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Abstract

Let G be a finite group written additively and S a non-empty
subset of G. We say that S is e-ezhaustiveif G = S+ - -+ S (e times).
The minimal integer e > 0, if it exists, such that S is e-exhaustive,
is called the ezhaustion number of the set S and is denoted by e(S).
In this paper we completely determine the exhaustion numbers of
subsets of Abelian groups which are in arithmetic progression. The
exhaustion numbers of various subsets of Abelian groups which are
not in arithmetic progression are also determined.
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1 Introduction

Let G be a finite group written additively. For any non-empty subset
S of G, we say that S is e-ezhaustive if G is ‘covered’ by the sum of
e copies of S, that is,

G=S+---+S5 (e times).

For convenience, we shall use S*¢ to denote S+ --- + S (e times).
The minimal integer e > 0, if it exists, such that S is e-exhaustive, is
called the ezhaustion number of the set S and is denoted by e(S). If
such e > 0 does not exist, we say that the exhaustion number of the
set S is infinite and write e(S) = oo. If e(S) is finite, then we say
that S is ezhaustive in G. Clearly if S is e-exhaustive, then it is also
¢’-exhaustive for any e’ > e. It is also clear that if S is exhaustive in
G then S € H for any proper subgroup H of G.

It is of interest to note that the ‘covers’ discussed in this paper are
somewhat analogous to the more well-known covers of finite sets in
the literature (see [2] for example): A cover of a set T is a collection
of non-empty subsets of T', the union of which is T’; a cover is said to
be minimal if none of its proper subsets covers T. A cover of a finite
group G as discussed in this paper can be considered as a collection
of non-empty subsets of G, the sum of which is G. A cover of G is
then said to be minimal if none of its proper subsets covers G.

In this paper we are interested in ‘covering’ a finite Abelian group
G by as few sum of copies of the same subset of G as possible. To be
more precise, we shall determine the exhaustion numbers of various
subsets of Abelian groups. The layout of this paper is as follows: In
Section 2 we determine the exhaustion numbers of subsets of cyclic
groups which are in arithmetic progression. Using this result, we then
determine in Section 3 the exhaustion numbers of subsets (in arith-
metic progression) of finite Abelian groups which are direct sums
of the cyclic groups Z/m,, ..., Z/m, where the m; are relatively
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prime. We also show that in the case where the m; are not relatively
prime, subsets of Z/m; @ - -®Z/m, which are in arithmetic progres-
sion are not exhaustive. In Section 4 we consider subsets of the cyclic
group Z/p, where p is an odd prime. Using a result from additive
number theory, we obtain upper bounds for the exhaustion numbers
of subsets of Z/p. We also determine the exhaustion numbers of
subsets S of Z/p which are obtained from arithmetic progressions of
size |S| + 1.

Throughout this paper we shall use the notation [z] to mean the
smallest integer > z. We shall also use the notation [z] to mean the
largest integer < z. Clearly, [z] = [z] + 1 if = is not an integer.

2 Exhaustion numbers of subsets of Z/m, m >
2 which are in arithmetic progression

We first prove the following lemma:

Lemma 2.1 Let m and s be positive integers with s > 2. If s — 1
does not divide m — 1, then

m< [T:__II] (s=1)+1<m+(s—2).

Proof: Since s — 1 does not divide m — 1, we may write [’;‘_‘f] =

[':T_ll] + 1. Suppose that ([’;‘_‘11] + 1) (s—1)+1 < m. Then

[m—l] (s—1)<m-—s

s—1

and hence

[m-—l] m—s m-—1
< = -1,

s—1 s—1 s—1

which is not possible. Therefore ([m_"ll] + 1) (s—=1)+1>m.

8
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s—1

Now suppose that (["‘_1] + 1) (s=1)+1>m+(s—1). Then

[’::f](s—l)Zm—l

m—1 >m—1,

s—=1] 7 s-1
which is not possible. We thus have ( T_‘ll] + 1) (s-1)+1<
m+ (s —2).

and hence

Theorem 2.2 Let S C Z/m,m > 2 with s = |S| > 1. If S is in
arithmetic progression with difference d relatively prime to m, then

m—1
e(S) = [ =1 -| .
If S is in arithmetic progression with difference d not relatively prime
to m, then e(S) = oo.

Proof: Let S = {a,a+d, a+2d, ..., a+ (s — 1)d}. By induction,
it can be shown that for any positive integer k, the first term in the
(multi)set S** is ka while the last term is ka + k(s — 1)d. Suppose
first that s — 1 divides m — 1 and let e = 2=, Then

s—1

e(s—1)d+d=(m—-1)d+d=md=0 (mod m)
and it follows that
(ea+e(s—1)d)+d=ea (mod m);

that is, the difference between the first and last terms of S*€ is d.

Since d is relatively prime to m, so we must have that S*¢ = Z/m.
Note that

(e—1)a+id#(e—1a+jd  (modm)
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forany i,j =0,1,..., (e—1)(s — 1) (= m — s). Otherwise, there
would exist 4, j € {0, 1, ..., m—s} such that (i—j)d = 0 (mod m).
Since d is relatively prime to m, so i — j =0 (mod m). But this is
impossible since m — s < m. We also note that

(e—=1)(s—1)d+d = (m—s)d+d
= (m—(s—1))d
# 0 (mod m).

Therefore ((e — 1)a + (e — 1)(s — 1)d) + d # (e — 1)a (mod m). It
thus follows that S+(*~1) 5 Z/m and hence e(S) = e = 2=L.

s—1

Now suppose that s — 1 does not divide m—1. Let f = [';‘_"11] +
1= |-m_—11-|_ Then by Lemma. 2.1,

8

fa+ f(s—1)d+d = fa+[’;‘_‘11](s—1)d+d

fa+ (m+1i)d
= fa+id (modm)

forsomei € {0, 1, ..., s—2}. We thus have that either the difference
between the first and last terms of S*/ is d (this happens if i = 0) or
the last term in the (multi)set S*/ coincides with one of its earlier
terms (this happens if ¢ € {1, ..., s — 2}). In either case, since d is
relatively prime to m it must follow that S*f = Z/m. Note that

(f=-D(s-1)= [m—_l] (s-1)< (T:T_ll) (s—1)=m-1<m.

s—1

Therefore
(f-Da+idZ(f—1a+jd (mod m)

foranyi,j=0,1,..., (f—1)(s—1). Since (f—1)(s—1)d+d < md
and d is relatively prime to m, so (f—1)e+(f—1)(s—1)d+d # (f—1)a
(mod m). It follows that S+(f=1) # Z/m and hence e(S) = f =
(2] +1.

s—1
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Finally, suppose that m and d are not relatively prime. Let n
be the smallest positive integer such that nd = 0 (mod m). Then
(da+ (n—1)d) +d =da (mod m) and we thus have that

St C {da,da+d,da+2d,...,da+(n—1)d}

= {do,d(a+1),d(a+2),...,da+n—1)}

Note that {da, d(a+1), d(a+2), ..., d(a+n—1)} is the subgroup
of Z/m of order n. Thus (9 #£ Z/m for any positive integer r
and hence, S is not exhaustive. ()

Corollary 2.3 Let e be a positive integer. If S is a non-empty subset
of Z/m, m > 2 such that S is in arithmetic progression with differ-
ence d relatively prime to m and e(S) =, then |S| > [2=] + 1.

Proof: Let S C Z/m such that S is in arithmetic progression with
difference d relatively prime to m and with e(S) = e. Suppose that
|S| = s. Note that s > 1; for otherwise, S would not be exhaustive.
If s—1 divides m—1, then by Theorem 2.2, ';‘_'11 = e. It follows easily
that s = "‘T_l +1. Now suppose that s — 1 does not divide m—1. By
Theorem 2.2 again, [’;‘T‘ll] =e—1. We claim that [2=1] +1 < s.

Indeed, if s < [2=1] +1, then

s1< [m—l] < m—l'
e e
It follows that
m—1 > e
s—1
and hence, '
e—1= [m—l] > e;
s—1
which is not possible. Thus, [ﬂ;—l] +1<s. O
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3 Exhaustion numbers of subsets of finite Abelian
groups which are in arithmetic progression

Let G be a finite Abelian group written additively. We may write
G=Z/;" & ©Z/p*

for some primes p; < --- < py and some positive integers ny, ..., ny.
If the p; are all distinct, then

G=Z/p" & - ®L/p* =Z/p}...pp*
and the following result follows readily from Theorem 2.2:

Theorem 3.1 Let S CZ/p!' @ --®Z/pL* where the p; are distinct
primes and the n; are positive integers. Let s = |S| > 1. If S is in
arithmetic progression with difference d = (dy, ..., di) where d; is
relatively prime top; (i=1, ..., k), then
[P Pk -1
e(S) = [ Py .

If d; is not relatively prime to p; for some i, then e(S) = oo.

Suppose now that not all the p; are distinct. Let S = {a, a +
d,...,a+ (s—1)d} C Z/p[* & --- & Z/p}* with difference d =
(di, ..., dy). Foreachi =1,...,k, let |[d;] denote the order of d;.
Then the order L of d is lem (|di], ..., |di|) < p*...pR*. Note that
for any positive integer k, the last term in the (multi)set S*F is
ka + k(s — 1)d. Therefore, for any integer 7 > Is‘:ll,

§*" ={ra,ra+d, ..., ra+ (L—1)d}.
Clearly, |S*| = L < pJ*...pp* for all ¢ > r. We thus have the
following result:

we have

Theorem 3.2 Let S C Z/p{* @ --- & Z/py* where the p; are not
all distinct and the n; are positive integers. If S is in arithmetic
progression, then S is not ezhaustive.
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4 Exhaustion numbers of subsets of Z/p, p an
odd prime

The following example shows that the exhaustion numbers obtained
in Theorem 2.2 do not hold for non-arithmetic progressions, even in
the case when m = p is a prime.

Example 4.1 Consider the prime p = 11. Let S = {1, 2, 3, 5}
which is not in arithmetic progression. Then

§t2 = {2,3,4,5,6,7,8, 10},
s+ = {3,4,5,6,7,8,9,10,0, 1, 2} =Z/11.

Hence e(S) =3 # [139]

In the following proposition, we obtain an upper bound for the
exhaustion numbers of subsets of Z/p (p an odd prime). The main
tool used in the proof is the Cauchy-Davenport Theorem (see [3,
Corollary 1.2.3] or [4, Theorem 2.2]) which states that for any two
non-empty subsets A, B of Z/p, either A+ B=Z/por |A+ B| >
|A} + |B] — 1.

Proposition 4.2 Let S C Z/p with s =|S| > 1. Then

e(S) < [”‘1}.

s—1

Proof: We first consider the case where s — 1 divides p — 1. If
-1
S +(59) # Z/p, then by the Cauchy-Davenport Theorem and induc-

tion we have that
. -1
st =] 2 (257 -1
= D

which is not possible. Hence we must have S+(§—;:) = Z/p and
therefore e(S) < 2=1.

72



Now consider the case where s — 1 does not divide p ~ 1. If
-1
S+([%]+l) # Z/p, then again by the Cauchy-Davenport Theorem
and induction we have that

|S+(4L3i‘]+1)‘ > ([p_1]+1)(s—1)+1

s—1
> (B2} 41) (s—1)+1
s—1
= P
which is not possible. Therefore (S”L([E]H)) = Z/p and we must
have ¢(S) < [E] +1= [i’—f{l O

We note that the upper bounds given in Proposition 4.2 are best
possible, as demonstrated in the following examples:

Example 4.3 Let S ={1, 2, 3,4,5, 7} CZ/11. Then St? =17/11

and hence e(S) =2 = [%.l :

Example 4.4 Let S = {1, 2,3,4,6} C Z/11. Then e(S) = 3 =
=

We say that a non-empty subset S of a group is an almost arith-
metic progression, abbreviated as a.a.p., if S can be obtained from
an arithmetic progression of size |S|+1, say {a, a+d, a+2d, ..., a+
(s — 1)d, a + sd}, by either dropping the element a + d next to
the bottom or the element a + (s — 1)d next to the top. We say
that S is a near arithmetic progression, abbreviated as n.a.p., if S
can be obtained from an arithmetic progression of size |S| + 1, say
{e,a+d,a+2d,...,a+ (s—1)d, a + sd}, by dropping one of the
elements a + (4 +1)d (i € {1, 2, ..., s — 3}) which is not next to the
bottom or next to the top. In the following main result of this sec-
tion we determine the exhaustion numbers of subsets of Z/p which
are a.a.p. or n.a.p. .

73



Theorem 4.5 Let S C Z/p.
(i) If s=15| > 3 and S is an a.a.p., then e(S) = [B] + 1.
(i) If s=|S| >4 and S is an n.a.p., then e(S) = [tl]

8

Proof:

(i) We consider the case where S is obtained from an arithmetic
progression of size |.5|+1 by dropping the element next to the bottom.
The case where S is obtained from an arithmetic progression by
dropping the element next to the top follows by symmetry. Let

S={e,a+2d,a+3d,...,a+sd}
where a, d € Z/p and d Z 0 (mod p). Then
={2a,2a+2d,2a+3d, ..., 2a+2sd}

and by induction, it can be shown that for any positive integer &
such that ks < p,

= {ka, ka+2d, ka+3d, ..., ka + ksd}.

Hence, |S+*| = ks if ks < p. In particular, |ST[}]| = [2] s since
[2] s < (B) s = p. Note that we may write

= [Bes-
where 0 < 7 < s—1. Then

[g]s+s=p—r+32p+1

and it thus follows from the Cauchy-Davenport Theorem that S +([2]+1) =

Z/p. Hence, e(S) = [2] +1.
(ii) Let

S={a,a+d,...,a+id,a+(i+2)d,...,a+(s—-1)d, a+ sd}
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where a, d € Z/p, d #0 (mod p) and i € {1, ..., s — 3}. Then
S*2 = {2, 2a+d,2a+2d, ..., 20+ 2sd}

and by induction, it can be shown that for any positive integer & > 1
such that ks < p,

S** = {ka, ka +d, ka +2d, ..., ka + ksd}.
Hence, |S**| = ks + 1 if ks < p.
Suppose first that s divides p—1. Since (1’;—1 - l) s, (Egl) s < p,

then )
|5+(555-1)| = (’% -~ 1) s+l=p—s

and

15+(53)| = (p;1>s+1=p.

It thus follows that e(S) = 224 = | 221},
Next suppose that s does not divide p — 1. We can write

p—1
s

p-1= 2o s

where 0 < 7 < s — 1. (Note that r # s — 1; for otherwise p would be
divisible by s which is not possible.) Since

p—1 p—1 _
[ p ]s<( p )s—p 1 <p,

S0 |S+[P:_l]| = [1":—1] s+ 1=p—7r(<p). Then since

1St +s=p—r+s>p+2
we must have by the Cauchy-Davenport Theorem that |S +([2';'l]+1)| =
Z/p. Hence, ¢(S) = [P%l] +1= [Iﬂ] 0

S
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