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Abstract. The inventory of a 2 x m array A = A(3, ) consisting of
7 not necessarily distinct positive integers I(2, ) is the 2 x n array I(A) =
I{z,5), where I(1, ) is the number of occurrences of I(2,5) in A. Define
I9(A) = I(I7~'(A)) for ¢ > 1,with I°(A) = A. For every A, the chain
{I7(A)} of inventories is eventually periodic, with period 1,2, or 3. The
proof depends on runlengths of partitions of integers. A final section is
devoted to an open question about cumulative inventory chains.

1 INTRODUCTION

1

We begin with an example. Let A = ( 1

). If asked what A contains,

one can reply “two ones” and write this inventory as I(A) = ( % . The
inventory of I(A) can be read as “one one and one two” and recorded as

I(I(A)) =( i ; ) Continuing,

ey =(3 5 ). r@=(7 ;).

and so on. We are interested in the long-range structure of inventory chains
such as (A,I(A),I(I(A)),...).

In this paper, an array is a matrix,

_ ay a2 - Qm
A—(bl S bm), (1)
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where m > 1 and a; and b; are positive integers satisfying b, < bz < --- <
b,.. The inventory of A is the array given by

c2 "t Cn
I(4) = (d do -+ dq )’
where 7 is the number of distinct terms d; in A, ¢; is the number of oc-
currences of d; in A, and d; < dy < --- < dn. Suppose for given array
A that there exist distinct u and v such that IY(A) = I*(A). Then A has

eventually periodic inventory, or is eventually periodic. Ifv >uandv—u
is minimal, then v — u is the period of A.

Example 1. Here we use the notation A — A’ for I(4) = A’. Let

A=<T),wherem25. Then

A 31_)211_’3
1 m 1 3 m 1
__)411_}32111_)
1 2 3 m 1 2 3 4 m
_}33121 32311_’
1 2 3 4 m 2 3 4 m

Note that I'°(4) = I°(A), so that A is eventually periodic, with period
1, beginning at I°(A). It is easy to check that if 1 < m < 4, then A is

w N
NN
W N N =
B o)
3~ 8~
S— NS

eventually periodic, with period 1, beginning at ( % g g 411 )

In Example 1 and in general, I(A) is invariant of the order in which the
top numbers a;,ag,...,an occur. That is, I is a many-to-one mapping
determined by the top numbers as a multiset. In Example 1, I°(A) has top
numbers 4,1,2,1: two of one number, one of another, and one of another;
i.e., the partition 122 of the integer 4. The chain in Example 1 beginning
at I5(A) is thus matched to a chain of partitions:

122 - 123 5122 > 122 - 122 — 122,

The match between arrays and partitions motivates the introduction of
an operator R on partitions, in Section 2. In Section 3, we shall apply the
developments of Section 2 to prove that every array is eventually periodic.
In Section 4, we define and consider cumulative inventory arrays.
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2 PARTITIONS AND THE RUNLENGTH OPERATION

For array A as in (1), the multiset {a1,a2,...,an} corresponds to a parti-
tion of the integer h :=a; +ag + - - + an, as follows:

i. assume that the a; are in nondecreasing order as a word, w;

ii. let ej,es,...,er be the sequence of runlengths in w;

iii. write the partition of h as

a1+ + 01+, + Oyt ey 0 F e,
A - ~ o ~ s

-~  pr—

where a; is written e; times, a., is written e; times, and so on, so that

h =e1a) + exae, + -+ + exte,;

iv. change to multiplicative notation: af'a3?...ag*.

Given a partition p = a$'a3? ... a;*, we shall call each of the expressions
a;’ a term of p. Next, we define the titular runlength operator, R: suppose
p=aj'a3’...a* is a partition of h = e;a; +egas + - - - + exax > 1; then

1h if p=h
R(p) == h if p=1*
erez...ep(h—ey —ez —--- —eg) otherwise.

Example 2. p = 1232 denotes the partition 1 + 2 + 3 + 3 of 9, and

Example 3. R-chains (i.e., p, R(p), R(R(p)),...) for the partitions of
2 are

251251353513 512251225 .5 12525 ...,
R-chains for the paritions of 3 are
3518351225125 ;12513535 ...; 13 53—,

Suppose for given partition p that there exist distinct © and v such that
RY(p) = R*(p). Then p is eventually periodic. If v > v and v — u is
minimal, then v —u is the period of p. Example 3 shows that all partitions
of 2 and 3 are eventually periodic with period 1.

Example 4. Every partition of 4 and 5 is eventually periodic with
period 1 or 2. Every partition of 6 is eventually periodic with period 2 or
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3. The number 7 has one partition of period 1, namely 1223; two of period
2, namely 7 and 17; the remaining twelve partitions of 7 have period 3.

Lemma 1. Suppose h > 8 and p is a partition of h. Then there
exists j such that R’ (p) consists of 1,2, or 3 terms.

Proof. If not, let h be least for which R?(p) has at least 4 terms for
every j. Le‘t; k be the least number of terms that occurs, and let j' be
such that R/ (p) has k terms. Write ¢ for R’ (p), so that ¢ has the form
a$tas?...a3*, and

l 2 DY k )

R(Q) =€1€2...€kCk41, (2)

where exy1 = h — Z:;l e;. By hypothesis, when R(q) is written in the
multiplicative form ¢f*c}? ... c/r, we have m > k. Equation (2) shows that
m must be k or k+ 1.

Case 1: m = k. In this case, the number of distinct elements in
the multiset {e;, ez, ..., €k, ex41} is k; we may assume e; = ez. Let f =
h—k-1.

Case 1.11: m=k, e; =eg, f#¢; for 1 <i<k+1. We have from

(2),

12k(h—k—2) if h—Fk¢ {3,4}
R(g) = 1F2(h—k - 2) — 1k+12 if h—-k=3
1%2 if h—-k=4

so that R3(g) has fewer than 4 terms, a contradiction.

Case 1.12: m =k, e; = ez, f = e;. Inthis case, R(q) — 1*~33(h—k),
so that R?(g) has fewer than 4 terms, a contradiction.

Case 1.13: m =k, e; = ey, f = e; for some ¢ > 3. In this case,
R(g) — 221%~1(h—k—1), so that R%(q) has fewer than 4 terms, a contra-
diction.

Case 2: m = k+ 1. In this case the e; in (2) are distinct, so that
R?%(q) = 1¥~!w, again a contradiction. O

Theorem 1. Every partition of every h > 8 is eventually periodic with
period 1 or 2.

Proof. Let h > 8, and let q be a partition of h. By Lemma 1, R(q),
for some j, has fewer than 4 terms. Write p for R7(q). We consider three
cases:
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Case 1: p consists of a single term, a®. If h # 2e, then
et — ew — 12w — 120" — 1%/,

where w = h — e and w’ = h — 2,s0 that p, and hence g, has period 2.
If h = 2e, then

a® — e — 2w’ — 1% — 12(w' - 1),
and here, t00, ¢ has period 2.

Case 2.1: p = af'a3? ,where e; # e2. The R-chain in case the number
f :=h —e; — e satisfies f # e; and f # ez begins with

0510 — ereaf — 13(w' — 1) = 13(w’ —2) — 1%’ — 12(w’ - 1),

indicating a period of 2. (The hypothesis h > 8 applies, for example,
to ensure the link 13(w’ — 1) — 13(w' — 2).) If f = e;, we have instead

a1ag — epf? — 12(w’' — 1) - 12w’ — 12(w’ — 1),
and similarly if f = eq.

ey ,e2

Case 2.2: p = a'a;’,wheree; =ep. Let g=h—2e;. I g# e,
then

afta — e2g — 12(w' — 1) — 12w’ — 12w’ — 1),

whereas if g = e;, the chain includes a'a3' — e‘l’ , and, as above, ¢q has

period 2.

Case 3.1: p = a}'a3?a3?, where the ¢; are distinct. Let es =h—e;—
ez — e3. If e4 is not one of e;,e2,€e3, then

0% aFPad — eregezeq — 14(h—4) — 14(h—5) — 13(h—3) — 13(h—4) — 13(h-3),

indicating a period of 2. If e4 equals one of ey, eg, €3, then R?(p) = 122(h—
4). In this case, R3(p) = R%(p), indicating a period of 1.

Case 3.2: p = af'af?a$®, where the multiset {e;,e2,e3} contains 2
distinct elements. Without loss, assume e; # ez = e3. Let f = h—e; —2es.
If f ¢ {e1,e2}, then R(p) = e1e3f and R?(p) = 122(h — 4), so that ¢ has
period 1. If f = ey, then

p— 2f2 = 22(h—4) — 12(h - 3) - 13(h — 3) — 13(h— 4) — 1*(h - 3),
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indicating a period of 2. If f = eg, then
p— erfd — 13(h—4) — 13(h - 3),
indicating a period of 2.

Case 3.3: afaja§, Let f =h—3e. If f #e, then R%(p) = 13(h —4),
indicating a period of 2. If f = e, then

p— et = 4(h—4) = 12(h—2) - 12(h - 3),
indicating a period of 2. O

To summarize, for every h except 6 and 7, every partition of h is even-
tually periodic with period 1 or 2. As found in the proof of Theorem 1,
every R-chain of a partition of period 1 eventually reaches the repeating
partition 122(h-— 4), and every R-chain of a partition of period 2 eventually
reaches the repeating link 13(h — 3) — 13(h — 4).

In Section 3, these periodicities will be applied to arrays in the manner
exemplified in Section 1. Here, we continue with a consideration of initial
R-segments from a given partition p down to a repeating partition. These
are shown for the partitions of 6 in Table 1. The final two columns show
the period 7(p) of p and the length {(p) of the initial segment from p to,
but not including, the first repeating partition.

TABLE 1. R-CHAINS FOR THE PARTITIONS OF 6

partition, p | R(p) | R*(p) | R°(p) | R%(p) | R°(p) | R®(p) | () | Up)
6 16 1%5 124 1°4 13* 124 3 3
15 124 | 123 133 123 1°3 123 2 2
24 14 | 123 1°3 123 1°3 123 2 2
32 24 124 123 1°3 123 1°3 2 3
124 123 | 1°3 123 1°3 123 1°3 2 1
123 133 | 123 1°3 123 1°3 123 2 0
23 32 24 1%4 123 1°3 123 2 4
133 123 | 1°3 123 133 123 133 2 0
1222 23 32 24 1%4 123 133 2 5
142 1°4 | 123 133 123 1°3 123 2 2
18 6 16 1%5 124 134 132 3 14

In Table 1, consecutive bold-face partitions in a row indicate the period;
e.g., for p = 6, the partitions 124,143, 132 indicate that R3+*(p) = R*(p)
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for all k > 3. It would be of interest to know the maximal length of the
initial R-segment as a function of A.

Also of interest is that fact that, for h > 8, according to Theorem 1, the
set of partitions of h is partitioned into two parts: those of period 1 and
those of period 2. In Table 2, ps is the number of partitions of h, and p
is the number of those having period i.

TABLE 2. TWO KINDS OF PARTITIONS

h | 8] 9}1104)11]12| 13
pr | 22130 42|56 77 | 101

V| 2]7]8]18]25] a1
p® [20]23]34]38]52] 60

It would be of interest to know asymptotic growth rates for pg) and

Pl

3 EVENTUALLY PERIODIC INVENTORIES

Let A be an array as in (1). The jth array in the I-chain of Awill be
denoted by

@ ,0) ()
. _ al a2 DIy am
P(A)= ( ORI ORI ) (3)
for j =0,1,..., beginning with I°(4) := A. Let
ax = max{ai,az,...,0m,b1,bg,...,bn}.
Lemma 2. Let
bon if max{a,az,...,an} < by and a; # by, for some i
Jjo=1<{ max{m+1by} if a; = ap for 1 <4< m and b; = a, for some %
a’ if max{a1,az,...,am} > max{b, bs,...,bm}

Then m(j) = m(jo) for all § > jo.
Proof. We consider three cases:

Case 1: max {a;} < by, and a; # by, for some 2. Here, no term of A
occurs more than m times, so that I(A) has the form (3) with j = 1 and

bggl) = bm. The condition defining case 1 thus holds for array I(A); that
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is, max{agl)} < by, and a.gl) # by, for some i. Consequently, by induction,
m(j) = m(bm) for all j > by,

Case 2: a; = a; for 1 < ¢ < m and a; = b; for some 7. In this
case, a; occurs m + 1 times in A, so that m + 1 is one of the numbers
bg-l). Consequently, bgzl) =max{m+1, bp}. Ifm=1and b; =2, then
m(j) = 1 for all § > jo, as required. Otherwise, case 1 now applies to
I(A), so that m (§) = m(by,,) for all j > b0,

Case 3: max{a;} > max{b;}. Here, we have bgzl) = max{a;} = a¥,
and case 1 applies to I(4). Hence, m (j) = m(a*) for all j > a*. O

Lemma 3. If A# ( g ) , there ezists j > 0 such that I’ (A) contains

1 as a term in row 2; i.e., bgj) =1.

Proof. If not, then for j = O in equation (1), every b; is also an ay;
otherwise, if some b;+ is not one of the a;, then I(A) contains exactly one
b;, contrary to the hypothesis. Since the b; are distinct, the a; must be

distinct, so that
2 2 - 2
I(A) = .
@=(a o)

If m # 1, then some b;s is not 2, so that I?(A)contains exactly one b;,
contrary to the hypothesis. If m = 1 and b; # 2, then I?(A) contains
exactly one b, again a contradiction.

Lemma 4. If A# g then there exist positive integers J and M
such that for all j > J, the array I’(A) has the form

(aﬁj) & o o . W 1 1 . 1 )
1 2 3 4 -+ M bysyr bdmyz 0 b

where agj ) <M for 1 <i< M. (If bpsy = M, then the final column is

9,

M

Proof. For j > 0,let B; = (,5§,...,8{).); that is, B; is the
bottom row of array I/ (A4) in (3). By Lemma 3, there exists j’ such that

bgj) =1 for allj 2 j'. For each j > j', let n(j) be the greatest index n
such that b$) = n. By Lemma 2, the set {n(j) : j > j'} is bounded above,
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so that, by the well-ordering principle, this set contains a greatest number,
M. Let J' be the least j for which m(j) = M.

In case agj) > M for some j > J' and some ¢ satisfying 1 <7 < M, let
Jo be as in Lemma 2, and let J” = max{J’,jo}. For all j > J”, we have
o) <M. LetJ=J"+1. Since b; > M for M+1 < i < m(J"), we have
a; =1 for all ¢ satisfying M +1 <i<m(J), forallj > J. O

Theorem 2. FEvery array is eventually periodic, with period 1,2, or

3.
2

Proof. Let A be an array. If A = ( 9 ) , then A is purely periodic
with period 1. Otherwise, let J and M be as in Lemma 4. Then the

multiset @ -
{a;",a5’,... a5}

matches a partition p of the integer
h:= ag") +ag‘f) +---+a%)

as described in Section 2.

Likewise, the inventory chain A,I(A),I(I(4)),... of arrays matches the
R-chain p,R(p), R(R(p)),... of partitions of h. By Examples 3 and 4
and Theorem 1, this R-chain is eventually periodic with period 1 or 2 if
2 < h <5 or h> 8, with period 2 or 3 if h = 6, and with period 1,2, or 3 if
h=17.

Referring to the array in (4) and j > J, write 4; := (a{ ,a¥’ ,...,a{?)

Since A;j;; counts runlengths of numbers in A; when those numbers
are arranged in nondecreasing order, and since the runlength sequence is
periodic, the sequence A; is, by the pidgeonhole principle, also periodic,
with the same period. O

Although the period of the inventory chain of an array A equals the
period of the matching R-chain, the initial inventory segment may contain
more links than the initial R-segment does. This is illustrated by Example
1, for which the least u for which I**1(A) = I*(A) is 9, whereas the least
u for which R*+1(p) = R¥(p) is 7.

a Qa2 -+ Gy
1 2

is any permutation of (1,2,...,m). Then for j > 1, the inventory I/(A) is
invariant of the particular permutation. For m > 7, the inventory chain
has period 2, and the first repeating array is

s [ m=-1 411 1 2 1 1
]I(A)‘( 1 234 - m-2 m—lmm+1)'

Example 5. Suppose A = , where (a1, a2,...,an)
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For 1 < m <7, the first repeating arrays are these:

w1\ _ (2321
II(1 = 1 2 3 4 , period 1;
of 1 2 _ (32311 o
I[(1 2)‘(12345 » period 1;
12 3 2 3 21
10 — tad 1¢
I(123)—(1234)’pe“°‘”’
m(1324) = (3221 pmn
(1 23 45\ _ (422211 o
I[(12345 = (12345 ¢) Poried?
sf(1 23 456Y) _ (5221211 .
H(123456_ 123456 7) Porodd

4 CUMULATIVE INVENTORY CHAINS

Consider the following initial multiset {1} and resulting chain of arrays:

1 3 4 1

0= (1)=()=(t1)-

6 2 1 - 8 23 21 ...

1 3 4 1 2 3 45

6 1
1 3 4
initial multiset: six 1’s, two 3's, and one 4. A question posed in [1] is
whether every positive integer enters the chain. It appears that the ques-
tion remains open. Here, we introduced the term “cumulative inventory
problem” for the much more general conjecture that the cumulative inven-

tory chain beginning with an arbitrary multiset of positive integers contains
every positive integer.

For example, the array inventories all preceding arrays and

Let m be a positive integer and

Ti(m) = { the multiset {m} if j=0
) jth array in the cumulative inventory chain of {m} if j >1,

L(m, j) := least j' such that j is a term in Z9 ’(m),

C(m, ) := number of columns in Z7(m),

G(m,j) := greatest term inZ? (m).
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Additional open questions about cumulative inventories, such as asymp-

totic growth rates, are suggested by Table 3:

TABLE 3. SEQUENCES L(m,j), C(m,j), G(m,j)

Lmj),1<j<s11

C(m,j5),1<3<10

G(m,j),1<5<10

1,4,2,3,6,4,8,5,9,8,6

1,1,2,3,5,6,8,9,12,15

1,3,4,6,8,11,13,16,18,22

1,1,3,3,4,5,5,6,6,7,10

1,2,2,4,5,7,9,11,13,15

2,2,4,5,7,9, 12, 15,18, 21

1,21,5,4,4,5,6,6,7,8

1,2,3,3,5,7,9,11,13,15

3,3,3,6,7,9,12,15,18,21

1,2,3,1,4,5,6,6,7,9, 10

1,2,3,4,5,6,8,9,11, 12

4,4,4,5,6,8,9,12,14,17

m.&ww.—-s

1,23,41,6,10,6,7,7,8

1,2,3,4,5,6,7,9,10,12

5,5,5,5,6,8, 10, 11,13, 15
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