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Abstract. Let G be a graph with a perfect matching Afy. It is proved that G is 1-extendable if
and only if for any pair of vertices z and y with an M-alternating zy-path P, of length three which
starts with an edge that belongs to Ao, there exists an Mp-alternating path P connecting z and y,
of which the starting and the ending edges do not belong to Afp. With this theorem, we develop a
polynomial algorithm that determines whether the input graph G is 1-extendable, the tine complexity
of the algorithm is O(|E)*).

1. Introduction
. Let k be a positive integer. A graph G is said to be k-extendable if 1 < k <
(IV(G)| - 2)/2 and every matching of size k can be extended to a perfect matching of
G. For any graph G with a perfect matching, the extendability of G, ext(G), is defined
to be the maximum integer k such that G is k-extendable. For current results in the
subject area of matching extension in graphs, readers are referred to the survey papers
[9] and [10) by M. D. Plummer.

An important fundamental question about extendability is to find polynomial al-
gorithms to determine the extendability of a given graph G. This problem remains
unsolved.

In this paper, we give a necessary and sufficient condition of 1-extendability of a
graph G, which will help to develop a polynomial algorithm to determine whether a
graph G is 1-extendable. So for £ = 1, the answer to the extendability problem is
positive, and we will give the polynomial algorithm together with the analysis of its
time complexity, which is O(|E|?). Some other results about 1-extendable graphs will
be presented in Section 4.

A graph G is said to be l-extendable, if for each edge e € E(G), there is a perfect
matching M of G, such that e € M. An M-alternating path is a path of which the
edges appear alternately in M and E(G) — M.

Many results have been found for 1-extendable graphs, the following are some
necessary and sufficient conditions obtained for 1-extendable graphs.

Little, Grant and Holton[6] gave a necessary and sufficient condition for graphs to
be 1-extendable.

Thoerem1l: Let G be a graph of even order. Then G is 1-extendable if and only if

Lo(G - S) £|S], for all § C V(G), and
2. o(G — S) = | S| implics that S is independent.
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Lovdsz and Plummer[7] gave a characterization of l-extendable bipartite graphs
in terms of Bipartite Ear Decomposition, which is referred to as the Bar Structure
Theorem. A Bipartite Ear Decomposition is a decomposition of a bipartite graph G.
Let ¢ be an edge, Py is an odd length path counccting the endpoints of e, then let
G| = ¢ + Py, proceed inductively to build a sequence of bipartite graphs as follows: If
Grot = e+ Py + -+ 4 P._; has been constructed, add an r** car P, by joining any two
vertices in different partitions of G,_; , here P, is an odd path having no other vertices
in common with G,_, . The decomposition G, = e+ P, +-- - + P, is called a Bipartite
Ear Decomposition of G, . The following theorem can be used to find all 1-extendable
bipartite graphs.

Thoerem?2: A graph G is 1-extendable and bipartite if and only if G has a Bipartite
Ear Decomposition.

Lovész and Plummer(8] extended the above result by pointing out the car structure
of 1-extendable general graphs. A subgraph G’ of a graph G is called nice if G — V(G’)
has a perfect matching. An ear of G relative to G’ is any odd path in G having both
endpoints—but no interior vertices— in G' . An ear decomposition of G starting with
G’ is a representation of G in the form G = G' + P, + - - - + P, ,where P, is an ear of
G'+ P, relative to G’ and P is an ear of G'+ P +--- + P, relative to G'+ Py +--- + P;.,
for2<i<k.

Thoerem3: Let G be l-extendable and G’ a subgraph of G. Then G has an ear
decomposition starting with G’ if and only if G’ is a nice subgraph of G.

In the following sections, we shall give a new necessary and sufficient condition of
1-extendability of a graph in terms of M-alternating paths. A graph G is 1-extendable
if and only if for every pair of vertices z and y, such that z and y are connected by
an M-alternating path P, of length three, where M is a perfect matching of G, and
P, starts with an edge in M, there is an M-alternating path P connecting z and y ,
which starts and ends with edges not in M. According to this necessary and sufficient
condition, we develop a polynomial algorithm to determine 1-extendability of a graph.
The algorithm has high efficiency since it suffices to find only one perfect matching to
determine 1-extendability.

2. A necessary and sufficient condition of 1-extendable graphs
. In this section, we show a necessary and sufficient condition of 1-extendable graphs
using M-alternating paths.

Thoerem4: Let G be a graph with a perfect matching My, then the following are

equivalent:
(a) G is 1-extendable;
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(b) For any pair of vertices x and y with an Afg-alternating xy-path Py of length
three which starts with an edge that belongs to Alg, there exists an Afy-alternating path
P connecting x and y, of which the starting and the ending edges are not in Afy.

Proof.

(a) implies (b):

Let e = ab be the edge in £(Py) — Aly. Since G is 1-extendable, ¢ can be extended to
a new perfect matching Afy. Let Hy = AMyAMj, then Hy contains only even cycles with
edges alternately appearing in the two perfect mathcings Ay and Mg. Let £y = zaby
and e = ab, where za, by € M. Since ¢ ¢ My and Py C Hy, let Cy be the cycle in which
Py lies, then Cy — {a, b} is an Afy-alternating zy-path, which starts and ends with edges
that do not belong to A,.

(b) implies (a):

Let e be any edge of G. If ¢ is in M, then e can be extended to M. If e is
not in Ay, then we can construct a new perfect matching containing e in the following
way. Let e = zyyg, 229 € My, yyo € Mo. Then Py = zxoypy is an Ay-alternating
path of length three which starts with an edge in Afy. By the assumption, there is an
Mp-alternating xy-path P that starts and ends with edges not in M. Let C = B UP,
C is an Mp-alternating cycle. Let M = E(C)AM,, then M is a new perfect matching
of G that contains e. It follows that G is 1-extendable. D

By the theorem above, we can determine l-extendability of a graph by checking
whether the condition in (b) holds for any given perfect matching. We only need to
find one perfect matching of the input graph during our algorithm, which reduces the
time complexity of it.

3. Algorithm to determine the 1-extendable graphs
. The algorithm is similar to that of finding out a maximum matching in a general
graph. Firstly, we find a perfect matching M in the graph G. Then for each edge that
does not belong to M, we extend the edge to an M-alternating path of length three, and
construct an M-alternating tree from the origin of the path to the terminal. If there is
such a pseudo-M-augmenting path, i.e. an M-alternating path which starts and ends
with edges not in M, between cach pair of such vertices, then according to Theorem
4 the graph G is l-extendable. The first polynomial algorithm to find a maximum
matching in a general graph was found by Edmonds [2]. Later on, Even and Kariv
[3) and Bartnik [1] independently obtained an algorithm to find a maximum matching
with the time complexity of O(|V[*®). Kameda and Munro [4] introduced an O(|E|{V|)
algorithm for maximum matching of graphs.

Now we give the following algorithm to determine the 1-extendable graphs:

Algorithm:

1. Use the algorithm of [4] to find a perfect matching M in G; // O(|V||E[)
2. IF M does not exist THEN RETURN(false); (G is not 1-extendable) // O(1)
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3. ELSE

FOR each edge ¢ = xpy0 € E(G) DO // O(|E])

BEGIN

IF ¢ ¢ M THEN // O(1)

BEGIN

Find two vertices x and y such that xox, yoy € M; // O(1)

Use Procedure 1 to find an M-alternating path P from x to y such that P starts and
ends with edges in E(G)\M; // O(|E|)

END;

IF the path P does not exist THEN RETURN(false); (G is not 1-extendable) // O(1)
END;

4. RETURN(true); (G is l-extendable) // O(1)

Procedure 1 uses the idea of [4] for finding an (x, y) M-augmenting path by building
an M-alternating tree from x. It only takes O(IE|) time. The loop in Step 3 repeats
O(|E[) times, so Step 3 totally takes O(|E|?) time. It is easy to see the whole algorithm
takes O({E|?) time.

If we use the definition of 1-extendable graphs to design an algorithm, then we
delete every edge e = xy with its end vertices x and ¥ and find a perfect matching in
G—{x, y}. In this case, the algorithm needs O(|E[*|V[) time. So our algorithm has
higher efficiency.

4. Other results about 1-extendable graphs
. In this section, we give two results which shows that there is an M-alternating path
between each pair of vertices x and y for any perfect matching M in a 1-extendable
graph.

Theorem 5: Let G be a connected 1-extendable graph. For any pair of distinct vertices
z and y, and any perfect matching Al of G, there exists an M-alternating zy-path
P:z=ay,a, --a =y,such that gpa; ¢ M.

Proof. We proceed induction on the distance dg(z, y).

If dg(zx, y) = 1, then zy € E(G). If zy ¢ M, then zy is the required M-alternating
xy-path. If zy € M, then degg(z) > 2, since G is connected and 1-extendable, G must
be 2-connected. Let ' € N(z) — y, and extend zz' to a perfect matching M,. Let
H = MAM,, H contains even cycles of which edges appear alternately in M and M,.
Since zy € M — Mp and zz' € My — M, z'zy liesin a cycle C = y - - - Z’zy in H, and
P =y z'z is the required M-alternating xy-path.

If dg(z,y) > 2, let ' € V(G) be a vertex with dg(z,y') = dg(z,y) — 1 and
yy' € E(G). By the induction hyperthesis, there is an M-alternating xy'-path P:z =
ag,ay,- -+, a = y' such that aga; ¢ M.
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If y € V(P), then the segment of P from 2 to y is the required M-alternating
xv-path, we denote it as P(x, y).

Otherwise, if y € V(P) let "y’ € E(P). It 4"y € M, then yy' ¢ M and P+ y
is the required M-alternating xy-path. If "y’ € A and yy' € M, then P + y is the
required M-alternating xy-path.

The remaning case is that 4"y’ ¢ M and yy' ¢ AL. Since G is l-extendable, let Afp
be the perfect matching that contains yy'. Since yy' € My — M, yy' isin H = MAM,.
Let C bLe the M-Mg-alternating cycle in H which yy' lies in. We denote C(xy, z,)
the path from z, to z, in C which starts with an edge not in M and C'(x,,z;) the
path from z; to z3 in C which starts with an edge in M. If V'(C) N P(z,y") = 0, then
P(z,y')+C'(y',y) is the required M-altcrnating xy-path. If V(C)NP(z,y") # 0, choose
ai € V(C)YN P(z,y") such that k is as small as possible. If z = ay,then z,y € V(C),
then C(z,y) is the required M-alternating xy-path. If z # ey, then P(z, ax) nust be of
odd length, i.e. erary) € M, since k is chosen as small as possible. Since ax,y € V(C),
then P(z,ax) + C'(ax, y) is the required M-alternating xy-path. O

Theorem 6: Let G be a graph and x,y € V(G), z # y. Let Ay and M be any two
different perfect matchings of G. If G has an My-alternating zy-path Py, then G has
an M-alternating zy-path P.

Proof. Let K = (V(G), E(Py) AMyAM), dx(v) be the degree of vertex v in X,
and Ng(v) be the neighbour set of vertex v in K. Firstly, we show that

dig(v)=0o0r2ifv ¢ {z,y} (1)
and if di(v) = 2, one of the two edges incident with v is in M; and
di(v) =1or3ifveE {z,y} (2)

Casel: v € V(G) — V(BR)

Since My and M are perfect matchings, there are v;, v, such that vv; € M,,
vup € M. If v; = vy, then dg(v) = 0, else Nk (v) = {v,v;} and vvy € M.

Case2: v € V(P) — {z,¥}

Let vv; € My, vv; € M, vus € E(Py) — M. If v; = vy, then Ni(v) = {v,,v3} and
vz € M. If v; = v3, then di(v)= 0. If v2 # v; and vz # v, then Ng(v) = {v2,v;3} and
vu, € M.

Case3: v=2z

Let xz) € My, zx2 € M, zz3 € E(P;). Firstly, suppose that z; # z3. If z, = z,,
then Ng(v) = {z3} and zz3 ¢ M. If 73 = zo, then Ng(v) = {z:} and zz, ¢ M. If
z) # T2 # T3, then Ny (v) = {1, 22,23}

If z; = z3 and 1, # z,, then N (v) = {z2} and zz, € M. If z; = 23 and z, = 2o,
then N (v) = {z,} and zz, € M.

Cased: v=1y
Similar to the case v = z.
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By (1) and (2), the graph K has only two vertices of odd degrees, namely x and y,
and so x and y must be in the same compouent of K. Therefore, there is a path joining
x to v and it is casy to sce that this path is an M-alternating xy-path. D
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