, ..., My in K, p.

For any vertices U C V we say that color class C is U-bounded if every
u in U has at most p edges of color C to vertices of VAU. If C; and C; are
two arbitrary color classes (where C; = C; is allowed), then either C; is A-
bounded, or C; is B-bounded, or both. Indeed, otherwise we immediately
get a Kp, with fewer than ¢ colors, a contradiction. Consider the color
class C) with the most edges in it. Then C; contains at least n?/h edges.
By the above, € is either A-bounded, or B-bounded, or both. Let us
assume without loss ol generality that € is A-bounded.

Let us consider first the case when C) is B-bounded as well. Then we
can easily choose a matching from C; of even size at least

n

2,7’&.

Indeed, we pick the first edge ¢; of the matching arbitrarily. From C,
remove e; and the at most 2(p — 1) other edges incident to it (C, is both A-
bounded and B-bounded now). ¢; is an arbitrary edge from the remainder
of Cy. We remove e and the at most 2(p — 1) other edges incident to it.
We continue in this fashion until we have no edges left. If we have an odd
number of edges in the matching, then remove an arbitrary edge to make
the size even. In this case this is the matching M,.

Assume now that Cy is not /3-bounded. Then every color class C (in-
cluding C) is A-bounded by the above remark. First we construct a forest
F of stars in C;. Take a vertex v; € B that is non-isolated in C;. »; with
all of its neighbors in C; is the first star S1 of F. From C; we remove S,
and the at most p|L(S))| edges that are incident to the |L(S1)] leal vertices
of Sy (C is A-bounded). Take a vertex vy € B that is non-isolated in the
remainder of C;. v, with its neighbors in the remainder of Cy is S5, We
continue in this fashion until we only have isolated vertices left.

Say we constructed stars Sy, ...,S,. Then by the construction

2
v n 3
| Uit L(S))] 2 o (6)
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If s > 2 5, then we can choose the matching M, by choosing one edge
from each star (and again possibly removing one edge to make the size
even).

Thus assume now that s < gt-. Consider the following complete bipartite
graph (A’, B’). For A’ we Ldke [m] arbitrary vertices from UZ_, L(S;) (this
is possible by (6)). For B’ we take [2’;72,1] arbitrary vertices from B that are
not roots for any star.

Then we have the following.

Fact 4. Every color class C is both A’-bounded and B'-bounded.

Indeed, C is clearly A’-bounded, since B’ C B, and C is A-bounded.
Furthermore, C is also /3’-bounded, since otherwise if there is a vertex
v € B’ with p neighbors in A’ C U_, L(S;), then there is a Ky, with fewer
than q colors, a contradiction. This K}, contains these p neighbors of v
in UZ_, L(S;), the roots of the corresponding stars (except for one root if
these stars form a matching), the vertex v and possibly some more vertices
from B so that we have exactly p vertices from B.

Thus the above fact is true. Then we can proceed as above when C

was both A-bounded and B-bounded. We can choose a monochromatic
matching of even size al lcast

2\ 2
E7 a4
2ph 7

2ph — (2ph)3’

Thus in each casc we can pick a monochromatic matching M; (denote
its color class by C7) of even size at least

4
n
D —.
M) 2 (2ph)?

Say M, is a matching between Ay C A and By C B. Halve the vertices
of A, arbitrarily and denote one of the halves by A}. Denote by B the sct
of vertices in By which are not matched to vertices in A} by M,. Consider
the complete bipartite graph between A} and Bj. Similarly as above we
can choose a monochromatic matching My in color class Cj with partite
sets Ag, By of even size at least

(1)
2

(2ph)3 -

We continue in this fashion. Assume that M; = (A, B;) is already de-
fined. Denote an arbitrary half of the endvertices of M; in A; by A}, The
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set of endvertices of the edges of M; in B; which are not matched to vertices
in A; is denoted by B{. Consider the complete bipartite graph between Al
and B;. Similarly as above we can choose a monochromatic matching M
in color class C{, | with partite sets A;41, Biy; of even size at least

4
[M:)
()
(2ph)®
Then by induction we have
4:1
n
5 > ——
M| 2 (6ph)+-
Indeed, this is true for i = 1

nl

W12 oy > e

For i + 1 we get

4 i 4
| M| nt i+1
PRI e MO vl
T (2R T (2ph)® (6ph)++' -1

This and (5) implies that IMi] 2 p>a;, 1 <i<kand thus the matchings
My, Ms, ..., My can be chosen. Next using these matchings M; we choose
a Kp,, such that it contains at most ¢ — 1 colors, a contradiction. For this
purpose we will find another sequence of matchings M/ such that M C M,
IM{| =a; for 1 <i<k, |UE, V(M))NA]=pand | Uk V(M) n B =p.

M is just a set of a, arbitrary edges from M. Assume that Mg, ...,M{,,
are already defined and now we define M. We consider the 2a;,, vertices
in V(M. ) and the edges of M; incident to these vertices. We have four
cases.

Case I: If 2a;,; = a; then this is M.

Case 2: If 2a;;.1 =a; + 1,50 a; = b; for an cven j, then we remove one
of the edges from this set incident to a vertex in V(M{, )N A to get M.
Furthermore, we mark this vertex in V(M{,1)N A which is not covered by
M. This marked vertex is going to be covered only by M, if ay = b;_,.

Case 3: If 2a;.| = a; — 1 and there is no marked vertex at the moment,
then to get M we add onc arbitrary edge of M; to these 2a;., edges.

Case 4: Finally, if 2a;,, = a; — 1 and there is a marked vertex then to
get M we add to these 2a;; edges the edge of M; incident to the marked
vertex and we “unmark” this vertex.



We.continue in this fashion until Mf,..., M| are defined. Set A" =
UL, V(M!)N A and B” = U5, V(M{)n B. We have |[A"| = |B"| = p.
Consider the complete bipartite graph K, between A" and B".

By the above construction this K, contains a; edges from the matching
M; (and thus from color class Cj) for 1 <i < k.

Now since Lemma 2 implies

k

Z(aj—l)22p—ak—1—k,
=1

thus the number of colors used in this Kpp is at most
P-2%ta+k+1<g-1,

a contradiction. This completes the proof of Theorem 1. a
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