Upper bounds on signed 2-independence number of graphs

Er-fang Shan *

Department of Mathematics, Shanghai University, Shanghai 200436, P. R. China

Moo Young Sohn †

Department of Applied Mathematics, Changwon National University Changwon, 641-773, Korea

Li-ying Kang

Department of Mathematics, Shanghai University, Shanghai 200436, P. R. China

Abstract

A function $f\colon V\to \{-1,1\}$ defined on the vertices of a graph G=(V,E) is a signed 2-independence function if the sum of its function values over any closed neighbourhood is at most one. That is, for every $v\in V$, $f(N[v])\leq 1$, where N[v] consists of v and every vertex adjacent to v. The weight of a signed 2-independence function is $f(V)=\sum f(v)$, over all vertices $v\in V$. The signed 2-independence number of a graph G, denoted $\alpha_s^2(G)$, is the maximum weight of a signed 2-independence function of G. In this article, we give some new upper bounds on $\alpha_s^2(G)$ of G, and establish a sharp upper bound on $\alpha_s^2(G)$ for an r-partite graph.

Key words: signed 2-independence function; signed domination; r-partite graph.

^{*}Supported by NNSF of China (Grant No. 10101010).

 $^{^{\}dagger}$ Supported by grant No.(R02-2000-00018) from the Basic Research Program of the KOSEF

E-mail address: mysohn@changwon.ac.kr

1 Introduction

We begin with the basic definitions, following the notation of [4]. Let G be a graph with vertex set V of order n and edge set E of size q, and let v be a vertex in V. The open neighborhood of v is $N(v) = \{u \in V | uv \in E(G)\}$, and the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a subset S of V, we set $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = S \cup N(S)$. If T is a subset of V disjoint from S, we let e(S,T) denote the number of edges between S and T. G is rpartite graph with vertex classes V_1, V_2, \ldots, V_r if $V(G) = V_1 \cup V_2 \cup \cdots \cup V_r$, $V_i \cap V_j = \emptyset$ whenever $1 \leq i < j \leq r$, and no edge joins two vertices in the same class. Moreover, for a subset $S \subseteq V$ and a vertex $v \in V$, we define d(v, S) to be the number of vertices in S that are adjacent with v. In particular, let d(v) instead of d(v, V) denote the degree of v in G. The maximum (minimum) degree of the vertices in a graph G is denoted by $\Delta(G)(\delta(G))$. If d(v) is odd, the vertex v is called an odd vertex. Let f: $V \to \{-1,1\}$ be a function which assigns an element of the set $\{-1,1\}$ to each vertex of a graph G = (V, E). The weight of f is $w(f) = \sum_{v \in V} f(v)$, and for $S \subseteq V$ we define $f(S) = \sum_{v \in S} f(v)$, so w(f) = f(V). For a vertex v in V, we denote f(N[v]) by f[v] for notational convenience. The function f is said to be a signed dominating function of G if $f[v] \geq 1$ for every $v \in V$. The signed domination number, denoted $\gamma_s(G)$, of G is the minimum weight of a signed dominating function on G. Signed domination has been studied in ([1]-[3], [5], [7], [9], [10]) and elsewhere. The function fis defined in [10] to be a signed 2-independence function, denoted S2IF, on G if for every $v \in V$, $f[v] \leq 1$. The signed 2-independence number, denoted $\alpha_s^2(G)$, of G is the maximum weight of an S2IF on G. Hence the signed 2-independence number is a certain dual to the signed domination number of a graph. In [6] Henning has established a good upper bounds for $\alpha_s^2(G)$ in terms of order and size of a graph.

Theorem 1 ([6]) If G is a connected graph of order $n \geq 2$, then

$$\alpha_s^2(G) \le n + 2 - 2\sqrt{n+1}.$$

The paper is organized as follows: In section 2, we give some new upper bounds for $\alpha_s^2(G)$ in terms of order, size, number of odd vertices, maximum degree and minimum degree of a graph. In section 3, we give a sharp upper bound on $\alpha_s^2(G)$ for an r-partite graph.

2 Upper bounds

Theorem 2 If G is a connected graph of order $n \geq 2$, size q, and n_0 is the number of odd vertices, then

$$\alpha_s^2(G) \le n + \frac{1}{2} - \sqrt{2q + n_0 + \frac{1}{4}}.$$

Proof. Let f be a S2IF on G satisfying $f(V) = \alpha_s^2(G)$ and we write

$$P = \{v \in V | f(v) = 1\}, \qquad M = \{v \in V | f(v) = -1\},$$

$$P_o = \{v \in P | d(v) \text{ is odd}\}, \quad M_o = \{v \in M | d(v) \text{ is odd}\}.$$

And let $|M| = m, |P| = p, P_e = P - P_o, M_e = M - M_o, |P_o| = p_o, |P_e| = p_e, |M_o| = m_o, |M_e| = m_e$. Since $f[v] \le 1$ for each $v \in V$, it follows that

$$|N(v) \cap M| \ge \begin{cases} \frac{d(v)+1}{2} & \text{if } v \in P_o, \\ \frac{d(v)}{2} & \text{if } v \in P_e. \end{cases}$$

and

$$|N(v) \cap P| \le \begin{cases} \frac{d(v)+1}{2} & \text{if } v \in M_o, \\ \frac{d(v)}{2} + 1 & \text{if } v \in M_e. \end{cases}$$

So we have

$$\frac{1}{2} \left(\sum_{v \in P} d(v) + p_o \right) = \sum_{v \in P_o} \frac{d(v) + 1}{2} + \sum_{v \in P_e} \frac{d(v)}{2} \le \sum_{v \in P} |N(v) \cap M| = e(P, M)$$

and

$$\begin{split} e(P,M) &= \sum_{v \in M} |N(v) \cap P| &\leq \sum_{v \in M_o} \frac{d(v) + 1}{2} + \sum_{v \in M_e} \left(\frac{d(v)}{2} + 1\right) \\ &\leq \frac{1}{2} \sum_{v \in M} d(v) + \frac{1}{2} m_o + m_e. \end{split}$$

Thus,

$$q + \frac{1}{2}n_0 \le \sum_{v \in M} d(v) + m.$$

Furthermore, we observe that for any vertex $v \in M$, $d(v) \le 2m-1$ if d(v) is odd; $d(v) \le 2m$ if d(v) is even. Hence, $q + \frac{1}{2}n_0 \le 2m^2 + m$. This implies that $m \ge \frac{-1 + \sqrt{1 + 4(2q + n_0)}}{4}$. Therefore,

$$\alpha_s^2(G) = n - 2m \le n + \frac{1}{2} - \sqrt{2q + n_0 + \frac{1}{4}}.$$

Note that for a complete graph K_n of order n=2k+1, we assign to only k vertices of K_n the value -1, then it produces an S2IF on K_n of weight $f(V(K_n))=1=n+\frac{1}{2}-\sqrt{2q+n_0+\frac{1}{4}}$. It is easily checked that this bound is better than that of Theorem 1 if $q\geq 2n-3(\sqrt{n+1}-1)-\frac{1}{2}n_0$. But if the edges of a graph are relatively sparse, then the bound in Theorem 1 is better.

Our first aim in this section is to establish a sharp upper bounds on $\alpha_s^2(G)$ in terms of order, size, number of odd vertices, minimum degree and maximum degree of a graph.

Theorem 3 If G is a graph of order n and size q, n_0 is the number of odd vertices of G, then

$$\alpha_s^2(G) \le \left\lfloor \min \left\{ n - \frac{2q + n_0}{\Delta(G) + 1}, \frac{(1 - \delta(G))n + 2q - n_0}{\delta(G) + 1} \right\} \right\rfloor$$

Proof. Let f be an S2IF of G satisfying $f(V) = \alpha_s^2(G)$, and let P and M be defined as in Theorem 2. We let V_o and V_e denote the sets of odd and

even vertices, respectively. Since $f[v] \leq 0$ for any $v \in V_o$ and $f[v] \leq 1$ for any $v \in V_e$, it implies that

$$\sum_{v \in V} f[v] = \sum_{v \in V_o} f[v] + \sum_{v \in V_e} f[v] \le |V_e| = n - n_0.$$

On the other hand, we have

$$\begin{split} \sum_{v \in V} f[v] &= \sum_{v \in V} f(v) + \sum_{v \in V} \sum_{u \in N(v)} f(u) \\ &= 2p - n + \sum_{v \in P} d(v) - \sum_{v \in M} d(v) \\ &= 2p - n + \sum_{v \in V} d(v) - 2 \sum_{v \in M} d(v) \\ &= 2p - n + 2 \sum_{v \in P} d(v) - \sum_{v \in V} d(v). \end{split}$$

So

$$2p - n + 2q - 2(n - p)\Delta(G) \le \sum_{v \in V} f[v] \le n - n_0.$$
 (1)

and

$$2p - n + 2p\delta(G) - 2q \le \sum_{v \in V} f[v] \le n - n_0.$$
 (2)

Then

$$p \leq \frac{2n(\Delta(G)+1)-2q-n_0}{2(\Delta(G)+1)},$$
 (3)

$$p \leq \frac{2n+2q-n_0}{(\delta(G)+1)}. (4)$$

 \Box

By using (3) and (4), we have

$$\alpha_s^2(G) \leq \left\lfloor \min \left\{ n - \frac{2q + n_0}{\Delta(G) + 1}, \ \frac{(1 - \delta(G))n + 2q - n_0}{\delta(G) + 1} \right\} \right\rfloor.$$

The following Figure 1 serves to illustrate that the bound in Theorem 4 is sharp.

Figure 1: A graph with $\alpha_s^2(G) = 1$

As an immediate consequence of Theorem 3, we have the following result for a tree T.

Corollary 4 If T is a tree of size $q \geq 1$ and n_0 is the number of odd vertices of T, then $\alpha_s^2(T) \leq q - \frac{1}{2}n_0$.

The upper bound in Corollary 4 is sharp. For example, let J_1, J_2, \ldots, J_k be k disjoint copies $K_{1,3}$. Now let T be the graph obtained from the union of J_1, J_2, \ldots, J_k by joining the center of J_i and the center of J_{i+1} , $i=1,2,\ldots,k-1$. Then T is a tree of order n=4k. Let f be a function on T by assigning to the center of each J_i the value -1 and to each vertex of degree 1 the value 1. It is easily seen that f is an S2IF on T and $\alpha_s^2(T)=2k=q-\frac{1}{2}n_0$.

Corollary 5 If G is a graph of order n and n_0 is the number of odd vertices of G, then

$$\alpha_s^2(G) \leq \frac{n(\Delta(G) - \delta(G) + 2) - 2n_0}{\Delta(G) + \delta(G) + 2}.$$

Proof. Let f be an S2IF of G satisfying $f(V) = \alpha_s^2(G)$. By theorem 4, we have

$$2p(\Delta(G)+1) \leq 2n(\Delta(G)+1)-2q-n_0.$$
 (5)

$$2p(\delta(G)+1) \leq 2n+2q-n_0. \tag{6}$$

Adding (5) and (6), we have

$$p \le \frac{n(\Delta(G) + 2) - n_0}{\Delta(G) + \delta(G) + 2}.$$

Therefore,

$$\alpha_s^2(G) = 2p - n \le \frac{n(\Delta(G) - \delta(G) + 2) - 2n_0}{\Delta(G) + \delta(G) + 2}.$$

As an immediate consequence of Corollary 5, we have the following result explicated by (Zelinka [10]).

Corollary 6 ([10]) For any r-regular graph of order n,

$$\alpha_s^2(G) \le \begin{cases} n/(r+1) & \text{for } r \text{ even,} \\ 0 & \text{for } r \text{ odd.} \end{cases}$$

3 r-partite graphs

In this section we restrict our attention to r-partite graphs with order n. A sharp upper bound is established for $\alpha_s^2(G)$. We begin by stating an inequality explicated by Kang et al.[8].

Lemma 7 For $r(r \geq 2)$ non-negative integers m_1, m_2, \ldots, m_r ,

$$\sqrt{\left(2 + \frac{2}{r-1}\right) \sum_{i=1}^{r-1} \sum_{j=i+1}^{r} m_i m_j} \le \sum_{i=1}^{r} m_i.$$

Theorem 8 If $G = (V_1, V_2, ..., V_r; E)$ is an r-partite graph of order n, $r \geq 2$, then

$$\alpha_s^2(G) \leq \frac{3r}{r-1} + n - \sqrt{\left(\frac{3r}{r-1}\right)^2 + \frac{4r}{r-1}n},$$

and this bound is sharp.

Proof. Let f be an S2IF on G satisfying $f(V) = \alpha_s^2(G)$, and let P and M be defined as in Theorem 2. Furthermore, we write $M_i = M \cap V_i$, $P_i = P \cap V_i$, and let $|M_i| = m_i$, $|P_i| = p_i$, for i = 1, 2, ..., r. Then

$$p + m = \sum_{i=1}^{r} p_i + \sum_{i=1}^{r} m_i = n.$$
 (7)

Now, we calculate the value e(P, M). Since $f[v] \leq 1$ for each vertex v of G, each vertex v of P is adjacent to at least a vertex of M, and so $|N(v) \cap M| = d(v, M) \geq 1$. On the other hand, each vertex v of M is adjacent to at most d(v, M) + 2 vertices of P, and so $d(v, P) \leq d(v, M) + 2$. Hence, we have

$$\sum_{i=1}^{r} p_{i} \leq \sum_{v \in P} d(v, M) = e(P, M)$$

$$= \sum_{v \in M} d(v, P)$$

$$= \sum_{i=1}^{r} \sum_{v \in M_{i}} d(v, P)$$

$$\leq \sum_{i=1}^{r} \sum_{v \in M_{i}} (d(v, M) + 2)$$

$$\leq \sum_{i=1}^{r} m_{i} (|M - M_{i}| + 2)$$

$$= \sum_{i=1}^{r} m_{i} (\sum_{j=1, j \neq i}^{r} m_{j} + 2)$$

$$= 2(\sum_{i=1}^{r-1} \sum_{j=1, j \neq i}^{r} m_{i} m_{j} + \sum_{i=1}^{r} m_{i}).$$

Using (1), we obtain

$$\frac{3}{2}p - n \le \sum_{i=1}^{r-1} \sum_{j=i+1}^{r} m_i m_j. \tag{8}$$

If $\frac{3}{2}p - n \le 0$, then $p \le \frac{2}{3}n$. Thus,

$$\alpha_s^2(G) = p - m = 2p - n \le \frac{1}{3}n \le \frac{3r}{r - 1} + n - \sqrt{\left(\frac{3r}{r - 1}\right)^2 + \frac{4r}{r - 1}n},$$

the desired result follows. So we may assume $\frac{3}{2}p-n>0$. By (7), (8) and Lemma 7, we obtain

$$p + \sqrt{\left(2 + \frac{2}{r-1}\right)\left(\frac{3}{2}p - n\right)} \le n. \tag{9}$$

For notational convenience, we write $a = \sqrt{\frac{3}{2}p - n}$. Then, $p = \frac{2}{3}(a^2 + n)$, and so $\alpha_s^2(G) = f(V) = 2p - n = \frac{1}{3}(4a^2 + n)$. Now we define two functions as follows:

$$g(x) = \frac{2}{3}(x^2 + n) + \sqrt{2 + \frac{2}{r - 1}}x \ (x > 0),$$

$$h(x) = \frac{1}{3}(4x^2 + n) \ (x > 0).$$

Since

$$\frac{dg}{dx} = \frac{4}{3}x + \sqrt{2 + \frac{2}{r-1}} > 0$$
 and $\frac{dh}{dx} = \frac{8}{3}x > 0$.

This implies that g(x) and h(x) are monotonous increasing functions. By (9), we have

$$g(a) = \frac{2}{3}(a^2 + n) + \sqrt{2 + \frac{2}{r - 1}}a$$

$$= p + \sqrt{\left(2 + \frac{2}{r - 1}\right)\left(\frac{3}{2}p - n\right)}$$
< n.

Furthermore, we note that when

$$x_0 = \frac{-3\sqrt{2 + \frac{2}{r-1}} + \sqrt{9(2 + \frac{2}{r-1}) + 8n}}{4},$$

g(x) takes the value n, i.e., $g(x_0) = n$. Hence $a \le x_0$. Therefore

$$\alpha_s^2(G) = f(V) = \frac{1}{3}(4a^2 + n)$$

$$\leq \frac{1}{3}(4x_0^2 + n)$$

$$= \frac{3r}{r-1} + n - \sqrt{\left(\frac{3r}{r-1}\right)^2 + \frac{4r}{r-1}n}.$$

Figure 2: A bipartite graph G with r=2 for which $\alpha_s^2(G)=6+n-2\sqrt{9+2n}$

This establishes the desired upper bound for r-partite graphs. That the given upper bound is sharp, may be seen as follows. Let s be a positive integer, and let H is isomorphic to s disjoint copies of $K_{1,(r-1)s+2}$. Let H_1, H_2, \ldots, H_r be r disjoint copies of H. Furthermore, let X_i and Y_i be the sets of vertices of degree 1 and (r-1)s+2, respectively, for $i=1,2,\ldots,r$. Now let G be the graph obtained from the disjoint union of H_1, H_2, \ldots, H_r by joining every vertex of Y_i to every vertex of Y_j , for $1 \leq i < j \leq r$. Then, G is an r-partite graph of order n=rs[(r-1)s+3] with partite sets $X_1 \cup Y_2, X_2 \cup Y_3, \ldots, X_{r-1} \cup Y_r, X_r \cup Y_1$. An example of a bipartite graph (r=2) is shown in Fig.2. Now we let f be a function on G and assign to each vertex of $\bigcup_{i=1}^r Y_i$ the value -1 and to each vertex of $\bigcup_{i=1}^r X_i$ the value 1. Then, it is easily checked that f is a S2IF on G and we have

$$\begin{split} w(f) &= f(V) &= rs[(r-1)s+2] - rs \\ &= rs[(r-1)s+1] \\ &= \frac{3r}{r-1} + n - \sqrt{\left(\frac{3r}{r-1}\right)^2 + \frac{4r}{r-1}n}. \end{split}$$

Acknowledgements

The third author was supported by Changwon National University, which hosted her during the research was conducted. The authors wish to thank the anonymous refrees for their helpful suggestions.

References

- J. Dunbar, S. T. Hedetniemi, M. A. Henning, P. J. Slater, Signed domination in graphs, *Graph theory, Combinatorics, and Applications*, Wiley, Vol. 1, 1995, pp. 311-322.
- [2] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293.
- [3] Z. Furedi and D. Mubayi, Signed domination in regular graphs and set-systems, J. Combin. Theory Ser. B 76 (1999) 223-239.
- [4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
- [5] M. A. Henning, Dominating functions in graphs. Domination in graphs, Vol. 2, Marcel Dekker, New York, 1998, pp. 31-62.
- [6] M. A. Henning, Signed 2-independence in graphs, Discrete Math. 250 (2002) 93-107.
- [7] L. Kang, C. Dang, M. Cai, E. Shan, Upper bounds for the k-subdomination number of graphs. Discrete Math. 247 (2002) 229-234.
- [8] L. Kang, H. K. Kim, M. Y. Sohn, Minus domination number in k-partite graphs, *Discrete Math.*, to appear.
- [9] L. Kang, E. Shan, Lower bounds on dominating functions in graphs, Ars Combin. 56 (2000) 121-128.
- [10] B. Zelinka, On signed 2-independence number of graphs, manuscript.