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For a vertex z and a set U of vertices in a graph G, U is said to dominate
ifz € U or Ng(z)NU # @, where Ng(z) denotes the neighborhood of z in
G. A dominating set of G is a set of vertices which dominates every vertex
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Abstract

A cycle C in a graph G is said to be a dominating cycle if every
vertex of G has a neighbor on C. Strengthening a result of Bondy
and Fan (3] for tough graphs, we prove that a k-connected graph G
(k > 2) of order p with ¢(G) > k/(k + 1) has a dominating cycle if
Y cesdegg = > p—2k —2 for each S C V(G) of order k+1 in which
every pair of vertices in S have distance at least four in G.
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in G. A cycle C is said to be a dominating cycle if V(C) is a dominating
set in G. Thus, a hamiltonian cycle is a dominating cycle.

There are a number of sufficient conditions for a graph to have a hamil-
tonian cycle. Since a dominating cycle is a generalization of a hamiltonian
cycle, there may be sufficient conditions for a graph to have a dominating
cycle, which correspond to known sufficient conditions for hamiltonicity.
One such example was obtained by Bondy and Fan (3]. Bondy (2] proved
the following theorem concerning degree sums and hamiltonicity. A set S
of vertices in a graph G is said to be stable if no pair of vertices in S are
joined by an edge. A stable set is also called an independent set.

Theorem A ([2]) Let k be a positive integer, and let G be a k-connected
graph. If ¥ _.gdeggz > 3(p — 1)(k + 1) for every stable set S in G of
order k + 1, then G has a hamiltonian cycle.

In [3], Bondy and Fan proved that a much weaker degree sum condition
guarantees the existence of a dominating cycle. A set S of vertices in a
graph G is said to be d-stable if the distance between each pair of distinct
vertices in S is at least d.

Theorem B ([3]) Let k > 2 and let G be a k-connected graph of order p.
If Y, csdegg z > p — 2k for every 3-stable set S of G of order k +1, then
G has a dominating cycle.

In Theorem A and Theorem B, the degree sum conditions are sharp
and cannot be relaxed. For example, for Theorem A, G = Ki + (k + 1) Ki
satisfies 3, g degg z = 3(IV(G)| — 1)(k + 1) for the unique stable set S
of order k + 1 (which is the largest stable set), but G is not hamiltonian.
For Theorem B, Bondy and Fan gave the following example. Let H =
K + (k+1)K;, where I > k. Then for each K;, we introduce a new vertex
and join each new vertex and every vertex in the corresponding K; by an
edge. Let G be the resulting graph. Then |V(G)| = k+ (k+1)(1 +1)
and G is k-connected. Let S = V(G) — V(H). Since each vertex in S has
neighbors only in the corresponding K, S is a 3-stable set (actually, S is a
4-stable set). Since each vertex in S has degreel, )} _cgdeggz = (k+1)l =
IV(G)| — 2k — 1. However, G has no dominating cycle.

Let w(G) denote the number of the components of a graph G. A con-
nected graph G is defined to be t-tough if |S| > ¢-w(G — S) for every subset
S of V(G) with w(G — S) > 1. The toughness of G, denoted by ¢(G), is
the maximum value of ¢ for which G is t-tough (taking t(X,) = oo for all
n > 1). Note that both sharpness examples in the previous paragraph have
toughness k/(k + 1). Actually, for several sufficient conditions for hamil-
tonicity, it is observed that weaker conditions guarantee the existence of a
hamiltonian cycle for graphs with large toughness. For example, the case



k = 1 of Theorem A, known as Ore’s theorem, admits a weaker degree sum
condition for 1-tough graphs.

Theorem C ([9]) Every graph G of order p > 3 which satisfies degg = +
deggy > p for every pair of distinct nonadjacent vertices = and y has a
hamiltonian cycle.

Theorem D ([7]) Every 1-tough graph of order p > 11 which satisfies
degg z +deggy > p — 4 for every pair of distinct nonadjacent vertices
and y has a hamiltonian cycle.

A cycle C of a graph G is said to be a D-cycle if every edge in G is
incident with V(C). (Note that in some papers, a D-cycle is referred to as
a dominating cycle.) Like a hamiltonian cycle, some sufficient conditions
for the existence of a D-cycle can be relaxed if we put a further assumption
on toughness. One such example is the following.

Theorem E ([2]) LetG be a2-connected graph of orderp. Ify. . s degg z >
p + 2 for every stable subset S of V(G) of order 3, then G has a D-cycle.

Theorem F ([1]) Let G be a 1-tough graph of order p. If g degg z >
p for every stable subset S of V(G) of order 3, then G has a D-cycle.

The purpose of this paper is to show that Theorem B also admits a
similar relaxation under an additional assumption on toughness.

Theorem 1 Let k > 2, and let G be a k-connected graph of order p with
tG) > k/(k+1). If } . gdeggz > p— 2k — 2 for every 4-stable subset S
of V(G) of order k + 1, then G has a dominating cycle.

The example of sharpness for Theorem B shows that the toughness
k/(k+1) in Theorem 1 is sharp. On the other hand, we know the sharpness
of degree condition only for £k = 2. Let m > 3 and take three complete
graphs H;, Hy and Hj of the same order m. Take three distinct vertices

- Z;, ¥i and u; in each H; (1 <i < 3). Let K3 be a complete graph of order
three with V(K3) = {v;,v2,vs3}. Let vo be a new vertex. Then construct
G by

V(G) = V(Hl) U V(Hz) U V(Hg) U V(Ks) U {’Uo}, and
E(G) = E(H1) U E(Hz) U E(H3) U E(K3) U {voy1, voy2, Voys, V1 T1, V2Z2, V3 T3}
Then G is a 2-connected graph with {(G) = 1 > % and 23 degqpu; >

i=1
|G| -7 for the 4-stable set S of order three, but G has no dominating cycle.
This example shows that even under a stronger condition #(G) > 1, we



cannot relax the condition on the degree sum. For k& > 3, we do not know
whether the degree bound p — 2k — 2 is best-possible.

For standard graph-theoretic terminology not explained in this paper,
we refer the reader to [5). For vertices z and y in a graph G, we denote the
distance between z and y in G by dg(z,y). Let X and Y be disjoint subsets
of V(G). Then we denote by eg(X,Y) the number of edges which have one
endvertex in X and the other in Y. The neighborhood of X, denoted by
Ng(X), is defined by Ng(X) = U,cx Na(z). The subgraph induced by
X is denoted by G[X]. Let P = zoz; ...z and Q = yoy1 - .- 41 be paths in
G. If z, = yo, the walk zoZy ... ZTxy1Y2 - .- ¥ is denoted by 2o Pz Qui. We
define & (G) by

61 (G) = max{|S||S is a k-stable set}.

2 Proof of Theorem 1

To prove Theorem 1, we use two known results. Chvétal-Erdds [6] showed
that for k > 2, a k-connected graph G with independence number at most
k and order at least three is hamiltonian. Broersma [4] proved a Chvétal-
Erdés type theorem for the existence of a dominating cycle.

Theorem G (Broersma [4]) Let G be a k-connected graph (k > 2). If
@4(G) < k, then G has a dominating cycle.

We also use a degree sum condition for a balanced bipartite graph to
be hamiltonian.

Theorem H (Moon and Moser [8]) Let G be a balanced bipartite graph
of order 2n with partite sets X andY (|X| = |Y| =n). Ifdeggz+deggy >
n+1foreachz € X andy € Y with zy ¢ E(G), then G has a hamiltonian
cycle.

Proof of Theorem 1. Assume that G has no dominating cycle. By
Theorem G, we have 64(G) > k. Let S = {zo,%1,...,%x} be a 4-stable
set in V(@), and let B; = {z;} U Ng(z;) (0 < i < k). For each i, j
with 0 < i < j < k, we have B; N B; = 0 and eg(B;, B;) = 0 since
dg(zi,z;) > 4. Let R = V(G) — Uio Bi. Then G — R is disconnected,
and the components of G — R are By,...,B. Since t(G) > k/(k+1),
|R| > k+ 1. On the other hand, since Ng(S) N (R U {zo,---,z}) = 0,
p—-2k-2< Zf:o degg z; = |Ne(S)| = p — |R| — (k + 1), which implies .
|R| < k + 1. Therefore, we have |R| =k +1. Let R = {vo,¥1,-- ¥k}
Now contract each B; into a single vertex b; (0 < ¢ < k) and remove all
the edges in G[R]. Let H be the resulting graph. Then H is a balanced



bipartite graph with partite sets {bp, ..., bt} and R. Since G is k-connected,
|N¢(B;) N R| > k. This implies degy b; > k. If degy y: < 1 for some i,
0 < i <k, then Ng(y;) C RU B; for some j with 0 < j < k. Without loss
of generality, we may assume j = 0. Let R’ = R — {y;}. Then G — R' has
k +1 components By U {y:}, Bu,...,Bs. Since |R'| = k, this contradicts
the assumption that ¢(G) > k/(k + 1). Thus, we have degy y; > 2 for each
¥i (0<i<k).

Now since we have degy b;+degy y; > k+2 for each i, j with 1 < 4,5 <
k, H has a hamiltonian cycle C’ by Theorem H. Without loss of generality,
we may assume C’ = yobov1b1 - . . yrbrvo- For each i, 0 < 7 < k, and each

¥:b; and b;y;4;, there exist vertices z(l) , @ ¢ B; with y;2 ,(1), z( Dys 1 €

E(G) (indices modulo k). If z(l) # z,(z), let P, = y,-z,(l):c,z(z)y,ﬂ If
(1) = 2(2) let P; = y,z,( )y.+1. Then C = yoPoyr P; . . . yx Py is a cycle in
G.

We claim that C is a dominating cycle of G. Assume, to the contrary,
that there exists a vertex v in G which is not dominated by C. Since
R C V(C) and Ng(z;) NV(C) # @ for each 4, 0 < i < k, every vertex in
RU{zo, ...z} is dominated by C. Therefore, v € Ng(z;,) for some ig, 0 <
ig < k. Since v is not dominated by C, z;, ¢ V(C) and hence z(l) (2).
Since RU {z(l)} c V(C), Ne(v)N(RU {z(l)}) @. This implies Nc(v) C

By, — {2} and, if i # i, dg(v,z:) > 4. Let §' = (S — {z;,}) U {v}. Then
§' is a 4-stable set of G of order k+1 and since Ng(S')N(RUS’ U{z(l)}

we have )°_ o, deggz < p—|R|- (k+1)—1=p—2k-3. This contradlcts
the assumption, and hence G has a dominating cycle C of G. a
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