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Abstract

We show that (a) the special product of two cycles is Hamiltonian
decomposable, and (b) if G, and G2 are two Hamiltonian decompos-
able graphs and at least one of their complements is Hamiltonian
decomposable, then the special product of G; and G2 is Hamiltonian
decomposable.

1 Introduction.

Unless otherwise specified, all graphs considered here are finite and sim-
ple. We start by introducing the definitions of the following six basic
product graphs. Let G and G2 be two graphs. (1) The Cartesian prod-
uct G = G| x G has vertex-set V(G) = V(G;) x V(G2) and edge-set
E(G) = {(u1,u2)(v1,v2)|u1 = v; and ugvy € E(G3) or ug = vy and ujv; €
E(G1)}. (2) The dircct product G = Gy A Gz has vertex-set V(G) =
V(G1) x V(G2) and edge-set E(G) = {(u1,u2)(v1,v2)|u1v; € E(G,) and
ugvy € E(Gz)}. (3) The semi-strong product G = G; e G has vertex-set
V(G) = V(G1) xV(G2) and edge-set E(G) = {(u1,uz)(vy,v2)|u; = v; and
uvy € E(G2) or wyvy € E(G,) and ugvs € E(G2)}. (4) The Strong prod-
uct G = G ® Gz has vertex-set V(G) = V(G,) x V(G2) and edge-set
E(G) = {(w1,u2)(v1, v2)|uy = vy and ugvy € E(Ga) or up = v and uyvq €
E(G1) orujv; € E(G)) and upv; € E(G2)}. (5) The lexicographic prod-
uct G = G1[Gq] has vertex-set V(G) = V(G,) x V(G2) and edge-set
E(G) = {(u1,u2)(v1, %) |u1 = vy and uzve € E(G3) or uyv; € E(Gh)}. (6)
The special product G = Gy () G2 has vertex-set V(G) = V(G1) x V(G2)
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and edge-set E(G) = {(u1,ug)(v1, v2)|uivy € E(G)) or ugvp € E(G2)}.

Fromn the above definitions, it is clear to see that the operations (1), (2),
(4) and (6) are commutative and we also have the following relations:

Gy xGaCGyixwGe C G1[G2l C G W Gy,
GiING,CG Gy C 01[02] C G Ga,
and

|E(G1 1 Ga)| = [V(G1)P|E(G2)| + [V (G2)PIE(G1)| - 2| E(Gh)I|E(Ga)]-

The question whether the lexicographic product of Hamiltonian de-
composable graphs is Hamiltonian decomposable or not was studied by
Baranyai and Szasz in [1), they proved the following.

Theorem 1.1 (Baranyai and Szasz) The lexicographic product of two Hamil-
tonian decomposable graphs is Hamiltonian decomposable.

Kotzing in [6] could prove that the Cartesian product of two cycles is
Hamiltonian decomposable into two Hamiltonian cycles. The next result

due to Stong is a major progress to answer the question for Cartesian
product.

Theorem 1.2 (Stong) Let Gy and Ga be two graphs that are decomposable
into 8 and t Hamiltonian cycles, respectively, with s <t. Then G = Gy xG3y
is Hamiltonian decomposable if one of the following holds: (1) s < 3t, (2)
t > 3, (3) The order of Gy is even, or (4) The order of Gy is at least
6[¢1~3.

The question about the direct product, semi-strong product and strong

product were answered partially by Bosak and Zhou. In fact, they proved
the following theorems:

Theorem 1.3 (Bosak and Zhou) C A C* is Hamiltonian decomposable if
and only if at least one of them is of odd order.

Theorem 1.4 (Bosak and Zhou) The direct product of two Hamiltonian
decomposable graphs is Hamiltonian decomposable if at least one of them is
of odd order.

Theorem 1.5 (Zhou) C e C* is Hamiltonian decompusable where C* is a
cycle.

Theorem 1.6 (Zhou) The semi-strong product and the strong product of
two Hamiltonian decomposable graphs are Hamiltonian decomposable if at
least one of the two graphs is of odd order.
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In 1998, Cong Fan and Jiugiang Liu could give a complete answer for
the strong product. In fact, they proved the following theorem.

Theorem 1.7 (C. Fan, and J. Liu) The strong product of Hamiltonian
decomposable graphs is Hamiltonian decomposable.

The following facts are very important (see [2]).

Fact 1.1 If uyup € E(Cy) and viv2 € E(Cz) where C, and Cz are two
vertez-disjoint cycles, then (Cy U Ca — {ujuz, miv2}) U {u1vy,uz,v2} is o
cycle.

Fact 1.2 Given a Hamiltonian cycle C, let ujuy and vyvy be two non-
adjacent edges of C. If the order of the four end vertices uppearing on C is
uy, 1y, vy, 02 along a given direction, then (C — {ujug, viv2}) U {w1v), ugvz}
is still a Hamiltonian cycle.

Throughout this paper, we shall use the notation F,; which is used
by Baranyai and Szasz [1] and a new notation Dj, as follows: Let V; =
{u,ug,..., ulv(c;,)'} and Vy = {vy,vq,... YUV (G2)| }. Set

Ft,,' = {(ut,v_.,-)(utH,vH,-)lj = 0, 1, ey |V(G2)| - 1} where t = 0, 1,. vey
V(G1) -1

and

Dj = {(ui,v)(2irj, ve41)li = 0,1,...,|V(G1)| — 1} where t =0,1,...,
V(G2)l - 1.

In this paper, we prove that the special product of two cycles is Hamil-
tonian decomposable. We also show that if G; and G, are two Hamiltonian
decomposable and at least one of their complements is Hamiltonian decom-
posable, then G, (h G5 is Hamiltonian decomposable.

2 Main Results.

Throughout the paper, we set V; = V(Cy), Vo = V(C?), m = |V(C})] and
n = |V(Cy)|. Let C, = uguy ... um—1up and Cy = vyvy ... v,_jtg be two
cycles. Note that the following sets are subsets of Cy () Cy

n—1

R= U R; where Rj = {(ui, vj)(2it1,v5)[i =0,1,...,m ~ 1},
j=0
m—1
CL = U CL; where CL; = {(wi, v;)(ui,vj41)|i =0,1,...,n—1},
i=0
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R0s = { Uiay cven ) UV oaa Fim), - if s odd,
(Ut:O even Fi 1) U(Ut-—l t odd Ff' —1)? if mis even,

and

n—1 n—2 . .
CO; = (UI-()zl even J t U(Ut—l t odd D—J ‘-) if n is odd,
J(); = — — e
! (Ut=0,t even DJ-'») U(Ut-1 L odd D—J-L)‘ if 15 even.

It is easy to see that { RO;}!", is a pairwise -edge disjoint set. Similarly,
{CO;}%, is a pairwise-edge chspmt Also, ROg = R and COp = C. Now,
to simplify the work we introduce the following definition.

Definition 2.1 Let My, Ms,..., M) be an ordering of subgraphs of the
graph G. We say that {M;}r, is o semi-pairwise disjoint set if V(M;) N
V(Mj)=¢ for1<|i—j| <k—1and |[V(M;)NV(M;)| =1 if[i — j| =1
ork—-1.

Lemma 2.1 (see [1]) Let in be even. For each 0 <i<n—1, let G; be a
graph whose vertez-set is V = Vi x V3 and whose edge-set is

E(G:) = {(RO; = Fouo1,3) | J(Fin-1,-i41)}-
Then G; s a Hamiltonian cycle.

Lemma 2.2 For each 2 < j < m -3, let H; be a graph whose vertez-set
V =V, x V4 and whose edge-set

E(H;) = {(CO; = D_jn-1) | J(D=j-tm-1)}-
Then H; is a Hamiltonian cycle if n is even.

Proof. Take the following paths

Pk = (ks Vne1)(Uks Un—2)(Ujak Un=3) - - - (tkey V0) (Uit k1, Un—1)-
Note that {P;jx}iy is a pairwise-edge disjoint set of subgraphs of Hj;.
Moreover, they are semi-pairwise disjoint. In fact, V(Pji) N V(P; ,k+1)
(4j4k+1,n=1) and V(Pjmn-1) N V(Pjo) = (¥j+1,vn—1). Thus, H; is a
cycle. Also,

|E(H;)] = |E(CO;)|—|E(D—jn-1)l+|E(D-j-1,n-1)|

n—1

= Z |E(Dj,q)|

n-1

= E m
t=0
= mn

|V (Cy 1 Co))-

1l
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Thus, we get our results.

Lemma 2.3 Let G7 be a graph whose vertez-set is V = V; xVy and edge-set
2]

E(G‘l.) = {(C()171—2—D—1u+2,n-—1 ) U({ (uia U())(ui—}-l:vo)li =1,3,... ,m—l})

J sty v 1) (1, w0)li = 0,2, ,m — 2})}.
If m is even, then G} is a Hamiltonian cycle.

Proof. Note that

m-—1

(COm—2 - D—m+2,n—1) = U I)l*
1=0

where
B = (ut, vo)(ur4m—2, v1) (w1, ¥2) (Wim-2,93) . . . (Uign—2, Vn-1)
if n is even, and
B = (w1, v0) (g m—2,v1)(tt, v2) (Wgm—2,v3) . . . (W, Un—1)

if n is odd. Clearly, { P} ;';‘01 is a family of pairwise-vertex disjoint paths.
Now, construct the following semi-pairwise disjoint paths as follows:

-Pl = 131' U(ul+1n—21 'Un--l)(ul-l-m—ls 'Un—l) ifl= 0) 2y syl — 2and nis
even
Py = Pr | J(wt, vne1) (41, V1) i L = 0,2,...,m — 2 and n is odd,

and
Py = Py | J(ut, vo) (w41, v0) if L =1,3,...,m — 1.

Note that, if n is even, then

_ (ul+m—l)vn—l) Ifl =0122"~17n_21
VIR)NV(Pi) = { (w141, v0) fl=1,3...m-1,

and if » is odd, then

_ (u1+1,'vn_1) Ifl=0,2,...‘m—2,
VIE)NV(Piy) = { (141, vo) Ifl=13,...,m~-1.
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Thus,

m—1
Py
1=0
is a cycle. Now,

m m
|E(G})] = |E(COwvc)-2l = |D=mizn-1l + 5t3

= mn.
Thus G7 is a Hamiltonian cycle.

Lemma 2.4 Let G} be a graph whose vertez-set is V = V3 XV, and edge-set
is

E(G3) = { E(G)) — { (0, v0)(tm—1,v0), (0, V1) (¥m-1,v1) }
(Ut (0, v0) (0, 91), (m—1,%0) (ttm—1, 01) } }.

If m is cven, then G3 is a Hamiltonian cycle.

Proof. Just apply Fact 2, and note that

|E(G3)l = |RO:|-2+2

mn.

Lemma 2.5 Let G be a graph whose vertez-set is V = V) x Vo and edge-
sel is

E(G3) = {E(CL) — {{(ui, vo)(ti, vp—p)|i = 1,2,...,m—2}, (ug, vo) (1, v0),
(=1, v0) (-1, v) HJ{{ (5, v0) (i, wo)li = 0,2,....,m — 2} | J
{(wiy vne) (Wi, vuo1)li = 1,3, ... ,m = 3} J{(v0, v1)(um—1,91)} }}-

If m is even, then G3 is a Hamiltonian cycle.
Proof. Consider the following paths: For{=1,2,...,m - 2;
P = (w,vo)(ue, v1)(ur,v2) . .. (w1, ¥n-1),

PO* = (u()’v())(uﬂy vn—l)(u‘h U!l—2) e (u'O’ Ul):
and
171:1—] = (um—l ) UO)(um—l» vn—2) oe (um—l,vO)-

Note that {P ;'_1_'0’ is a family of pairwise-vertex disjoint subgraphs of G3.
Now construct the following semi-pairwise disjoint paths as follows:

P=P U(ul,vo)(ul.,.l',vo) ifl=0,2,...,m—2,
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P = Py | J(w, Vi) (@41, tny) i L= 1,3,...,m = 3,

and
Pm—l = R;-—-l U(UOavl)(um—lyvl)-
In fact,
_ | (urg1,v0), ifl=2,4,...,m -2,
VIR)NV (P = { (w41, 0nm1), HI=1,3,...,m—3,
and

V(Pn-1) N V(Po) = (ug,v1).
Thus Uj%5* P, is a cycle and since

m—

1
|E(R)|
1=0

2 CHng )]

n—

1

(VP +1).
1=0

= mn,

G3 is a Hamiltonian cycle.

Lemma 2.6 Let G} be a graph whose veriez-set is V = Vy xVy and edge-set
is

E(Gy) = {(E(Go) = { (s, v5)(1ig1,05)li =0,1,2,...,m = 2;§ = 0,n — 1})
U(D—2,n—l) U{(u,—, vo)(u,-, ’U"_l)li = 1,2, ceo, T — 2} }
If m is even, then G is a Hamiltonian cycle.
Proof. Define the following paths
Py = ROg — {(ui,v)(uig1,v;)li =0,1,...,m —1},

and
Py=D_g, U{(ui.vo)(u,-,v,,_l)li =1,2,...,m -2}

(o, v0) (win—1,vn-1)}.
Since V(P)NV(P2) = {(ttm-1,v0), (4o, Un—1)} which are the end points of
both of P, and Py, P, U P, is a cycle. Now
|E(Py)| + |E(P2)] [E(ROo)| — 2(m — 1) + |E(D—gn-1)| + m — 2.
mn—-2m+2+m+m-— 2.

= mn.

i

Therefore, G} is a Hamiltonian cycle.
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Lemima 2.7 Let G* be a graph whose vertez-set is V = V) x V, and edges-
set s

E(G‘) = { E(G() U Gl ) U C U(Com-2 - D-m.+2,n—l) U D—2,n—] } .
If m and n are even, then G* is decomposable into four Hamiltonian cycles.

Proof. Just note that G* = GiUG3 UG3 UG},
Since the proof of the following Lemma is not hard to see, we shall not
prove it.

Lemma 2.8 G, (hG2 = (G X G2)U(G, AG2)U(G1 AG2)U(G1AG?) and
Glle] Gl XG;)U(Cl/\Gz)U(Gll\Gg), 50 G1(hGy = 01[GQ]U(G1/\G2)

Lemma 2.9 If |V(C)| is odd, then C is a Hamiltonian decomposable.

Theorem 2.1 For each two cycles C; and Ca, C) (» Cy is Hamiltonian
decomposable into m +n — 2 Hamiltonian cycles.

Proof. We need to consider three cases:

Case 1: If i is odd, then €, is Hamiltonian decomposable, and by Theorem
1.4 and 1.1 C) A C; and C;[C;] are Hamiltonian Decomposable. Thus, by
Lemma 2.8 we get our result.

Case 2: If n is odd and m is even, then by noting that C, (b Cy isomorphic
to Cy (h C; we have our result.

Case 3: If both m and 1 are even, then consider the following set of Hamil-

tonian cycles
TeRtard §IF: ksl led

Clearly, they are edge-pairwise-disjoint and they are subgraphs of Cj () C.
Now,

n-—1 m-3

IE( Gl +1E(|J Hl+|E@G)| =
=2 i=2

n—1 m-3

STIEG) + Y |E(H:) +Z|E(G")I =

i=2 1=2

n—-1 m-3

Z mn + Z mn +4dmn =

i=2 1=2

(n—=2)mn+ (n—4mn+4mn =
m?n + n?m — 2mn =

|E(Cy b C)|.

Thus, C; ¢ C; is Hamiltonian decoinposable into m + n — 2 Hamiltonian
cycles.
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Theorem 2.2 Let G; and Gy be two Hamiltonian decomposable graphs.
Then Gy (b Gg is Hamiltonian decomposable into

dg, (W)|V(G2)| + dg, (v)IV(G1)] — dg, (u)dg, (v)

( : )

if one of G, and G, is Hamiltonian decomposable where (u, v) is any verter
in G; (b Ga.

Proof. Just apply Lemmna 2.8, Theorems 1.1 and 1.4 and the fact that if
G and G are Hamiltonian decomposable, then G is of odd order.

Corollary 2.1 If C is of odd order cycle and G is Hamiltonian decompos-
able, then C ) G is Hamiltonian decomposable into

IV(G)| - da(v) + w

Corollary 2.2 For some integer n, C1 (b Co ... (h C, is Hamiltonian
decomposable, if all C; are of odd length, except possibly one cycle is even
or two consecutive cycles are even.

Proof. Just apply Theorem 2.1 and Corollary 2.1.

Lemma 2.10 If G = U[_,G; where G;, is a Hamiltonian cycle for some
ig, then H®OG = (HOC;o JU(HAMNUi21 and isi, Gi) VIV X (Ul ana iy Gi))
where N is a null graph whose vertez set is V(H).

Proof. Note that,

HoG)JEAC | enlUwx | 6=
i=1 and iy i=1 and i#iy

(H x Giy) | J#H A Gi) | J(H AGiy) | J(H A G)

r

Unvx( U enJEAKve|JEAG) =

i=1 and izi,

(H x G)| J(H A Ky, )| J(HAG) =
HnG.

Theorem 2.3 If C is of even order cycle and G is of odd order which can
be decomposed into v Hamiltonian cycles, then C (b0 G can be decomposed
into r|V(C)| + |V(G)| — 3r + 1 Hamiltonian cycles, and r — 1 2-factors.
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Proof. By Corollary 2.1 we may assume that C is even. Since Cth G =
(CthC1)U(C ACa)U(N x Cz) and (C (h C1) — G is Hamiltonian decom-
posable, it suffices to show that (C A C2) U (N x C2) U Gj is Hamiltonian
decomposable. Note that C A C, isomorphic to C A C), thus C A C; iso-
morphic to Uliig(') I=2C0; . Therefore

o, IV(G)-3 ’ ’ ¢

cnc=( U H)UCOv@-2 = Diviey-2ivien-1)

i=2

’

U(D—2.|V(G)l—l)

where HJ'- isomorphic to Hj;, C'O;‘,(G)l_2 isomorphic to COy(@)|-2, and
D; , isomorphic to D; . Let

C2 = Vi, Vi, - - viw((:)]'

Then

4
(N x C)|J(COlv ¢ y-2 — Dvion-2vian-D LU@-awian-1) = U €

i=1
where

CF = (0, Vipy ey N 12y 7’i|\'l¢:)|—§)(“0’ Vipcanon) - - - (12, Vig ) (u2, ”"W(r-')l—l)
(“Mviwst:u«-z) s ('u.4, "iu)(u*h“ﬁvum—l ) s (uIV(C)I—2r ”t'u)("'IV(C)I—m

Vijargeny-1 ('u,o, viw((:n_z)(u!V(C)l—‘.’n viwu:u-a) x (uOs ‘vo)('u.o, Vijv (-1 ))

CE = ("lvvi|\m:,|_| )(’U.:;, 1’i|‘)((;,|_,)(u1,'in((;,l_;,) cee (U3, viu)(u?n vi|V((:,|_|)
(us, ""W((:n-z) cve (uSvUiu)(u5»vi|V(u)|—| ). (U|V(C)|—l) 'Ui.,)(uW(C)l—l;
Vijregenn- )(ul!vinf((.-n-z)(uIV(C)I—lv viw((:”-:q) s (ulv Uiu)(ul!viw(un-u ’

C:; = (’“’0' Yijv (11 )(u(h 'inu:u_z)(uo’ vi]v«:n—a) vee (uo’vi«»)(u'lv viw((:n-l)

(u21 vl'|v((:)|_-;) cee (u2) vio)(u‘h viw((:n_l) ree (u|V(C)|—2' vi(l)(u0| Vijvy-1 )
and

Ci= (ul""in'mn-n Yu, viw(r:n-n)(ul!1’i|v(<:)|-:s) cen ("1»viu)(u&”iw(t:n—n)

(u3,7’i|\'(¢:,|_2) v (u3»vi‘u)(“5a ”iw(l:n-l) ce (u'|V(C)|—1"”in)(u17 Vi ieng-1 )

Note that one of C} and Cj contains at least one of (w, v;, (w42, v;,) and
(w429}, )(w,vj,), say the first, and so the other contains (u41, v, ) (w43,

vj,). Gj contains (uy,v;, ) (w41, v5,)s (ur, v5,)(ut, v5,)s (w2, i (w43, vj,)
and (ui42,vj, )(wi+3,vj,) for some ! and they take the following forms:

cee (ul?vjl )(u’+1’vj|) o (ul+2ivj-x)(ul+37 v.h) ceen
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Thus by fact (1) and (2) and Lemma 2.11, we have that

(CiJCs = {(u,v30) (a2, v,), (uan, 03 ), w3 )V H U (a, v3,)

(w141,95,), (g2, v5,) (w43, v5,)}
and

Ci* = {Cf = {(a, 05, Y, v5,), (g2, v, (s, v Y H s v,)

(w42,v5,), (g1, 05, ) (w43, v5,) }

are two Hamiltonian cycles. Similarly, one of C3 and C’4 contains (ux,vj,)
(uk,vj,) and the other contains (w41, v, )(Urt1,v5,), C3* contains (uk, v;,)

(u/vH’ UJJ)’ ("kst'Jx)(uk+l’th) (uk:1’11)(uk+l’vﬂ) and (uk’vh)(uk+1vv.u)
which are not adjacent in C;* and take the form:

(e 1) (1 03) - (e 03 (B, 23,) -

Thus by using Facts (1) and (2) and Lemma 2.11 we get
{C3 U Ci - { (e, vj, N, vja)’ (i1, v.‘iz)(uk+1 1Vja) H U{ (uk, 'Uj,)

(uk+ 1, Y5, ) ’ ("’kl Vja ) (uk+1 y Vjy ) }
and

{CT‘ - { ('U.k, Vj, )(uk+1 ) )7 (uk! uj:s)(uk-!'la vj:a) } } U{ (ukv Vjy )(uk’ vj:l)l

(uk+l 1 Uy )(uk+l 1 Ujy ) }

are Hamiltonian cycles, and so C ¢) G is Hamiltonian decomposable.

Theorem 2.4 Let N
¢=c"JiJecy
i=1

where C* and C; are even Hamiltonian cycles for G. If there arely, ly, ..., l4;
such that 1 < I} < lp... < U £ ‘V(G)I —2o0rl1 21 > ... >
lgr > |V(G)| — 2 and C; contains v, v, _,,, and vy, v, for each i =
1,3,...,2r +1, Then C () G has a Hamiltonian decomposition.

Proof. Note that C(h)G = (ChC*)U(U; _,[(C/\C,)U(N x C;)}), so apply
Lemnma 2.12 for (C A C;)U (N x C;) for each i =1,2,.
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