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Abstract

For a vertex v of a graph G = (V, E), the lower inde-
pendence number i,(G) of G relative to v is the minimum
cardinality of a maximal independent set in G that contains
v. The average lower independence number of G is i4,(G) =
T\L/T > vev iv(G). In this paper, we show that if G is a tree of
order n, then i,,(G) > 2y/n + O(1), while if G is an outer-
planar graph of order n, then 4,(G) > 24/n/3 + O(1). Both
bounds are asymptotically sharp.
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1 Introduction

In this paper, we consider the concept of average independence in
graphs, a concept closely related to the problem of finding large in-
dependent sets in graphs. The independent domination number (G)
of a graph G can be viewed as a worst case bound on the performance
of the ‘naive’ greedy-algorithm for approximating a maximum inde-
pendent set of G: choose a vertex v, let S = {v}, and add vertices
to S, one at a time, which are not adjacent to any vertex already in
S. The algorithm stops when S is a maximal independent set. The
class of those graphs for which this ‘naive’ greedy-algorithm always
yields a maximum independent set is exactly the class of well-covered
graphs. A graph is well-covered if every maximal independent set is
also a maximum independent set. The study of well-covered graphs
was proposed by Plummer [7].

The lower bound i(G) on the cardinality of an independent set
obtained by the ‘naive’ greedy-algorithm can be improved if one takes
into account that the first vertex is chosen randomly. For a vertex
v let i,(G) be the cardinality of a smallest maximal independent set
containing v. Then i,(G) is a worst case bound on the cardinality
of an independent set obtained by the ’naive’ greedy-algorithm if we
use v as a start vertex. We define the lower average independence
number iq,(G) by

ia0(G) = % T iy(G),
veV

where V = V(QG) is the vertex set of the graph G and n = |V/|. Then
iav(G) is a lower bound on the expected value of the cardinality of the
independent set obtained by the ‘naive’ greedy-algorithm if the first
vertex is chosen randomly. The lower average independence number
was first investigated in [6] where trees with equal lower average inde-
pendence number and average domination number are characterized
(the average domination number is defined in an analogous way as
the lower average independence number).

Our aim in this paper is to determine lower bounds on the average
lower independence number of a tree and an outerplanar graph in
terms of their order. We show that if G is a tree of order n, then
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iaw(G) = 2y/n + O(1), while if G is an outerplanar graph of order n,
then i4,(G) > 24/n/3 + O(1). Both lower bounds can be achieved.

1.1 Notation

For notation and graph theory terminology we in general follow [4].
Specifically, let G = (V, E) be a graph with vertex set V' of or-
der n and edge set E of size ¢, and let v be a vertex in V. The
open neighborhood of v is N(v) = {u € V |uv € E} and the closed
neighborhood of v is N[v] = {v} U N(v). For aset S C V, its
open neighborhood N(S) = UyesN(v) and its closed neighborhood
N[S] = N(S)U S. The subgraph of G induced by the vertices in S
is denoted by (S). A leaf is a vertex of degree one and its neighbor
is called a support vertez. We define a branch verter as a vertex of
degree at least 3. The set of branch vertices of a tree T is denoted
by B(T).

A set S is a dominating set of G if N[S] = V, or equivalently,
every vertex in V — S is adjacent to a vertex of S. The domination
number 4(G) is the minimum cardinality of a dominating set of G.
The independence number B(G) of G is the maximum cardinality of
an independent set in G, while the lower independence number (also
called the independent domination number) i(G) of G is the minimum
cardinality of a maximal independent set of G. A dominating set of
cardinality v(G) is called a y(G)-set, while a maximal independent
set of cardinality i(G) is called an i(G)-set.

For every graph G, i(G) < i,(G) < B(G), and s0 i(G) < 2au(G) <
B(G). Furthermore, i,,(G) = B(G) if and only if the graph G is well-
covered. Fricke, Haynes, Hedetniemi, Hedetniemi, and Laskar (3]
defined a graph G to be i-ezcellent if i,(G) = i(G) for every vertex v
of G. Hence, a graph G is i-ezcellent if i(G) = 1,,(G). A constructive
characterization of i-excellent trees is given in [5].
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2 Trees

Our aim in this section is to provide a lower bound on the average
lower independence number of a tree in terms of its order. For this
purpose we shall need the following lemma.

Lemma 1 IfT is a tree of order n satisfying i(T) < 2v/n — 1, then
T has at least n — 64/ — 1 leaves.

Proof. Let I be an #(T")-set, and let n; denote the number of leaves
in T. Then,

n1 = 2+ Y,epr)(degv —2)

> 2+ F,er(degv —2)
= 2-3|I|+ X er(degv + 1)
> 2-3||+n

> n—6yn—-1+2
Hence, T has at least n — 6y/n — 1 leaves. O

Theorem 2 If T is a tree of sufficiently large order n, then

Proof. Let T = (V,E). If i(T) > 2v/n — 1, then the result follows
immediately since i,,(G) > i(G) for every graph G. Hence, we may
assume that i(T) < 2y/n —1. Let L denote the set of all leaves
in T and let |L| = n;. By Lemma 1, ny > n — 6v/n — 1. Now let
S = {v1,va, ..., v} be the set of support vertices. Fori =1,2,...,k,
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let L; denote the set of leaves adjacent to v; and let |L;| = ¢;. Then,
ny = Y5 4.

Let u € L where 1 < j < k. Then any maximal independent set
containing u must contain L; and at least one vertex from each of
the sets L;U{v;} for i € {1,2,...,k} —{j}. Hence, i,(T) > ¢; +k—1.
It follows that

k
Yow(T) = Y (e +k-1)

veL i=1
k k
= (X &)+(k-1)> ¢
j=1 j=1
n 2
> k(?) + (k- 1)y

2
= %+(k—l)n1.

For each vertex v € V — L, i,(T) > k. Since T is a tree, (V — L) is a
tree. For j =1,2,...,k, let w; be a neighbor of v; in (V — L). Any
maximal independent set containing w; must contain L; and at least
one vertex from each of the sets L; U {v;} for i € {1,2,...,k} — {5}.
Hence, 4y, (T’) 2 £;+k—1. It follows that the union of the tw; (T)-sets
over all j = 1,2,...,k contains the entire set L. Consequently,

> W) 2k|V—L|—k+|Ll= k(n-n; — 1) +n.
veV-L

Hence,

Z w(T) 2 (%% + (k- l)nl) +((n=-n1-Dk+mn) = %%Hc(n—l).
veV

For constant n the expression f(k) = k(n — 1) + n}/k is minimized
when k£ =n;/v/n — 1. Thus, by Lemma 1,
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> w(T) = 2mvn—1

veV
> 2(n—6\/n—1) vn -1
= 2nvn-1-12(n-1).
Consequently,
1 12
tau(T) = — > () > 2Vn — —12+— >2v/n—1-12,
veV

as desired. D

It remains an open question to determine a sharp lower bound on
the average lower independence number of a tree. We believe the
lower bound can be improved by about 9.

Conjecture 1 If T is a tree of order n > 1, then

ia0(T) > 2/n -3+ —2—.

/n

If Conjecture 1 is true, then the bound is sharp. To see this, let
k > 2 be an integer. Let T = (V, E) be the tree obtained from the
disjoint union of k stars K x. by adding k — 1 edges between the
leaves of different stars. Then, T is a tree of order n = k2. If v is the
center of one of the k original stars, then i,(T") = k, while if v is a leaf
of one of the k original stars, then i,(T") = 2(k — 1). Consequently,

> i(T) = k(k) + 2(k — 1)(k® — k) = 2k® — 3k% + 2k.
veV

Hence,

iau(T) = % (Z i,,(T)) =2k -3+

veV

Eoud B ]
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3 Outerplanar Graphs

An outerplanar graph is a graph that can be embedded in the plane
such that all vertices are on the outer face boundary. Our aim in this
section is to provide a lower bound on the average lower independence
number of an outerplanar graph in terms of its order.

If e is an edge of a graph G, the graph derived from G by deleting
e and identifying each pair of ends of e is said to be obtained by
contracting e. A minor of G is any graph that can be obtained
from G by a sequence of vertex deletions, edge deletions and edge
contractions. Any subgraph of a graph is a minor of the graph. We
shall need the following characterization of outerplanar graphs in
terms of minors.

Theorem 3 (Thomassen [8]) A graph G is outerplanar if and only
if it contains no minor isomorphic to K, or Kj3.

Before proceeding further, we introduce some additional notation.
Assume that G is an outerplanar graph of order n. Then G is a
spanning subgraph of a maximal outerplanar graph H. Let C =
ap,ay,...,0n-1,a9 be the unique hamilton cycle of H. For vertices
ai, aj we define [a;, a;] to be the subset {a;, aiy1,aito,. . ., aj-1,a;} C
V(G) (indices modulo n). Such a set is called a segment of G. The
vertices a; and a; are called marginal vertices of the segment.

Lemma 4 Let G = (V,E) be an outerplanar graph and let S =
{v1,v2,..., v} be a (not necessarily minimal )dominating set of G.
Let Wy, Wy, ..., Wy be disjoint sets in V — S such that Zf___l W; =
V ~ 8 and W; C N(v;) fori=1,2,...,k (possibly W; = 0). Let t;
denote the minimum number of segments of G into which W; can be
partitioned. Then

k
D oti<3k-2

i=1
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Proof. The proof is by induction on k. If k =1, then S = {v} and
v1 is adjacent to every other vertex of G. Hence W1 =V — {v1} and
tp = 1.

Now let & > 2. If each W; consists of at most two segments,
then Y t; < 2k < 3k — 2. Hence we may assume that at least one
W;, say, Wi has at least three segments. Let w; € W) belong to
a segment that neither precedes nor follows v; on C. Let G’ and
G"b e the outerplanar graphs induced in G by [v1,w1] and [wy,v1),
respectively. The segments of G’ (G”) are defined by restricting the
hamilton cycle C to V(G') (V(G")) and adding the edge viwi.

Since G is outerplanar and viw; is an edge of G, the sets S =
SNV(G') and S” = SN V(G") are dominating sets of G’ and G”
which have only v; in common. Moreover, W; C V(G") if and only
if v; € V(G"). Hence, for i # 1 and v; € V(G') (v; € V(G")) the
number of segments of W; in G’ (G”) equals ¢;. Denote the number
of segments of W3 N V(G’) in G’ by ¢} and the number of segments
of Wy N V(G") in G” by t{. Then t] +t] = t; + 1 since the two
segments of G’ and G” containing w; form a single segment in G.
Since ||, |S”| < k we can apply the induction hypothesis to G’ and
G". Thus,

th+ Y., ti<38|-2
v;€S' —{n1}

g T ko< s -2
1, €8 —{v1}

Adding these two inequalities yields

1+t < (318 -2)+(BI5"-2) = 3(IS|+1) —4=3k -1,
v;€ES

which implies the statement of the lemma. O

We shall also need the following property of minimum dominating
sets in graphs established by Bollobas and Cockayne [1].
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Proposition 5 (Bollobds, Cockayne [1]) If G is a graph with no
isolated vertez, then there ezists a minimum dominating set S of
vertices of G such that for every vertex v € S, there exists a vertex
w € V(G) — S such that N(w) NS = {v}.

We are now in a position to establish a lower bound on the average
lower independence number of an outerplanar graph in terms of its
order. Recall that a linear forest is a forest of which each component
is a path.

Theorem 6 Let G = (V,E) be a connected outerplanar graph of
order n. Then

ias(G) 2 2,2 + 0(1),

and this bound is best possible.

Proof. For a vertex v € V we define 7,(G) to be the minimum
cardinality of a dominating set of G that contains v, but no neighbor
of v. From this definition it follows directly that, for each vertex v,
iy(G) > v,(G). Hence it suffices to show that

% S (G) 2 2\@ +0(1). (1)

veV

Let S = {v1,v2,...,vuy} be a 7(G)-set that satisfies the statement
of Proposition 5. We can assume that v < /4n/3, since otherwise
for each vertex v of G the inequality 7/, (G) > « implies the desired
result immediately. Clearly, for every v; € S,

75, (G) 2 7. (2)

By our choice of .S, we can partition V — S into sets Wy, Wh, ..., W,y
such that W; C N(v;) for i = 1,2,...,v. Let ¢; denote the minimum
number of segments of G into which W; can be partitioned.

We now find a lower bound on v,,(G), for w € W;. Let S,, be a
smallest dominating set of G that contains w but no neighbor of w.
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Then v; ¢ Sy. Let W; be the set of vertices of W; which are not
marginal i in' the maximal segments of W;. By Theorem 3, a vertex
in W; has, apart from v;, only neighbors in W;. If G[W;] contains
a vertex u of degree at least 3, then u and v; have three common
neighbors, and so G contains K23 as a subgraph, contradicting The-
orem 3. Hence, G[W;] is a linear forest, and so no vertex in W; can
dominate more than three vertices of W, Thus

|Sw N Wi > 2 |Wil 2 (Wi - 2t3). (3)

W =
O ==

Since gSw - Wi) U {v;} is a dominating set of G, we have
[(Sw — W;) U {v;}| = v and thus

|Sw — Wi| 2 [Sw = W;I -2 >9-1-2¢. 4)
Adding (3) and (4) yields

1 8
1y(G) = |Sw| 27— 1+ §|Wi| - 3t (5)

Adding (2) over all i and (5) over all w € W; and then over all i
yields

Y v
Y AG) = P AD DD Y6

veV =1 i=1 weW;

Y 1 8
UEDY Wil(v— 1+ 51Wil - 5t:)

v

2

= P4(r-Dn-+3 3 (Wil - 8Wilt): ©)

=1
In order to bound the last expression we shall minimize the sum

3>, |Wi|% — 8|W;|t; subject to the constraints 3-; |[Wi| = n— and, by
Lemma 4, Y ; t; < 37 — 2. Without loss of generality we can assume
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that |W;| > |W;] for all i = 2,...,~. In order to minimize the above

sum we can assume that t; = 3y—2,¢;, =0for ¢ = 2,...,7, and
|Wa| = |W3| = -.. = |W,|. If we denote |W;| by a, then a lower
bound on the sum is
= a2 — 8(3 — _y (P ey
f(a) = a? = 8(3y - 2a+ (v — 1) — )"

A simple calculation shows that f(a) achieves its minimum at a =
(4(3y—2)(v—1) +n - v)/v. Substituting this value for a and some
further calculations yield

f(a)

v

(4(37 -2)y-1)+n- 7)2
v
4B3y-2)(y-1)+n- 7)

¥
43y=2)(y=1)+n-y ) 2

+(y-1) (n_'y_ z

—8(3y~-2) (

v-1

(n=?  8By-2)(n—-7) 16@y-2)*(y-1)
% ¥ % '

In conjunction with (6) we obtain

1 , Y (y=-1mn-7)  (n-9)?2
ﬁvezvry”(c) 2 ;+ n + 3yn

8(83y—2)(n—17) 16(3y—-2)*(y—1)

+

3v2n 3vn
s =Dr=-7 (-7 16@y-2*y-1)
n 3vn 3yn :

16(3y - 2%y~ 1) _
3ym = 0(1).

By our assumption v < 1/4n/3 we have

Hence
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_ - — ~N2
, %gy;,(c) > O 1)75" 7)+("37;’) +0(1)
> 7+%+0(1).

It is easy to verify that the term «y + % is minimal if ¥ = 1/n/3.

Hence,

1 , n

veV

as desired.

That this bound is best possible may be seen as follows. For k >
2 an integer, let G = (V,E) be the graph obtained from a path
Pi(3k—1): U1,U2, - - -, Ug(3k—1) by adding k new vertices v1,v2,...,Vk
and for each ¢ = 1,2,...,k, adding the edges v;u(;_1)(3k-1)+; Where
1 < j € 38 —1. Then, G is a connected outerplanar graph of
order n = 3k%. If v = v; where 1 < i < k, then i,(G) = k. If v =
U(i—1)(@3k—1)+; where 1 < i < k and j = 0(mod3), then iw(G) = 2k.
All remaining vertices v of G satisfy i,(G) = 2k — 1. Consequently,

Y i(G) = k(k) + k(k — 1)(2k) + 2k%(2k — 1) = 3k*(2k — 1).
veV

Hence,

i0(G) = ’é% (Z ’tv(G)) =2k—-1= 2\/g - 1.

veV

This completes the proof of the theorem. O
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