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Abstract

A function f: V —{-1,1} defined on the vertices of a graph
G = (V,E) is a signed 2-independence function if the sum of its
function values over any closed neighbourhood is at most one. That
is, for every v € V, f(N[v]) < 1, where N{v] consists of v and every
vertex adjacent to v. The weight of a signed 2-independence function
is f(V) = Y f(v), over all vertices v € V. The signed 2-independence
number of a graph G, denoted o2(G), is the maximum weight of a
signed 2-independence function of G. In this article, we give some
new upper bounds on a2(Q) of G, and establish a sharp upper bound

on a?(G) for an r-partite graph.
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1 Introduction

We begin with the basic definitions, following the notation of [4]. Let G be
a graph with vertex set V of order n and edge set E of size g, and let v be a
vertex in V. The open neighborhood of v is N(v) = {u € V|uv € E(G)}, and
the closed neighborhood of v is N[v] = N(v) U {v}. For a subset S of V, we
set N(S) = U,es N(v) and N[S] = SUN(S). If T is a subset of V disjoint
from S, we let e(S, T') denote the number of edges between S and T'. G is r-
partite graph with vertex classes V3, V,,...,V, f V(G) = ViUV, U---UV,,
VinV; = 0 whenever 1 < i < j < r, and no edge joins two vertices in
the same class. Moreover, for a subset S C V and a vertex v € V, we
define d(v,.S) to be the number of vertices in S that are adjacent with v.
In particular, let d(v) instead of d(v,V) denote the degree of v in G. The
maximum (minimum) degree of the vertices in a graph G is denoted by
A(G)( §(G)). If d(v) is odd, the vertex v is called an odd vertex. Let f:
V — {-1,1} be a function which assigns an element of the set {—1,1} to
each vertex of a graph G = (V, E). The weight of f is w(f) = 3y f(v),
and for § C V we define f(S) = X ,c5f(v), so w(f) = f(V). For a
vertex v in V, we denote f(N[v]) by f[v] for notational convenience. The
function f is said to be a signed dominating function of G if f[v] > 1 for
every v € V. The signed domination number, denoted 7,(G), of G is the
minimum weight of a signed dominating function on G. Signed domination
has been studied in ([1]-(3], [5], [7], (9], [10]) and elsewhere. The function f
is defined in [10] to be a signed 2-independence function, denoted S2IF, on
G if for every v € V, f[v] < 1. The signed 2-independence number, denoted
a%(G), of G is the maximum weight of an S2IF on G. Hence the signed
2-independence number is a certain dual to the signed domination number
of a graph. In [6] Henning has established a good upper bounds for a?(G)

in terms of order and size of a graph.
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Theorem 1 ([6]) If G is a connected graph of order n > 2, then

2(G)<n+2-2vVn+1.

The paper is organized as follows: In section 2, we give some new upper
bounds for a?(G) in terms of order, size, number of odd vertices, maximum
degree and minimum degree of a graph. In section 3, we give a sharp upper

bound on a?(G) for an r-partite graph.

2 Upper bounds

Theorem 2 If G is a connected graph of order n > 2, size q, and ng is the

number of odd vertices, then

1 1
a2(G) 5n+§—\/2q+no+z.

Proof. Let f be a S2IF on G satisfying f(V) = o?(G) and we write

P = {veV|f(v)=1}, M = {veV|flv)=-1},

P, = {veP|dv)isodd}, M, = {ve M|d()isodd}.
And let |M| = m,|P|=p,P. = P—P,,M, = M — M,,|P,| = po,|Pe| =
Pe, | My| = mo, |M,| = m,. Since f[v] < 1 for each v € V, it follows that

s { S e
v 2
&) ifyeP.
and
V() P|<{ S ifveM,
v)NpeP|<
4 11 ifve M.
So we have
1 d(v) +1 d(v) _
> (Zd<v)+po) =3 S+ Y S <Y IN@ N M = e(P M)
veEP vEP, vEP, vEP
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and

e(P,M)= Y |Nw)nP| < 3 %_1_,_ ) (d(zv) +1)
veEM ‘UGMo VeM,
1 1
S 9 d( )+_ o+ e
2 2,0 g

Thus,

1
q+ 3M0 < E d(v) + m.
vEM

Furthermore, we observe that for any vertex v € M, d(v) < 2m — 1 if d(v)
is odd; d(v) < 2m if d(v) is even. Hence, ¢+ 1no < 2m? +m. This implies

that m > :ﬁ@. Therefore,

1
aﬁ(G):n—2m§n+§—‘/2q+no+%.

Note that for a complete graph K, of order n = 2k + 1, we assign to only
k vertices of K, the value —1, then it produces an S2IF on K, of weight
f(V(Kn)) =1=n+3—1/2q+no + L. It is easily checked that this bound
is better than that of Theorem 1if ¢ > 2n — 3(v/n+1 — 1) — ino. But if
the edges of a graph are relatively sparse, then the bound in Theorem 1 is
better.

0

Our first aim in this section is to establish a sharp upper bounds on
@2(G) in terms of order, size, number of odd vertices, minimum degree and

maximum degree of a graph.

Theorem 3 If G is a graph of order n and size q, ng is the number of odd
vertices of G, then

. 2q+ny (1-0(G))n+29—n
%(6) < [‘“"‘ {” BN O ES U o F }J

Proof. Let f be an S2IF of G satisfying f(V) = o2(G), and let P and M
be defined as in Theorem 2. We let V, and V. denote the sets of odd and
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even vertices, respectively. Since f[v] < 0 for any v € V, and f[v] < 1 for

any v € V,, it implies that

DW= flvl+ Y fvl < Vel = n = no.

vev vEV, veEV,

On the other hand, we have

Dol = Y fm+d>. > fw)

veVv veV vEV ueN(v)
= 2p—-n+ Zd(v) - Z d(v)
veEP vEM
= 2p—-n+ Zd(v)—2 Z d(v)
veVvV veEM
= 2p-n+2) dv)- > d@).
veEP veV
So
2p—n+20-2n-p)AG) <Y flv] <n—no.
vev
and
2p—n+2p8(G) - 20< Y fv] < n—mo.
veV
Then
< 2n(A(G) +1) —2g—ng
- 2(A(G) +1) ’
2n+2q9 - ng
P2 e+

By using (3) and (4), we have

29+no (1-8(G))n+2¢g—ny

*%(G) < lmi" {" TAG +1 5(G) + 1

(1)

@)
(4)

O

The following Figure 1 serves to illustrate that the bound in Theorem 4

is sharp.
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1 -1
Figure 1: A graph with o2(G) =1

As an immediate consequence of Theorem 3, we have the following result

for a tree T'.

Corollary 4 If T is a tree of size ¢ > 1 and ng is the number of odd
vertices of T, then a(T) < g — 3nq.

The upper bound in Corollary 4 is sharp. For example, let J;, J2,...,Jk
be k disjoint copies K 3. Now let T be the graph obtained from the union
of Ji,Ja,...,Jx by joining the center of J; and the center of Jiy,, ¢ =
1,2,...,k—1. Then T is a tree of order n = 4k. Let f be a function on
T by assigning to the center of each J; the value —1 and to each vertex
of degree 1 the value 1. It is easily seen that f is an S2IF on T and
o?(T) =2k =q - ino.

Corollary 5 IfG is a graph of order n and ng is the number of odd vertices
o/ G ther (AG) - 5(G) +2)
s n(A(G) — §(G) +2) - 2np
<
%@ s = @ +3@) +2

Proof. Let f be an S2IF of G satisfying f(V) = a2(G). By theorem 4, we
have
20(A(G)+1) < 2n(A(G) +1) —2g — nyg. (5)
2p(6(G)+1) < 2n+2q—nyg. (6)
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Adding (5) and (6), we have

n(A(G) +2) -
P=AG) +e@) +2

Therefore,

n(A(G) — §(G) +2) — 2no

o(G) =2p-n< == e 2

O

As an immediate consequence of Corollary 5, we have the following result
explicated by (Zelinka [10}).

Corollary 6 ([10]) For any r-regular kgraph of order n,

(@) < {

nf/(r+1) forr even,
0 for r odd.

3 r-partite graphs

In this section we restrict our attention to r-partite graphs with order n.
A sharp upper bound is established for o2(G). We begin by stating an
inequality explicated by Kang et al.[8].

Lemma 7 For r(r > 2) non-negative integers my,ma,...,mr,

2+ 25) S 3 mamy < o
J( 5)3

i=1 j=i+1

Theorem 8 If G = (V4,Va,...,V,; E) is an r-partite graph of order n,

r > 2, then
3r 3r \? 4r
@< Ty ey () 75

and this bound is sharp.
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Proof. Let f be an S2IF on G satisfying f(V) = a2(G), and let P and
M be defined as in Theorem 2. Furthermore, we write M; = M NV,
P; = PNV, and let |M;| =my, |P;| =p;, fori=1,2,...,7. Then

r T
p+m=2pi+Zmi=n. )
i=1 i=1

Now, we calculate the value e(P, M). Since f[v] < 1 for each vertex v
of G, each vertex v of P is adjacent to at least a vertex of M, and so
IN(v) " M| = d(v,M) > 1. On the other hand, each vertex v of M is
adjacent to at most d(v, M) + 2 vertices of P, and so d(v, P) < d(v, M) +2.

Hence, we have
r
> pi< ) dv,M) = e(P,M)
i=1 veP
= ) d(v,P)

veM
T

= > > dw,P)
i=1 veM;

> (dw, M) +2)

=1 veM;

zr:m,(lM - M| +2)

i=1

= Zmi( Y. mi+2)

IA

IN

Jj=1,j#i
r—=1 r T
= 2% 3 mimg+ Som).
i=1 j=i+1 i=1

Using (1), we obtain

3 r—=1 r
§p—n < Z Z mim;. (8)

i=1 j=i+l

If $p—n <0, then p < 2n. Thus,
n< 3r tn— 3r 2+ 4r n
=y n r—1 r-1"
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the desired result follows. So we may assume 2p —n > 0. By (7), (8) and

Lemma 7, we obtain

p+\/<2+%> (gp—n) <n. 9)

For notational convenience, we write a =/ %p —n. Then, p = %(a2 + n),
and s0 &3(G) = f(V) = 2p—n = 4(4a® + n). Now we define two functions

as follows:
(@ = 2@ +n) 2+ ——z (z>0)
g T3 r—1 !
hz) = %(49:2 +n) (@ > 0).
Since

dg 4 / 2 dh 8
d—x' 3 T+4/2 + 1 and E = §$l? > 0.
This implies that g(z) and h(a:) are monotonous increasing functions. By
g(a +n)+‘/2+ —1°
+ 2+ § —-n
P r—1)\2?

< n

(9), we have

g(a)

Furthermore, we note that when

—3\/2+r1 \/9(2+ )+8n

g(z) takes the value n, i.e., g(zo) = n. Hence a < z¢. Therefore

az(G) = £(V)

%(4412 +n)

IN

-:1_;(4:0(2)+n)
U Ok A SO
T or-1 r—1 r—1"
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Figure 2: A bipartite graph G with r = 2 for which %(G) = 6 +n —
2v/9+ 2n

This establishes the desired upper bound for r-partite graphs. That the
given upper bound is sharp, may be seen as follows. Let s be a positive
integer, and let H is isomorphic to s disjoint copies of K (r_1)s4+2. Let
H,,H,,...,H, be r disjoint copies of H. Furthermore, let X; and Y; be
the sets of vertices of degree 1 and (r—1)s+2, respectively, fori = 1,2,...,r.
Now let G be the graph obtained from the disjoint union of Hy, H, ..., H,
by joining every vertex of Y; to every vertex of Y;, for 1 i < j < r.
Then, G is an r-partite graph of order n = rs[(r — 1)s + 3] with partite
sets X UY9, XoUY3,..., X1 UY,, X, UY;. An example of a bipartite
graph (r=2) is shown in Fig.2. Now we let f be a function on G and assign
to each vertex of |JI_, ¥; the value —1 and to each vertex of | Ji_, X; the

value 1. Then, it is easily checked that f is a S2IF on G and we have

w(f)=FfV) = relr-1)s+2]—rs
= rs[(r —1)s+1)
_ e +n_\/( 3r >2+ P
r—1 r—1 r—1
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