A Note on Dominating Cycles in Tough Graphs

Akira Saito*
Department of Applied Mathematics, Nihon University
Sakurajosui 3-25-40
Setagaya-Ku, Tokyo 156-8550
JAPAN

e-mail: asaito@am.chs.nihon-u.ac.jp

Tomoki Yamashita
Department of Mathematics, Kobe University
Rokkodai 1-1, Nada-ku, Kobe 657-8501
JAPAN

e-mail: yamasita@math.sci.kobe-u.ac.jp

Abstract

A cycle C in a graph G is said to be a dominating cycle if every vertex of G has a neighbor on C. Strengthening a result of Bondy and Fan [3] for tough graphs, we prove that a k-connected graph G $(k \geq 2)$ of order p with t(G) > k/(k+1) has a dominating cycle if $\sum_{x \in S} \deg_G x \geq p-2k-2$ for each $S \subset V(G)$ of order k+1 in which every pair of vertices in S have distance at least four in G.

Keywords: dominating cycle, toughness

1 Introduction

For a vertex x and a set U of vertices in a graph G, U is said to dominate x if $x \in U$ or $N_G(x) \cap U \neq \emptyset$, where $N_G(x)$ denotes the neighborhood of x in G. A dominating set of G is a set of vertices which dominates every vertex

^{*}partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 13640138, 2001

in G. A cycle C is said to be a dominating cycle if V(C) is a dominating set in G. Thus, a hamiltonian cycle is a dominating cycle.

There are a number of sufficient conditions for a graph to have a hamiltonian cycle. Since a dominating cycle is a generalization of a hamiltonian cycle, there may be sufficient conditions for a graph to have a dominating cycle, which correspond to known sufficient conditions for hamiltonicity. One such example was obtained by Bondy and Fan [3]. Bondy [2] proved the following theorem concerning degree sums and hamiltonicity. A set S of vertices in a graph G is said to be stable if no pair of vertices in S are joined by an edge. A stable set is also called an independent set.

Theorem A ([2]) Let k be a positive integer, and let G be a k-connected graph. If $\sum_{x \in S} \deg_G x > \frac{1}{2}(p-1)(k+1)$ for every stable set S in G of order k+1, then G has a hamiltonian cycle.

In [3], Bondy and Fan proved that a much weaker degree sum condition guarantees the existence of a dominating cycle. A set S of vertices in a graph G is said to be d-stable if the distance between each pair of distinct vertices in S is at least d.

Theorem B ([3]) Let $k \geq 2$ and let G be a k-connected graph of order p. If $\sum_{x \in S} \deg_G x \geq p - 2k$ for every 3-stable set S of G of order k + 1, then G has a dominating cycle.

In Theorem A and Theorem B, the degree sum conditions are sharp and cannot be relaxed. For example, for Theorem A, $G = K_k + (k+1)K_1$ satisfies $\sum_{x \in S} \deg_G x = \frac{1}{2}(|V(G)| - 1)(k+1)$ for the unique stable set S of order k+1 (which is the largest stable set), but G is not hamiltonian. For Theorem B, Bondy and Fan gave the following example. Let $H = K_k + (k+1)K_l$, where $l \geq k$. Then for each K_l , we introduce a new vertex and join each new vertex and every vertex in the corresponding K_l by an edge. Let G be the resulting graph. Then |V(G)| = k + (k+1)(l+1) and G is k-connected. Let S = V(G) - V(H). Since each vertex in S has neighbors only in the corresponding K_l , S is a 3-stable set (actually, S is a 4-stable set). Since each vertex in S has degree l, $\sum_{x \in S} \deg_G x = (k+1)l = |V(G)| - 2k - 1$. However, G has no dominating cycle.

Let $\omega(G)$ denote the number of the components of a graph G. A connected graph G is defined to be t-tough if $|S| \geq t \cdot \omega(G-S)$ for every subset S of V(G) with $\omega(G-S) > 1$. The toughness of G, denoted by t(G), is the maximum value of t for which G is t-tough (taking $t(K_n) = \infty$ for all $n \geq 1$). Note that both sharpness examples in the previous paragraph have toughness k/(k+1). Actually, for several sufficient conditions for hamiltonicity, it is observed that weaker conditions guarantee the existence of a hamiltonian cycle for graphs with large toughness. For example, the case

k=1 of Theorem A, known as Ore's theorem, admits a weaker degree sum condition for 1-tough graphs.

Theorem C ([9]) Every graph G of order $p \geq 3$ which satisfies $\deg_G x + \deg_G y \geq p$ for every pair of distinct nonadjacent vertices x and y has a hamiltonian cycle.

Theorem D ([7]) Every 1-tough graph of order $p \ge 11$ which satisfies $\deg_G x + \deg_G y \ge p - 4$ for every pair of distinct nonadjacent vertices x and y has a hamiltonian cycle.

A cycle C of a graph G is said to be a D-cycle if every edge in G is incident with V(C). (Note that in some papers, a D-cycle is referred to as a dominating cycle.) Like a hamiltonian cycle, some sufficient conditions for the existence of a D-cycle can be relaxed if we put a further assumption on toughness. One such example is the following.

Theorem E ([2]) Let G be a 2-connected graph of order p. If $\sum_{x \in S} \deg_G x \ge p + 2$ for every stable subset S of V(G) of order 3, then G has a D-cycle.

Theorem F ([1]) Let G be a 1-tough graph of order p. If $\sum_{x \in S} \deg_G x \ge p$ for every stable subset S of V(G) of order 3, then G has a D-cycle.

The purpose of this paper is to show that Theorem B also admits a similar relaxation under an additional assumption on toughness.

Theorem 1 Let $k \ge 2$, and let G be a k-connected graph of order p with t(G) > k/(k+1). If $\sum_{x \in S} \deg_G x \ge p-2k-2$ for every 4-stable subset S of V(G) of order k+1, then G has a dominating cycle.

The example of sharpness for Theorem B shows that the toughness k/(k+1) in Theorem 1 is sharp. On the other hand, we know the sharpness of degree condition only for k=2. Let $m\geq 3$ and take three complete graphs H_1 , H_2 and H_3 of the same order m. Take three distinct vertices x_i , y_i and u_i in each H_i $(1 \leq i \leq 3)$. Let K_3 be a complete graph of order three with $V(K_3) = \{v_1, v_2, v_3\}$. Let v_0 be a new vertex. Then construct G by

$$\begin{split} V(G) &= V(H_1) \cup V(H_2) \cup V(H_3) \cup V(K_3) \cup \{v_0\}, \quad \text{and} \\ E(G) &= E(H_1) \cup E(H_2) \cup E(H_3) \cup E(K_3) \cup \{v_0y_1, v_0y_2, v_0y_3, v_1x_1, v_2x_2, v_3x_3\} \end{split}$$

Then G is a 2-connected graph with $t(G) = 1 > \frac{2}{3}$ and $\sum_{i=1}^{3} \deg_{G} u_{i} \ge |G| - 7$ for the 4-stable set S of order three, but G has no dominating cycle. This example shows that even under a stronger condition $t(G) \ge 1$, we

cannot relax the condition on the degree sum. For $k \geq 3$, we do not know whether the degree bound p - 2k - 2 is best-possible.

For standard graph-theoretic terminology not explained in this paper, we refer the reader to [5]. For vertices x and y in a graph G, we denote the distance between x and y in G by $d_G(x,y)$. Let X and Y be disjoint subsets of V(G). Then we denote by $e_G(X,Y)$ the number of edges which have one endvertex in X and the other in Y. The neighborhood of X, denoted by $N_G(X)$, is defined by $N_G(X) = \bigcup_{x \in X} N_G(x)$. The subgraph induced by X is denoted by G[X]. Let $P = x_0x_1 \dots x_k$ and $Q = y_0y_1 \dots y_l$ be paths in G. If $x_k = y_0$, the walk $x_0x_1 \dots x_ky_1y_2 \dots y_l$ is denoted by $x_0Px_kQy_l$. We define $\hat{\alpha}_k(G)$ by

 $\hat{\alpha}_k(G) = \max\{|S||S \text{ is a } k\text{-stable set}\}.$

2 Proof of Theorem 1

To prove Theorem 1, we use two known results. Chvátal-Erdős [6] showed that for $k \geq 2$, a k-connected graph G with independence number at most k and order at least three is hamiltonian. Broersma [4] proved a Chvátal-Erdős type theorem for the existence of a dominating cycle.

Theorem G (Broersma [4]) Let G be a k-connected graph $(k \ge 2)$. If $\hat{\alpha}_4(G) \le k$, then G has a dominating cycle.

We also use a degree sum condition for a balanced bipartite graph to be hamiltonian.

Theorem H (Moon and Moser [8]) Let G be a balanced bipartite graph of order 2n with partite sets X and Y (|X| = |Y| = n). If $\deg_G x + \deg_G y \ge n+1$ for each $x \in X$ and $y \in Y$ with $xy \notin E(G)$, then G has a hamiltonian cycle.

Proof of Theorem 1. Assume that G has no dominating cycle. By Theorem G, we have $\hat{\alpha}_4(G) > k$. Let $S = \{x_0, x_1, \ldots, x_k\}$ be a 4-stable set in V(G), and let $B_i = \{x_i\} \cup N_G(x_i) \ (0 \le i \le k)$. For each i, j with $0 \le i < j \le k$, we have $B_i \cap B_j = \emptyset$ and $e_G(B_i, B_j) = 0$ since $d_G(x_i, x_j) \ge 4$. Let $R = V(G) - \bigcup_{i=0}^k B_i$. Then G - R is disconnected, and the components of G - R are B_0, \ldots, B_k . Since t(G) > k/(k+1), $|R| \ge k+1$. On the other hand, since $N_G(S) \cap (R \cup \{x_0, \ldots, x_k\}) = \emptyset$, $p-2k-2 \le \sum_{i=0}^k \deg_G x_i = |N_G(S)| = p-|R|-(k+1)$, which implies $|R| \le k+1$. Therefore, we have |R| = k+1. Let $R = \{y_0, y_1, \ldots, y_k\}$.

Now contract each B_i into a single vertex b_i $(0 \le i \le k)$ and remove all the edges in G[R]. Let H be the resulting graph. Then H is a balanced

bipartite graph with partite sets $\{b_0,\ldots,b_k\}$ and R. Since G is k-connected, $|N_G(B_i)\cap R|\geq k$. This implies $\deg_H b_i\geq k$. If $\deg_H y_i\leq 1$ for some i, $0\leq i\leq k$, then $N_G(y_i)\subset R\cup B_j$ for some j with $0\leq j\leq k$. Without loss of generality, we may assume j=0. Let $R'=R-\{y_i\}$. Then G-R' has k+1 components $B_0\cup\{y_i\},\,B_1,\ldots,B_k$. Since |R'|=k, this contradicts the assumption that t(G)>k/(k+1). Thus, we have $\deg_H y_i\geq 2$ for each y_i $(0\leq i\leq k)$.

Now since we have $\deg_H b_i + \deg_H y_j \geq k+2$ for each i,j with $1 \leq i,j \leq k$, H has a hamiltonian cycle C' by Theorem H. Without loss of generality, we may assume $C' = y_0b_0y_1b_1\dots y_kb_ky_0$. For each $i,0 \leq i \leq k$, and each y_ib_i and b_iy_{i+1} , there exist vertices $z_i^{(1)}, z_i^{(2)} \in B_i$ with $y_iz_i^{(1)}, z_i^{(2)}y_{i+1} \in E(G)$ (indices modulo k). If $z_i^{(1)} \neq z_i^{(2)}$, let $P_i = y_iz_i^{(1)}x_iz_i^{(2)}y_{i+1}$. If $z_i^{(1)} = z_i^{(2)}$, let $P_i = y_iz_i^{(1)}y_{i+1}$. Then $C = y_0P_0y_1P_1\dots y_kP_ky_0$ is a cycle in G.

We claim that C is a dominating cycle of G. Assume, to the contrary, that there exists a vertex v in G which is not dominated by C. Since $R \subset V(C)$ and $N_G(x_i) \cap V(C) \neq \emptyset$ for each $i, 0 \leq i \leq k$, every vertex in $R \cup \{x_0, \dots x_k\}$ is dominated by C. Therefore, $v \in N_G(x_{i_0})$ for some $i_0, 0 \leq i_0 \leq k$. Since v is not dominated by C, $x_{i_0} \notin V(C)$ and hence $z_{i_0}^{(1)} = z_{i_0}^{(2)}$. Since $R \cup \{z_{i_0}^{(1)}\} \subset V(C)$, $N_G(v) \cap (R \cup \{z_{i_0}^{(1)}\}) = \emptyset$. This implies $N_G(v) \subset B_{i_0} - \{z_{i_0}^{(1)}\}$ and, if $i \neq i_0$, $d_G(v, x_i) \geq 4$. Let $S' = (S - \{x_{i_0}\}) \cup \{v\}$. Then S' is a 4-stable set of G of order k+1 and since $N_G(S') \cap (R \cup S' \cup \{z_{i_0}^{(1)}\}) = \emptyset$, we have $\sum_{x \in S'} \deg_G x \leq p - |R| - (k+1) - 1 = p - 2k - 3$. This contradicts the assumption, and hence G has a dominating cycle C of G.

References

- D. Bauer, H.J. Veldman, A. Morgana & E.F. Schmeichel, Long cycles in graphs with large degree sum, Discrete Mathematics 79 (1989/90) 59-70.
- [2] J.A. Bondy, Longest paths and cycles in graphs with high degree, Research Report CORR 80-16, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).
- [3] J.A. Bondy and G. Fan, A sufficient condition for dominating cycles, Discrete Mathematics 67 (1987) 205-208.
- [4] H.J. Broersma, Existence of Δ_{λ} -cycles and Δ_{λ} -paths, J. Graph Theory 12 (1988) 499–507.

- [5] G. Chartrand and L. Lesniak, Graphs & Digraphs (3rd ed.), Wadsworth & Brooks/Cole, Monterey, CA, (1996).
- [6] V. Chvátal and P. Erdős, A note on hamiltonian circuits, Discrete Mathematics 2 (1972) 111–113.
- [7] H.A. Jung, On maximal circuits in finite graphs, Ann. Discrete Mathematics 3 (1978) 129–144.
- [8] J.W. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
- [9] O. Ore, A note on hamiltonian circuits, Am. Math. Monthly 67 (1960)55.