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Abstract
Let G be a graph on p vertices and denote by L(G) = D(G) - A(G) the difference between
the diagonal matrix of vertex degrees and the adjacency matrix. It is not difficult to see that L (G)
is positive semidefinite symmetric and its second smallest eigenvalue, a(G) > 0, if and only if G
is connected. This observation led M.Fiedler to call a(G) the algebraic connectivity of G.
The algebraic connectivity of the line graph, the middle graph and the total graph of a regular
graph are given.

1. Introduction and Preliminaries

We begin with a few definitions and some notations. We consider finite undirected graphs
without loops or multiple edges. We let V(G) = { wvi, *** , v} and E(G) = { e, =+ , &)
be the set of vertices and set of edges of a graph, respectively.

Let A = A(G) = (a\;), where ai; = 1 if v and v are adjacent and a i; = 0 otherwise, be the
adjacency matrix of G. ’

Let L(G) = D(G) - A(G) =D - A, where D = diag(di, *++ , dy ) and d: = d(v) is the
degree of vertex vi { i=1, -+~ , p). Following [4] we will refer to L (G) as a Laplacian matrix.

Letp= 2and0=2,S2:=a(G) S 135 - S 2, be the eigenvalues of the matrix
L(G). It is well known that the second smallest eigenvalue a(G) is zero if and only if G is not
connected ([4]). This observation led M.Fiedler to think of a(G) as a quantitative measure of
connectivity ([4]) . Following him, we call it the algebraic connectivity of the graph G.

For example, let K, and C, be the complete graph (p = 1) and the circuit graph of order p (p
2 3), respectively. Then a(K, ) =pand a{C,) =2(1 -cos(2 n/p)) ([4]).

Furthermore, it is also known ([4]) that a(G) S x (G) S « 1 (G) for any non-complete graph
G, where x (G) and « 1(G) are the vertex-connectivity and the edge-connectivity of a graph G,
respectively.

The line graph Guof G is the graph on E(G) in whiche, f € E(G) are adjacent as vertices if
and only if they are adjacent as edges in G.
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The middle graph M(G) is the graph obtain from G by inseting a new vertex into every edge
of G and by joining by edges those pairs of these new vertices which lie on adjacent edges of G.

The total graph T(G) of a graph G is the graph whose vertex set can be put in one-to-one
correspondence with the set V(G) U E(G) such that two vertices of T(G) are adjacent if and
only if the corresponding element of G are adjacent or incident.

The characteristic polynomial of A(G) will be denoted by @ (G; 1), and referred to as the
characteristic polynomial of G. The characteristic polynomial of L(G) will be denoted by @ (L
(G); 1). We refer to a regular graph G of degree k as k-regular, and we denote a graph with p
vertices and q edges by (p, @) graph. '

Theorem A ([2], p61). If G is a k-regular {p, q) graph, then
GGy a) =(2 +2)'° ®(G; 2-k+2),
where q = kp/2.

Theorem B([3], p18). If 1 is an eigenvalue of a line graph G, then 2 = - 2.

Theorem C([2], p64). If G is a k-regular (p, q) graph, then
14
O(T@; A1) =(A +2)°" M(A*-Q2 i +k-2DA+2 . +(k-3)1:-k),
=

where 4 (i=1, -+~ , p) being the eigenvalues of A(G) and q = kp/2.

Let us denote the largest degree of G by A, and the diameter of G by diam (G), respectively.
Then the following theorem holds.

Theorem D([5], B.Mohar). Let G be a graph of order p, then
diam(G) S 2 (A +a(G))loglp- 1)/ 4a(G) ,
where log x is the natural logarithm and [x! is the smallest integer not less than x,
The main purpose of this article is to give the algebraic connectivity of the line graph, the
middle graph and the total graph of a regular graph.
Terms not defined here can be found in [1].

2. Results
Let us denote the identity matrix of order p by I , and the determinant of a square matrix A by
detA. Furthermore, in what follows, we will assume that a graph G is connected since the

algebraic connectivity of the line graph Gy, the middle graph M(G) and the total graph T(G)are
all zero when G is disconnected.
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Lemma 1. Let G be a k-regular graph of order p, then

Q(L(G); 1) =(-1)" ®(G;-2 +k).
Proof. ®(L(G); 1) =det(A 1, - (kl,-A(G)) =(-1)"det ({(-2+K)1,-A(G)).
This completes the proof. O

From Lemma | and the definition of a{G), we can easily obtain the following result.

Lemma 2. Let G be a k-regular graph of order p with at least two verticesand 4 + S 1. S
*e* S 1,151, bethe eigenvalues of G, then
a(G) =k- 1 ,.

We first will give the algebraic connectivity of the line graph and the middle graph of a regular
graph.

Theorem 1. Let G be a k-regular graph with at least three vertices, then
a(G) =al(G),
where G. denotes the line graph of G.
proof. Let G be a k-regular (p,q) graphand L+ S1: S -+ S 21, be the eigenvalues
of G, then we have

®(G; ) =02 -2.).
i1

Since G is k-regular, by Theorem A, we have
©(G; 1) =(2 +2)%* O(G; 2-k+2)

(A +2" TI(L - (A +k-2)).

Here, since 1+ S1. £ +++ S1,, we obtain
A.+k-25S21:+k-2 S--- SA,+k-2, .
On the other hand, from Theorem B we easily see that 2 i+ k-2 2 (i=1, *++ , p).
This implies that the second largest eigenvalue of GL is 4 ,.1 + k - 2 . Since Gu is (2k - 2)
-regular graph, from Lemma 2 we obtain
a(G) =2k-2-(2,0+k-2) = k-2 ,a.
By the way, Since G is k-regular, from Lemma 2 we see thata(G) =k- 4 5.
This completes the proof. O

For example, the line graph of K, is sometimes called the triangle graph and denoted by A , .

Then, from Theorem I, we see thata(A ,) = a(K,) =p (p = 3).
By the way, if a graph G is not regular, Theorem 1 does not hold. In fact, the line graph of the
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star graph K (1, p) is isomorphic to the complete graph K, . But the algebraic connectivity of K
(1, p) is always one although a(K,) is p.

From Theorem D and Theorem 1, we also have the following result.

Corollary 1. Let G be a k-regular graph of order p with at least three vertices, then
diam(G) S 2 ((2k +a(G)- 2)log{kp/2 - 1)/ 4a(G)! .

Lemma 3. If G is a k-regular (p, Q) graph with at least two vertices. then
GILMG): A) =D -K” (A-k-D* DG (A '-3kA+2k"-2)/(k+
1-1)).

proof. Since G is a k-regular (p, q) graph, without loss of generality we may write

o B kI, (o}
AM(G)) = and D(M(G)) =
' B A o I,
where B and A. are the incidence matrix of G and adjacency matrix of the line graph of G,
respectively.
Hence, we obtain
@ (L(M(G)); 1) =det(A [,.0 -L(M(G)))

(A-wt, B

B' (A2K 1.+ A
=det((1-K)1,)det((1-2K) 14+ Ac - B'((2-K1,) "B}
Here, noticing that B' B = Ac + 21 eand ((1-Kk)1,) ' =(A1-k) "'I,, we have
GILMG); 2) = D(A -K)"* (A-k-1)"det{ ((A*-3kA+2k"-2)/(k+
AN e A)= DA =K (A-k-1"®(G; (2 7-3k 2+2k*-2)/(k +1-1)).
This completes the proof. O

Theorem 2. Let G be a k-regular graph with at least two vertices, then
alM(G)= (k+a+2- fk-a)* +4(k+1))/2,
where a = a(G).
proof. For the sake of brevity, letussetk+1- 2 =band 4 *-3k 1+2k’'-2=c.LetG
bea (p,q) graph. Then, from Lemma 3 and 1 -k =1 - b, we obtain

SILMG); A) =D (1-b)"" (-b)* ®(Gy; ). ®
On the other hand, from Theorem A, we have
® (G, ob) = (e +2)"" D (G;cb-k+2). @

Hence, from D and @ we have
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PLM(B)); 1) = (1-b)"'b" (c+2b)*" ®(G; (c - bk + 2b)/b).
Hereletusset ®(G; 1) =T(A -2 )L+ S2,: S -+- S2,).
=

Then from | -b= A- k.c+2b=(l k)(X-2k-2) andc-bk+2b=2*-2(k+1)1
+k 7 + k, we can obtain

b LMG)): A) = (l-2k-2)"’l"l(l’-(2k+2 SADA+KTE Q-2 0)k- 1),

Now, it is easy to see that

A (2k+2 -2 )A+k*+(1-24)k- 2,
={2-k+2- 2+ [T TF&FA)RHA - Qk+2-2.- [ +ak+4a)n).
Moreover, we can easily check that the function f(x) = (c-x-[x* +2c)/2 (¢ >0) is

decreasing on the closed interval [- k, k].
From these it is easy to see that
a(M(G))= 2k +2- X, - [A,.0+ak+4)/2.

By the way, since a(G) =k - 1 ,.., we can obtain

a(M(G))=(k+a+2- flk-a) +4(k+1) )/ 2

This completes the proof.

Coroflary 2. Let G be a regular graph with at least two vertices, then
a(M(G)) S a(@).
proof. Let G be a k-regular graph, then from Theorem 2 and (k- a +2)’ < (k - a)® + 4(k
+ 1), we have
aM(@G) S{(k+a+2) - (k-a+2)}/2=a,
where a = a(G). This completes the proof. [J

Lastly we will give the algebraic connectivity of the total graph T(G) of a regular graph G.
If G is a k-regular (p, q) graph, T(G) becomes 2k-regular graph of the order p + q. Then,
from Theorem C, we see that the distinct eigenvalues of T(G) are
2and 22 +k-22/4 2 +k+4)2 (i=1, - ,p).
Here, notice that-k S A . Sk (i=1,+++ ,p) and the function
g) = 2x+k-2+[ax+ k' +4)12
is increasing on the closed interval [- k, kJ.
These imply that the second largest eigenvalue of T(G) is
R4, +k-2+/42,. .tk +4)2,
where 4 ,.1 is the second largest eigenvalue of G.
Since T(G) is 2k-regular graph, by Lemma 2, we have

a(T(G)) =3k2-2,0 +1-fA 2, +k’+3/2.
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On the other hand, since A ,.1 =k - a(G), we can obtain the following theorem.

Theorem 3. Let G be a k-regular graph with at least two vertices, then
alTGN=a+k2+1- [(k+2)°-4a/2,

where a = a(G).
From this theorem, we immediately have

Corollary 3. Let G be a regular graph with at least two vertices, then
a(G) < a(T(Q)).

Furthermore, since the function h{x)= (x + 2k)/4x (k > 0) is decreasing on the open interval
(0, =), we also obtain the following resuit.

Corollary 4. Let G be a k-regular graph of order p(p = 2), then
diam(T(G)) S 2 T(2k +a(G))log(k p/2 + p - 1)/4a(G)) .

3. Conclusion

If G is a regular graph with at least three vertices, combining Theorem 1 with Corollary 2 and
3, we have

a(M(G)) S a(G) = a(G) s a(T(Q)).

Here, we give the definition of the subdivision graph of a graph.

The subdivision graph S(G) of a graph G is .obtained from G by inserting an additional vertex
each edge of G. Obviously, S(G) is a spanning subgraph of M(G) and T(G).

If G is a k-regular graph, using the same argument as in Lemma 3 and Theorem 2, we have

a(s(G) = (k+2- [(k+2)'-4a )2
Noticing that a(S(G)) < a(M(G)), we also have
a(s(G)) = a(M(G)) S a(G) = a(G) = a(T(qQ)),
where G is a regular graph with at least three vertices.
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