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Abstract

ABSTRACT. Let S be a simply connected orthogonal polygon in the
plane. Assume that the vertex set of S may be partitioned into sets
A, B such that for every pair z,y in A (in B), S contains a staircase
path from z to y. Then S is a union of two or three orthogonally
convex sets. If S is starshaped via staircase paths, the number two is
best, while the number three is best otherwise. Moreover, the simple
connectedness requirement cannot be removed. An example shows
that the segment visibility analoque of this result is false.

1 Introduction.

We begin with some definitions from [2] and [3]. Let S be a nonempty set
in R2% Set S is called an orthogonal polygon (rectilinear polygon) if and
only if S is a connected union of finitely many convex polygons (possibly
degenerate) whose edges are parallel to the coordinate axes. Point ¢ of S
is a point of local nonconvezity (Inc point) of S if and only if for every
neighborhood N of ¢, NN S fails to be convex. An edge e of S is a dent
edge if and only if both endpoints of e are Inc points of SN H , for H an
appropriate closed halfplane determined by the line of e. Set S is said to be
horizontally convez if and only if for each pair z, y in S with [z, y] horizontal,
it follows that (z,y]C S. Vertically convez is defined analogously. Set S is
an orthogonally conver polygon if and only if S is an orthogonal polygon
which is both horizontally convex and vertically convex.
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Let ) be a simple polygonal path in R? whose edges [Vi-1, V;],1 < i < n,
are parallel to the coordinate axes. Such a path X is called a staircase path
if and only if the associated vectors alternate in direction. That is, for
odd the vectors V;_;, V;- have the same direction, and for i even, the vectors
Vi1, V; have the same direction. For points z,y in set S, we say z sees y
via staircase paths (z is visible from y via staircase paths) if and only if
there is a staircase path in S containing both z and y. From (7, Lemma 1],
it follows that an orthogonal polygon is orthogonally convex if and only if
every two of its points see each other via staircase paths. Similarly, set S is
starshaped via staircase paths (orthogonally starshaped) if and only if there
is some point p in S such that p sees each point of S via staircase paths.
The set of all such points p is called the staircase kernel of S, denoted Ker
S.

While many results concerning visibility via staircase paths have been
motivated by analogous results involving visibility via straight line segments
((1], [2), [3], [7]), sometimes it is possible to obtain a staircase path result
which has no corresponding segment visibility predecessor. Theorem 1 of
this paper is such a result. For a simply connected orthogonal polygon S,
an assignment of its vertices to orthogonally convex subsets Sa,Sp of S
induces a decomposition of S into two or three orthogonally convex sets.
However, a segment visibility analogue of this theorem fails, at least for
unions of less than six convex sets, as an example reveals.

Thoughout the paper, ¢l S, int S, and bdry S will denote the closure,
interior, and boundary, respectively, for set S. The reader may refer to
Valentine [8], to Lay [6], to Danzer, Griinbaum, Klee (4], and to Eckhoff
[5]) for discussions concerning visibility via straight line segments and cor-
responding convex and starshaped sets.

2 The results.

We begin with the following theorem.

Theorem 1. Let S be a simply connected orthogonal polygon in the plane.
Assume that the vertex set of S may be partitioned into two sets A, B such
that for every pair z,y in A (in B), S contains a staircase path from z
to y. Then S is a union of two or three orthogonally convex sets. If S is
starshaped via staircase paths, the bound two is best possible, while the
bound three is best otherwise.

Proof. Before we begin, observe that by (3, Lemma 1], each set A, B
lies in an orthogonally convex subset of S. If S is orthogonally convex, the
result is trivial, so assume that this is not the case. We start with some
preliminary remarks. For the moment, assume that the boundary of Sis
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a simple closed curve ordered in a clockwise direction, with corresponding
vertices Vo, Vy,..., Vo = Vp,n > 3. For 1 < @ < n, we call edge [V;_,, V]
north, south, east, or west according to the direction assigned to the corre-
sponding vector V;_1, Vi by the clockwise ordering.

By our hypothesis, for every three vertices of S, at least two see each
other via staircase paths. Hence we may use an argument similar to one in
[3, Theorem 2] to conclude that for each of the four directions north, south,
east, west there is at most one corresponding dent edge. Since S is not
orthogonally convex, S has at least one dent edge, so without loss of gener-
ality assume that S has an east dent edge e, with E the corresponding line.
For an appropriate labeling of distinct open halfplanes E,, E; determined
by E, E2N S has two components whose closures meet e, while £,N S has
one such component. Certainly neither E,n S nor E, N S has more than
two components. Moreover, it is easy to see that each component of E; NS
has orthogonally convex closure, for otherwise S would have three vertices
which we could not assign appropriately to two sets A, B.

In case S has west, north, south dent edges w, n, s, we define halfplanes
Wi, N1, S) analogously, and define set K = ¢l E;,N ¢l Winc Ninel s,. If
S as no dent edge in one or more directions, we replace the corresponding
closed halfplanes by R? in the intersection defining K. Using comments
following the proof of Theorem 2 in [2)], it is not hard to show that K N S
is exactly the staircase kernel for set S.

Hence Ker S # 0 if and only if the associated intersection X NS # 0.
In general, there are two ways that this may occur. Either K = @ or K #0
while K NS = 0. For the moment, let us examine the second case for
our set S. It is not hard to see that if the dent edges e, n, s exists, then
halfplane E; contains neither n nor s (since again this would produce three
vertices which we could not assign appropriately to two sets A, B). Similar
statements hold for W, n,s, for N2, e, w, and for S, e, w. However, this
implies that when K # 0, then K contains points of d for every dent edge
d of S, s0o KNS # 0. Therefore, for our set S, if Ker S = @, then K = 0.
This means that if Ker S = @, then for some pair of dent edges e, w or s,n
in S, say e,w, cl E,N ¢l W,= 0. That is, the y coordinate of e is less than
the y coordinate of w.

To prove Theorem 1 when bdry S is a simple closed curve, we consider
two cases, determined by whether or not set S is starshaped via staircase
paths.

Case 1. Suppose that set S is starshaped via staircase paths. Then Ker
S # 0. By our earlier observations, for each component C of S \(Ker S),Cu
\(Ker S) is an orthogonal polygon with no dent edges and hence is orthog-
onally convex by [1, Lemma 1]. If for each C, all the vertices of S in C may
be assigned to the same set A or B, then we let Q denote the collection
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of C sets with vertices in A, B the collection with vertices in B. The sets
U{C U(Ker S) : C in @},U{C U(Ker S) : C in B} provide a decomposition
of S into two orthogonally convex sets.

It remains to show that this must occuf. Assume that the vertices of
S have been assigned to sets A, B to satisfy our hypothesis such that the
largest possible number 7 > 0 of components C of S\(Ker S) have the re-
quired property. That is, for as many components C as possible, all vertices
of S in C are assigned to the same set A or B. Assume that the condition
fails for some component Co. That is, some vertices in Cy are in A, some
in B. Also, we cannot remove the Cy vertices from A and reassign them to
B. Using [2, Lemma 1], this implies that for at least one vertex ao in Co,
a¢ must remain in A and cannot be moved to B. It follows that for some
b, in B, b, cannot see ag via staircase paths. By a parallel argument, for at
least one vertex by in Cp, by cannot be moved from B to A; thus there is
an a; in A such that a; cannot see by via staircase paths.

Since b; cannot see ag, then clearly §; and ap must be beyond a common
dent edge, say n. That is, b, and ag belong to the corresponding open
halfplane N; defined previously, in distinct components of N2NS. Similarly,
a, and bg lie beyond a common dent edge d.

For the moment, suppose that d # n. Since ag, bg both belong to Co,d
is not the south dent edge. Without loss of generality, assume that d is the
east dent edge e. Then @, and by both be beyond E in distinct components
of E;N S. See (Figure 1.)

If Cp had a vertex u in N2 N E3, then u could not see via staircase paths
either a; or by, and u could not belong to A or to B, impossible. Hence no
such vertex u exists. This implies that Co N N2 N E; = 0. However, then
Cy cannot be connected, a contradiction. Our supposition is false, and the
case d # n cannot occur.

It remains to examine the case for d = n. Then all four points ag, b1, bg, a1
must be beyond N, in N,. There are exactly two components of No N S,

and certainly all points of Co N N2 N S belong to the same component of
N2 N S. (See Figure 2.)
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Hence ag, bp belong to the same component of N2 N S. However, then
a1, b; belong to the remaining component, so a; cannot see ao via staircase
paths, and b, cannot see bq via staircase paths. Again we have a contradic-
tion, and the case d = n cannot occur either. Thus our original assump-
tion concerning Cop must be false. It follows that every component C of
S\(Ker S), must have the required property, with all vertices of S in C as-
signed to the same set A or B. This finishes the argument in Case 1 when
the boundary of S is a simple closed curve.

Case 2. Suppose that set S is not starshaped. By our previous comments,
K = @, and for an appropriate pair of dent edges, say e and w, the y
coordinate of ¢ is less than the y coordinate of w. (When this occurs, we
say e is north of w, w south of e.) Also, since we are assuming that the
boundary of S is a simple closed curve, without loss of generality we may
suppose that e is east of w. That is, every z coordinate assigned to e is
larger than every z coordinate assigned to w. As before, assume that the
vertices of S are ordered in a clockwise direction along the boundary of S.
Relative to our ordering, let ap denote the vertex which is the immediate
successor of edge e, and let by denote the vertex which is the immediate
predecessor of edge w. (See Figure 3.)

Figure 3.
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Certainly ag, bo must be assigned to distinct sets A, B, for any particular
pair A, B satisfying our hypothesis. Let L be a line north of e, south of w,
and let z be a point of L N (int S) east of w, west of e. If we identify z
with the origin, then horizontal and vertical lines at z determine the usual
four quadrants. Without loss of generality, assume that z has been chosen
so that the corresponding horizontal and vertical lines contain no vertices
of S.

Vertices of S in quadrant 2 cannot see ag via S and hence must be
assigned to the member of {A, B}, say B, which contains bg. Similarly,
vertices in quadrant 4 must be assigned to A. Consider the intersection
of S with quadrant 1, and let C be the corresponding component whose
closure contains z. The intersection of S with quadrant 1 consists either
of C alone or of C together with exactly one other component. It is clear
that vertices of S in C cannot see ag via staircase paths and hence must
be assigned to B. This means that, in case a second component exists, its
vertices must be assigned to A. A parallel statement holds for quadrant 3.

Now consider the component of L NS, which contains z, say [2/,2"],
where z' is west of z, 2/’ east of z. Using comments above, for the edge
of S containing 2", the associated first quadrant endpoint b; belongs to
B, while the associated fourth quadrant endpoint a; belongs to A. By a
parallel argument, for the edge of S containing 2/, the second quadrant
endpoint b, is in B, while the third quadrant endpoint a; is in A.

By hypothesis, vertices b2, b; are joined in S by a staircase path A(b2, b,),
while vertices a;,a; are joined by a staircase path p(a;,az). Certainly
A(b2,b1), (a1, a2) be in distinct open halfplanes determined by line L, so
they are disjoint. Moreover, in an obvious way these paths separate S into
three orthogonal polygons: One of these three is the orthogonally convex
subset S, of S whose boundary is [b1,a1] U u(a1,a2) U [az, b2) U A(ba, b1).
The remaining two are the closures Sy, S, of the two components of S\S;,
where A(b2, 1) C Sy and p(ay,a2) C Sy.

By our earlier comments, it is clear that (relative to our clockwise order
on bdry S) all vertices of S from a, to a2 are in A. Moreover, by the proof
of (3, Lemma 1], A Up(ay, a2) lies in a maximal orthogonally convex subset
Sa of S. Certainly Sy C S4. Similarly, vertices of S from b3 to b, belong
to B, B U A(bz,b,) lies in a maximal orthogonally convex subset of Sp of
S, and S\ C Sp. We conclude that sets S:,S4, Sp give a decomposition of
S into three orthogonally convex sets, finishing Case 2 and completing the
proof of the theorem when bdry S is a simple closed curve.

Finally, if bdry S is not a simple closed curve, we use a technique from
the proof of [3, Theorem 2]. For each natural number n, define S, = {z :
the horizontal or vertical distance from z to S is at most 1}. For n suffi-
ciently large, each set n will satisfy our hypothesis, bdry S, will be a simple
closed curve, and S, will be starshaped via staircase paths when S has this
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property. By an argument from [3, Theorem 2], decompositions for the S,
sets may be used to obtain a corresponding decomposition of S, into two
orthogonally convex sets when S is starshaped and into three orthogonallty
convex sets otherwise. This completes the proof of the theorem.

Figure 3 above shows that the bound three in Theorem 1 is best possible
when Ker S # 0. Of course, when Ker S # @, Case 1 together with closing
comments above show that the bound may be reduced to two.

Moreover, it is interesting to observe that, without the simple connect-
edness condition, the result in Theorem 1 is false and in fact no bound is
possible. Consider the following example.

Example 1. For n > 3, let R;,...,Rn be a collection of n disjoint
rectangular regions, each with two vertices on the line y = 1, two on the
line y = —1. Let R be a rectangular region whose interior contains U{R; :
1<i<n},and let S=cl [R\(U{Ri:1< i< n})].

(See Figure 4.) If we assign vertices with positive y coordinates to set
A, vertices with negative y coordinates to set B, then sets A, B satisfy the
hypothesis in Theorem 1. However, we may select a set {s1,...,5n41} of
n + 1 points of S along the z axis such that no two of the s; points see
each other via staircase paths. Hence S is a union of no fewer than n + 1
orthogonally convex sets, and in general, no bound independent of n can
be established.

¢« |Ry| & |Re| o Rad & |PBal .°
S1 S2 S3 Sn S+t
Figure 4.

Because [3] presents a decomposition theorem for orthogonal polygons
which satisfy a 3 - convexity property, perhaps it is a good idea to point
out that the set S in Theorem 1 above need not be. 3 - convex via staircase
paths. That is, there may be three points of S, no two of which see each
other via staircase paths. Figure 3 above provides an illustrative example,
for three appropriate points may be chosen by selecting one from each
component if L N S. Furthermore, it is possible for a si.mply connected
orthogonal polygon T to be 3 - convex via staircase paths without the vertex
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set of T satisfying the condition in Theorem 1. Figure 3 in [3, Example 1]
provides an example of such a set. Thus the hypothesis of Theorem 1 neither
implies nor is implied by the requirement of 3 - convexity.

In conclusion, it is interesting to observe that the segment visibility
analogue of Theorem 1 is false, at least for unions of less than six convex
sets, as Example 2 reveals.

Example 2. Let S denote the simply connected polygonal region in
Figure 5. Every vertex of S lies either in the horizontal rectangle at p; or in
the vertical rectangle at p3. However, points p;, 1 < i < 6 have the property
" that no two see each other via segments in S, and S is a union of 6 and no
fewer convex sets. Thus the bound of three in Theorem 1 fails for segment
visibility in polygonal regions.
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