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ABSTRACT

For a graph G of size m > 1 and edge-induced subgraphs F' and
H of size r (1 < r < m), the subgraph H is said to be obtained
from F by an edge jump if there exist four distinct vertices-
%,v,w, and z in G such that uv € E(F), wz € E(G) — E(F),
and H = F — uv + wz. The minimum number of edge jumps
required to transform F into H is the jump distance from F to
H. For a graph G of sizem > 1 and an integer r with 1 < r < m,
the r-jump graph J,.(G) is that graph whose vertices correspond
to the edge-induced subgraphs of size r of G and where two
vertices of J.(G) are adjacent if and only if the jump distance
between the corresponding subgraphs is 1. For k > 2, the kth
iterated jump graph J*(G) is defined as J,(J¥~1(@)), where
J}G) = J.(G). An infinite sequence {G;} of graphs is planar if
every graph G; is planar; while the sequence {G;} is nonplanar
otherwise. It is shown that if {J§(G)} is a nonplanar sequence,
then J§(G) is nonplanar for all k > 3 and there is only one
graph G such that JZ(G) is planar. Moreover, for each integer
r 2 3, if G is a connected graph of size at least r + 2 for which
{J¥(G)} is a nonplanar sequence, then J¥(G) is nonplanar for
allk > 3. .
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1 Introduction

For a graph G of size m > 1 and edge-induced subgraphs F and H of size
r (1 £ r < m), we say that H is obtained from F by an edge jump (see
[4]) if it can be produced from F by deleting an edge e and adding an edge
f to F not adjacent to e (that is, e “jumps” to f). We say that F can
be j-transformed into H if H can be obtained from F by a sequence of
edge jumps. The minimum number of edge jumps required to j-transform
F into H is called the jump distance d;(F, H) from F to H. The r-jump
graph J.(G) of G is that graph whose vertices are the (T) edge-induced
subgraphs of size 7 in G, and where vertices F and H are adjacent in J;(G)
if and only if d;(F, H) = 1. The graph J, (G) = J(G) is also called simply
the jump graph of G. Edge jumps, jump distance, and jump graphs were
introduced and studied in [1, 4].

Since the vertices of the r-jump graph of a graph G are the edge-induced
subgraphs of size r in G, each such subgraph is completely determined
by its edge set. Thus if F is an edge-induced subgraph with E(F) =
{e1,e2,"-,er}, we can represent the vertex F in J.(G) by E(F) or, more
simply, by ejez - - - er. To illustrate these concepts, we show a graph G and
its 7-jump graphs J.(G) (1 < r < 5) in Figure 1.
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Figure 1: The r-jump (1 < r < 5) graphs of a graph

For k > 2 and r > 1, the kth iterated r-jump graph JF(G) is defined as
J(J¥~1(@G)), where J}(G) = Jr(G). An infinite sequence {G4} of graphs
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is said to converge (see [2]) if there exists a graph G and a positive integer
N such that Gy is isomorphic to G for all k > N. The graph G is then
called the limit graph of the sequence {G}. An infinite sequence that does
not converge is said to diverge. A finite sequence {Gy} is said to terminate.
An infinite sequence {G} is called planar if G, is planar for every positive
integer k and nonplanar if G is nonplanar for some positive integer k.

The planarity of iterated jump graphs was studied in [6, 3, 7]. We write
P, and C}, for the path and cycle, respectively, of order n and cor(K3) for
the corona of K3, obtained by adding a pendant edge at each vertex of Kj.
The following result was established in [2, 6, 3, 7].

Theorem A Let r be a positive integer and let G be a connected graph
such that J¥(G) is defined for each positive integer k. Then {J5(G)} is
planar if and only if

(1) r=1 and G = Cs or G = cor(K3),
(2) r=2and G=0Cy,

(3) r=4 and G = Cs,

(4) r =5 and G = cor(K3).

By Theorem A(1), if G # Cs and G # cor(K3) such that {J*¥(G)} is
infinite, then {J*(G)} is nonplanar. The nonplanar sequences {J*(G)} of
connected graphs G were studied in [9], where it was shown that if the
sequence {J*(G)} is nonplanar, then J*(G) is nonplanar for all k > 4. We
state this result as follows.

Theorem B Let G be a connected graph for which {J*(G)} is infinite. If
{J¥(G)} is nonplanar, then J*(G) is nonplanar for all k > 4.

The goal of this paper is to study the nonplanar sequence {J¥(G)} (r >
2) of iterated r-jump graphs of a connected graph G (which is, of course,
an infinite sequence). For r > 2, we show that if G is a connected graph
for which {J*(G)} is nonplanar, then nonplanar graphs in the sequence
{JE(G)} are arrived at quickly as well. Throughout this paper we will use
Kuratowski’s characterization [8] of planar graphs.

Theorem C A graph is planar if and only if it contains no subgraph
isomorphic to Ks or K33 or a subdivision of one of these graphs.
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2 Nonplanar Sequences of Iterated 2-Jump
Graphs

By Theorem A(2), if G is a connected graph G such that J¥(G) is defined
for each positive integer k, then {J}(G)} is planar if and only if G = Cy. In
this section, we show that if {J§(G)} is a nonplanar sequence, then J5(G)
is nonplanar for all k£ > 3. In order to do this, we first present several useful
results, the first two of which were established in [7].

Theorem D Let G be a connected graph that is not a star. Then the
graph J>(G) is planar if and only if G is a subgraph of one of the seven
graphs in Figure 2.

R
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Figure 2: The seven graphs of Theorem C

Lemma E. If G is a nonplanar graph, then J2(G) is nonplanar. More-
over, if H is a subdivision of a graph G and J2(G) is nonplanar, then J, (H)
is nonplanar.

We write 2H to denote the graph consisting of two disjoint copies of a
graph H.

Lemma 2.1 Let G be a graph of order at least 5.
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(a) If G contains two disjoint subgraphs of size 2, then J2(G) is nonpla-
nar.

(b) If G contains a path of length 4 or more, then J3(G) is nonplanar.
(c) If G contains cycle of length n > 5, then Jo(G) is nonplanar.

Proof. First, we verify (a). Since J2(2P;) = Ka 4, it follows that Jo(G)
contains K> 4 as a subgraph. By Theorem D, JZ(G) is nonplanar and so (a)
holds. Next, we establish (b). The 2-jump graphs of P; and C5 are shown
in Figure 3. Thus, if G contains a path of length 4, then J2(G) contains
two disjoint subgraphs of size 2 as shown in Figure 3. Hence J3(G) is
nonplanar by (a) and so (b) holds. Finally, we verify (c). Since the 2-jump
graph of Cs shown in Figure 3 is a subdivision of K, it follows that J,(Cj)

is nonplanar. Then (c) follows from Lemma E. [
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Figure 3: The 2-jump graphs of P; and Cj

We are now prepared to present the main result of this section. The
length of a longest cycle in a connected graph is called the circumference
of G and is denoted by ¢(G). If G is a tree, then we write ¢(G) = 0.

Theorem 2.2  Let G be a connected graph for which {J¥(G)} is infinite.

If {J§(G)} is nonplanar, then J§(G) is nonplanar for all k > 3. Moreover,
J2(G) is planar if and only if G is the graph shown in Figure 4.
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Figure 4: The graph G in Theorem 2.2

Proof. By Theorem A(2), we may assume that G # Cy. We show that if
{J%(G)} is nonplanar, then J§(G) is nonplanar for all k > 3. By Lemma E,
it suffices to show that J3(G) is nonplanar. If J2(G) is nonplanar, then
J¥(G) is nonplanar for all k > 2. Thus we may assume that J2(G) is
planar. Then by Theorem D either G is a star or G is a subgraph of one or
more of the graphs G; (1 < i < 7) of Figure 2. Since for each star G, the
jump graph J2(G) does not exist, we may assume that G is a subgraph of
some graph G; (1 < i < 7) of Figure 2. '

First, we make an observation. If G contains a path of length 4 or
more, then J3(G) is nonplanar by Lemma 2.1. Thus we may assume that
diam G < 3. Moreover, if G contains a cycle of length 5 or more, then J2(G)
is nonplanar by Lemma 2.1. Thus we assume that G contains no cycle of
order 5 or more. Thus ¢(G) = 0, ¢(G) = 3, or ¢(G) = 4. We consider these
three cases.

Case 1. ¢(G) = 0. Then G is a tree with diam(G) < 3. If diam(G) =
2, then G is a star and {J§¥(G)} terminates. Thus diam(G) = 3 and,
consequently, G is a double star. Let  and v be the vertices of G that are
not end-vertices. If degu > 3 and degv > 3, then G contains two disjoint
subgraphs of size 2 and so JZ(G) is nonplanar by Lemma 2.1. So we may
assume that at least one of u and v has degree 2, say degv = 2. If degu > 3,
then G contains the tree T of Figure 4 as a subgraph. Since the 2-jump
graph Jz(T') contains the two disjoint subgraphs of size 2 shown in Figure 5,
it follows by Lemma 2.1 that J$(G) is nonplanar. Hence degu = degv = 2
and so G = P;. However, J?(P;) does not exist. Therefore, if ¢(G) = 0
and {J¥(G)} is nonplanar, then J3(G) is nonplanar. Since Jz(T) = 2P, it
follows that J2(T) = Ka,4, which is planar. Thus in this case T' (shown in
Figure 4) is the only connected graph G such that {J¥(G)} is nonplanar
but J2(G) is planar.

Case 2. ¢(G) = 3. Then G contains a triangle but no 4-cycle. Since
G contains neither a 4-cycle nor a path of length 4, it follows that G has
a unique triangle, say Cs : v1,v2,v3,v1. If G = Cj3, then J2(G) does not
exist. On the other hand, if at least two of v;,v2 and v3 have degree 3 or
more, then G contains a path of length 4 and so J2(G) is nonplanar by
Lemma 2.1. So we may assume that exactly one of v;,v2 and v3 has degree
3 or more. Hence G contains a subgraph isomorphic to one of graphs Fy,
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Figure 5: The tree T and J»(T)

F3, and F3 in Figure 6. Since (1) J(Fy) does not exist, (2) F; contains a
subgraph T of Figure 5 and so J3(G) is nonplanar, and (3) Fy contains a
path of length 4, it follows that J(G) is nonplanar. Therefore, if ¢(G) = 3
and {J§(G)} is nonplanar, J§(G) is nonplanar. In fact, J»(F>) = 3P; and
so J3(F3) is nonplanar. Thus in this case, if {J¥(G)} is nonplanar, then
J2(G) is nonplanar.

F1: F2: F32

Figure 6: The graphs F;, F; and F3 in Case 2
. .

Case 3. ¢(G) = 4. Then G contains a 4-cycle. Since G # Cy, the
graph G contains a subgraph isomorphic to one of the graphs H, and H, of
Figure 7. Since H, contains a path of length 4, it follows from Lemma 2.1
that J3(H;) is nonplanar. Moreover, the graph J(H.,) shown in Figure 7
contains two disjoint subgraphs of size 2. By Lemma 2.1 J3(H>) is nonpla-
nar. Therefore, if ¢(G) = 4 and {J§(G)} is nonplanar, J3(G) is nonplanar.
Moreover, it can be verified that J#(H;) and JZ(H>) are both nonplanar.
Thus, in this case, if {J§(G)} is nonplanar, then J2(G) is nonplanar.

Therefore, if G is a connected graph for which {J%(G)} is nonplanar,
then J¥(G) is nonplanar for all k¥ > 3. Furthermore, the graph G of Figure
4 is the only connected graph such that {J§(G)} is nonplanar and JZ(G)
is planar. =
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Figure 7: The graph H;, Hs and J2(H>) in Case 3

3 Nonplanar Sequences of Iterated r-Jump
Graphs

In this section, we study the nonplanar sequences {J¥(G)} of iterated r-
jump graphs of a connected graph G for a fixed r > 3. First we present
three useful lemmas which were established in [3].

Lemma F  Ifn and r are integers withn > r + 3 > 6, then J.(Py) is
nonplanar.

Lemma G Let r > 3 be an integer. If a graph G contains two veriez
disjoint subgraphs, one of size | “£2| and the other of size [Z$2], then J,.(G)
contains P..3 as a subgraph.

Lemma H Let r > 3 be an integer. If a graph G of size at least r + 2
contains an edge that is not adjacent to two other edges of G, then J.(G)

contains two vertez disjoint subgraphs, one of size L%'lj and the other of
size [Z£2].

The following are immediate consequences of Lemmas F, G, and H.
Corollary 3.1 Letr > 3 be an integer.

(a) If a graph G contains two vertez-disjoint subgraphs, one of size | ©£2|
and the other of size [7$2], then JZ(G) is nonplanar-

(b) If a graph G of size at least r+2 contains an edge that is not adjacent
to two other edges of G, then J3(G) is nonplanar.

Corollary 3.2 Let r > 3 be an integer and let G be a graph of size at
least r +2. If J3(G) is planar, then every edge of G is adjacent to all other
edges of G, with at most one exception.
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Let G be a connected planar graph of size m such that {J*(G)} is
infinite and nonplanar. Necessarily, m > r + 1, for otherwise, {J*(G)}
terminates. We first consider the case when m > r + 2.

Theorem 3.3  Forr > 3, let G be a connected graph of size m > r + 2
for which {JF(G)} is infinite. If {J¥(G)} is nonplanar, then J5(G) is
nonplanar for all k > 3.

Proof. Let G be a connected planar graph of size m > r + 2 such that
{J¥(G)} is infinite and nonplanar. Then G # Cs and G # cor(K3) by
Theorem A. If G contains an edge that is not adjacent to two other edges
of @, then J3(G) is nonplanar by Corollary 3.1. Thus we may assume
that every edge in G is adjacent to all other edges of G, with at most one
exception. If every edge in G is adjacent to all other edges of G, then, since
the size of G exceeds 3, G is a star. So we may assume that there exists an
edge e that is adjacent to all other edges of G except one edge f. However,
then f is adjacent to all other edges of G except e. This implies that each
edge in G distinct from e and f is adjacent to both e and f. Since the
size of G is at least 5, it follows that G = Ky —eor G = Ky. f G is a
star, then {J¥(G)} terminates for all r > 3. If G = K, — ¢, then r = 3;
while if G = K}, then r = 3 or r = 4. Since J3(K4 — ) = Cy U 2K, and
J3(K4) = 3C4, it follows by Corollary 3.1 that none of J3 (K, —e), J3(K,),
and J3(K4) are planar. Thus J3(G) is nonplanar for all r > 3. Therefore,
J¥(G) is nonplanar for all r > 3 and & > 3. u

We now assume that G is a connected planar graph of size m = r + 1,
where r > 3. If there exists ¥ > 1 such that J*(G) contains at most r
edges, then {J¥(G)} terminates. Thus we may assume that J¥(@) contains
at least r + 1 edges for all k¥ > 1. The following result was established in

[7]-

Theorem I Let G be a graph with size m > 2 and let r be an integer
with 1 <7 < m. Then J.(G) = J—»(G).

By Theorems B and I, we have the following,.

Corollary 3.4 Forr > 3, let G be a connected graph of sizem=r+1
for which {J¥(G)} is nonplanar. If J*(G) contains ezactly r + 1 edges for
all k > 1, then J¥(G) is nonplanar for all k > 4.

Proof. If J}(G) contains exactly r + 1 edges for all k > 1, then JX(G) =
J*(G) for all k > 1 by Theorem I and so {J¥(G)} = {J*(G)}. Since
{J*(G)} is nonplanar, it follows from Theorems B that J* (G) is nonplanar
for all £ > 4. Therefore, J¥(G) is nonplanar for all k¥ > 4. »
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If there exists an integer k' > 1 such that J¥ (G) contains r + 2 or more
edges, then J¥(G) is nonplanar for all k¥ > &' + 3 by Theorem 3.3. This
leaves the following open question.

Problem 3.5 Forr > 3, let G be a connected graph of sizem = r+1 for
which {J¥(G)} is infinite and nonplanar. If there exists a positive integer k
such that J¥(G) contains r + 2 or more edges, what is the smallest integer
ko such that J¥(G) is nonplanar for all k > k.
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