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Abstract. A decomposition F = { F}, F3,. .., F, } of the edge set
of a graph G is called a resolving r-decomposition if for any pair
of edges e; and e3, there exists an index ¢ such that d(e;, F}) #
d(ey, F;), where d(e, F) denotes the distance from e to F. The
decomposition dimension dec(G) of a graph G is the least integer
r such that there exists a resolving r-decomposition. Let K, be
the complete graph with n vertices. It is proved that dec(K,) <

(1/2)(logy )*(1 + o(1)).

1 Introduction

Let G be a finite undirected graph without loops or multiple edges. Let
V(G) and E(G) denote the vertex set and the edge set of G, respectively.
In this paper, we always assume that G is a connected graph. Let e; and e;
be edges of G. The distance from e, to ez, denoted by dg(e;, e2) or simply
d(ey, e2), is defined as the number of vertices contained in the shortest path
in G from e; to e;. Note that d(e,e) = 0 for any edge e. For an edge e
and an edge set F' C E(G), we define d(e, F') as the minimum d(e, f) over
feF.

The notion of the decomposition dimension of a graph G was introduced
in [1]. Suppose that a decomposition F = { F1; F3,...,F. } of B(G) =
FiUFU. . .UF, is given. We call F a resolving r-decomposition if for any pair
of edges e; and ey, there exists some index ¢ such that d(e,, F;) # d(es, F}).
The decomposition dimension dec(G) of a graph G is the least integer r for
which there exists a resolving r-decomposition of G. The decomposition
dimension of a tree is discussed in [2].

In this paper, we focus on complete graphs K,,. In [1], it is proved that
dec(K,) < |(2n +5)/3] for n > 3. This bound is improved.

Theorem 1. 2(log, n)(1 + 0(1)) < dec(K,) < (1/2)(log, »)2(1 + o(1)) .
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2 Proof of Theorem 1

Proof of lower bound. Let n > 4 and r = dec(K,,). We employ the following
lemma [2]. (It was essentially proved in [1].) The edge-diameter of a graph
G is defined as the largest distance of two edges e; and e; over E(G).

Lemma 2. Let G be a graph with edge-diameter d and decomposition di-
mension r. Then |E(G)| <rd™!. O

Because the edge-diameter of Ky, is 2 and |E(K,)| = n(n — 1)/2, Lemma 2
implies that n(n—1)/2 < r2"~1. Therefore, we have r > 2(log, n)(1+0(1)),
as required.

Proof of upper bound. Let t be a sufficiently large integer. Let X be an
underlying set with X = {z;,%2,...,%2}. First we prove the theorem when
the order n of a complete graph is exactly (%) + (%). Set g(t) = (¥) + (¥).
We define a complete graph K, and a partition of the edge set as follows.

V(K,) = {ACX:|Al=tor|Al=2},
EK,) = Ru |J Fy,
1<k<i<d
where Fi; = {(A, {zx,21}) : |A| =t and A D {zx,:1}},

and o = E(K)\ |J Fit-
1<k<i<d

Let us denote this partition by . We want to show that F is a resolving
decomposition. In the following, we denote two endvertices of an edge e by
A (e) and A_(e). These sets A, (e) and A_(e) actually represent subsets
of X. Suppose that there exists a pair of edges e; and e; in a common edge
class such that d(e,, F) = d(ep, F) for any F € F.

Case 1. {e, ez} C Fj, for some k and .

We may assume Ay(e;) D A—(e;) and A_(e;) = {zk,zi} for i = 1,2.
Since e; # ez, we have Ai(e;) # Ai(ez). It follows that there exists
an element x; € X such that z; € A (e;) \ A+(e2). This implies that
d(e;, F; 1) = 1 and d(ez, Fi ;) = 2, a contradiction.

Case 2. {61, 32} C Fo.

Since e; € Fp, we have A1 (e1) 7 A-(e1) and A_(e1) 7 A+(er). Choose
two elements z; and z; with 7 € A4 (e1)\A-(e1) and z; € A_(e1)\A+(e1).

We may assume z) € Ay(e2) U A—(e2). Indeed, if zx ¢ Ay(e2) U
A_(ep), take an element z; with z; € Ay(e1) \ {zx}. Then we have

{zi, 2} C Ayler), {zi,ze} € Ai(e2), and {z;,zr} ¢ A_(e2). It fol-
lows that d(e1, F; k) = 1 and d(ez, F; ) = 2, a contradiction. Therefore, we
have {zk, 21} C Ar(e2) U A_(e2).
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If {zx, 21} C Ay (e2) or {wr, 21} C A—(e2), then we have d(e;, Fi,;) = 2
and d(eg, Fi,;) = 1, a contradiction. Hence, we may assume z; € A.(e2) \
A_(e2) and z; € A_(e2) \ A+(e2).

Since e; # ez holds, we may assume there exists an element z; €
Ai(e1) \ Ar(e2). Then we have {z;,zx} C Ai(e1), {zi,zx} ¢ A+(e2)
and {zs,zx} ¢ A_(ez). It follows that d(ey, F; ) = 1 and d(ep, Fi ) = 2,
a contradiction.

Hence, F is a resolving decomposition, as required.

We shall calculate the number n of vertices and the number r of parti-
tions. By using Stirling’s formula, we have n = g(t) ~ 22¢/\/xt. Hence, we
have ¢ = (1/2)(log; n)(1 + 0(1)). On the other hand, r = 1 + (%) < 2¢2.
Therefore, we have dec(K,) < 2t? = (1/2)(logy n)2(1 + o(1)).

It is left for us to show the theorem when = is not strictly g(t). Suppose
that g(t — 1) < n < n' = g(t). Let X be a set of 2t elements as before.
We can choose K, such that V(K,) = V, U (%), where V,, C (%) and
V. contains at least one -set A with A O B for each 2-set B. Then the
same argument works as in the proof for K. It follows that dec(K,) <
(1/2)(logy n')*(1 + 0(1)) = (1/2)(logz n)*(1 + o(1)), as required. d

Remark. Recently, Kiindgen and West proved that dec(K,) < 3.2(log, »)(1+
o(1)) [3]. Their proof is based on the probabilistic method.
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