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Abstract

Let G = (V, E) be a graph. Let ® : V 2R, where R is the set
of all reals (R can be replaced by any chain). We say that u ®-
strongly dominates v and v ®-weakly dominates u if uv € E and
®(u) > &(v). When P is a constant function, we have the usual
domination and when ® is the degree function of the graph, we have
the strong(weak) domination studied by Sampathkumar et al. In this
paper, we extend the results of O.Ore regarding minimal dominating
sets of a graph. We also extend the concept of fully domination
balance introduced by Sampathkumar et al and obtain a lower bound
for strong domination number of a graph.

1 Introduction

All graphs will be finite undirected graphs without loops and multiple edges.
For general terminology we refer to Harary [2]. )

Let G = (V, E) be a graph. Let ® : V 2R, where R is the set of all
reals(R can be replaced by any chain). If uv € E and ®(u) > ®(v), we say
that u ®-strongly(®s) dominates v and v ®-weakly(Pw) dominates u. If
uv € E and ®(u) > &(v), we say that u strictly ®-strong dominates v and
v strictly ®-weak dominates u. If ®(v) = ¢ (a constant) for every v € V,
we have the usual domination. If ®(v) = deg v for every v € V, we have
strong(weak) domination studied by Sampathkumar et al [4].

A subset D of V is a ®-strong(weak) dominating set of G if every vertex
v € V —D is ®s(Pw)-dominated by some u € D. We use the abbreviations
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®sd-set(dwd-set) for ®-strong(weak) dominating sets. The ®-strong(weak)
domination number ®,(G) (®w(G)) of G is the size of its smallest $sd-set
(®wd-set). The domination, strong(weak) domination numbers of a graph
G are denoted by ¥(G),7:(G) (7w (G)). When no ambiguity exists as to the
graph in question the reference to G as (G) will be omitted. We observe
that for a regular graph G, v; = v, but ®, need not be equal to ®,,.

A ®sd-set(Pwd-set) D of G is minimal if D — {u} is not a ®sd-set(Pwd-
set) for any u € D. A ®sd-set(Pwd-set) D of G is minimum if | D |= @,
(| D |= ®w). Every minimum ®sd-set{®wd-set) is a minimal ®sd-set(Pwd-
set). The converse of this result is not true.

The ®-strong neighbourhood of a vertex u € V denoted by Ng,(u) is
defined by Ng,(u) = {v € V : uv € E and ®(u) < ®(v)}. Similarly we
define the ®-weak neighbourhood Ng.,(u) of u € V. The open neighbour-
hood, strong neighbourhood and weak neighbourhood of u are respectively
denoted by N(u), N,(u) and Ny, (u).

A graph G is fully & domination balanced if there exists a partition of
the vertex set V = S; U S, of G such that S; is a ®sd-set with | S |= &,
and S is a Pwd-set with | Sy |= By.

In Section 2 of this paper, we extend some of the results in [3] regarding
the relation between minimal dominating sets, its complement and neigh-
bourhcods of vertices in it, and characterise fully & domination balanced
graphs. In Section 3, a lower bound for strong domination number of a
graph is obtained.

2 Ore’s theorems in ®-strong(weak) domina-
tion

. Proposition 2.1 ( O.Ore [3] ) Let G = (V, E) be a graph without isolated
vertices. If D is a minimal dominating set of G, then V — D is a dominating
set of G.

We find that if D is a minimal ®sd-set(®wd-set) of a graph without
isolated vertices, then V — D need not be a ®wd-set(®sd-set). For, in
graph G1, D = {v1,vs, v5, v6} is a minimal ®sd-set. But V — D = {v2,v4}
is not a ®wd-set.
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In the following proposition we identify the vertices of a ®sd-set D which
have to be included in V — D to get a dwd-set.
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Proposition 2.2 Let G = (V,E) be a graph without isolated vertices. If
D is a minimal ®sd-set, then (V — D)U D, U D, is a dwd-set, where

= {u € D : u is strictly ®s-dominated by some vertez v of D and v does
not ®s-dominate any vertex of V—D} and Dy = {u € D : u is not adjacent
to any vertez of D and u does not ®s-dominate any vertez of V — D}.

Proof. By definition of Dy, no vertex of V Pw-dominates any vertex of
D,. So it is enough to prove that every vertex u € D — (D; U Dy) is dw-
dominated by some vertex v € (V — D) U D,. Assume the contrary. Then
either u is not adjacent to any v € (V — D)U D, or whenever u is adjacent
to some v € (V — D) U Dy then ®&(u) < ®(v). Since D is a ®sd-set and
since u does not $s-dominate any vertex of V — D, every vertex of V — D
is ®s-dominated by some vertex of D — {u}. Now we have the following
three cases.

Case(i) u is not adjacent to any vertex of (V — D) U D;.

Since no vertex of D, is adjacent to any vertex of D and since u is not
an isolated vertex, there is a vertex v € D — (D, U D;) adjacent to u. Since
v & Dy, ®(u) < $(v). Hence D — {u} is a $sd-set.

Case(ii) u is adjacent to some v € V — D such that &(u) < ®(v) and u is
not adjacent to any v € D;.

Since u € D,, there is a vertex w € D — (D; U D;) which is adjacent to
u. Asw ¢ Dy, ®(u) < ®(w). Hence D — {u} is a $sd-set.

Case(iii) v is adjacent to some v € Dy such that ®(u) < ®(v). Then
D — {u} is a ®sd-set.

Thus we get a contradiction to the minimality of D, which proves the
proposition. (W]
Remark.1 If ® is a constant function, then D1 and D, are empty, and
Ore’s theorem follows.
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Remark.2 The identification of the sets D; and D, is very important
in ®-strong(weak) domination. In the case of ordinary domination,D,
and D, are empty. But in the case of strong(weak) domination they need
not be empty. For, consider the graph G;. A minimal sd-set of G3 is

= {UI:USpUG)U‘IsvSs'US:vIO}- Dy = {5} and D; = {nn}. V-D =
{1)2,"04, Vs, V11, V12, ’013} is not a wd-set. But (V — D) UD; UD; is a wd-set.
Sampathkumar et al (4] pointed out that the complement of a sd-set need
not be a wd-set but did not probe further. In the above proposition this
task has been successfully completed in a more general set up than that
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considered by Sampathkumar et al.
The weak version of proposition 2.2 is given in the following:

Proposition 2.3 Let G = (V, E) be a graph without isolated vertices. If
D is a minimal ®wd-set, then (V — D) U D3 U Dy is a ®sd-set, where
D3 = {u € D : u is strictly dw-dominated by some v of D and v does not
dw-dominate any verter of V — D} and Dy = {u € D : u is not adjacent
to any vertez of D and u does not dw-dominate any vertez of V — D}.

Proposition 2.4 Let G be a graph of order n without isolated vertices.
Then ®, + ®, < n+ min {| Dy | + | D2 |,| D3 | + | Dq |} where
Di, Dy, D3 and D4 are defined in propositions 2.2 and 2.3.

Let G = (V, E) be a graph and D C V. We say that D is full if every
u € D is adjacent to some v € V — D. Similarly we define strong full(s-full),
weak full(w-full), ®-strong full(®s-full) and ®-weak full(®w-full) sets of a
graph.

The following proposition is obvious.

Proposition 2.5 For any subset D of V (i) D is ®s-full if and only if D,
and Dy are empty (ii) D is Sw-full if and only if D3 and D4 are emply.

The full number f(G) of a graph G is the maximum number of vertices
in the full set of G. Similarly we define the strong full number (f,(G)), the
weak full number(f,(G)), the ®-strong full number (fz,(G)) and ®-weak
full number(fsw(G)) of G.

Proposition 2.6 ( Sampahkumar et al [4] ) If G is a graph of order n, then
(i) £(G) +7(G) = n (ii) £(G) + 1 (G) = n and (iii) fu(G) +7(G) = n.

Proposition 2.7 If G is a graph of order n, then (i) f3s(G)+®(G) =n
and (if) f@w(G) + Q,(G) =n.

Proof. (i) Let S be a ®wd-set with | § |= ®,. Then V — S is ®s-full.
Hence fg,(G) > n—®,(G). Let T be a ®s-full set of maximum cardinality.
Then V — T is a dwd-set. Hence ®,(G) < n — fz,(G). Proof of (ii) i 1s
similar to proof of (i).

Let Ag(dz) be the maximum(minimum) of the degrees of the vertxces
_ having maximum(minimum) ®-value. Then Ag < Aand dp >4 . If & is
a constant function or the degree function of the graph, then dg = § and
Ag =A.

The following proposition is obvious.

Proposition 2.8 If G is a graph of order n, then v < ®, < n— Ag and
¥< Py <n-—Jds.
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Proposition 2.9 If G is a graph of order n, then 85 < f8:(G) < f(G)
and As < fou(G) < f(G).

Proof. Proof follows from the following equations:
7G) <L8(G) <n-As
7(G) < Pu(G) <n-is
f(G) +7v(G) =n
f@a(G) + ‘Dw(G) =n
fou(G) +2,(G) =n. g

A graph G is fully domination balanced(fd-balanced) if there exists a
partition of the vertex set G into S and S, such that S is a sd-set with
| S1 |=1v, and S> is a wd-set with | Sz |= yy. Similarly fully & domination
balanced(f®d-balanced) graphs are defined.

Proposition 2.10 ( Sampathkumar et al [4] ) A graph of order n is fd-
balanced if and only if (i) f; + fw = n and (ii) there exists a sd-set(wd-set)
with cardinality -, (y,) which is s-full(w-full).

Proposition 2.11 A graph of order n is f®d-balanced if and only if
(i) fos + fow = n and (ii) there ezists a Psd-set (Bwd-set) with cardinality
®, (@) which is Bs-full(dw-full).

Proof. Suppose that G is f®d-balanced. Then by definition, (i) holds.
Also there exists a partition of V into S; and S, such that S; is a ®sd-set
with cardinality ®, and S, is a $wd-set with cardinality ®,,. Then S is
®s-full and S, is Pw-full. Conversely, suppose (i) and (ii) hold. Let S; be a
®sd-set with cardinality ®; which is ®s-full. Then S = V — .5 is ®wd-set.
Since fps + fow = n and &, + fz, = n, we get | S; |= ®,. This proves
that G is f®d-balanced. a

Proposition 2.12 (0.Ore [3] ) Let G = (V, E) be a graph. A dominating
set D of G is minimal if and only if for every u € D one of the following
conditions holds. (i) N(u) N D is empty and

(ii) There is a vertex v € V — D such that N(u) N D = {u}.

The following result can be proved by considering ®-strong neighbour-
hoods of vertices of G.

Proposition 2.13 Let G = (V, E) be a graph. A ®sd-set D of G is mini-
mal if and only if for each u € D one of the following conditions holds.
(i) N3,;(u) N D is empty and

(ii) There is a vertex v € V — D such that Ng,(v) N D = {u}.

In a similar way, we can characterize minimal ®wd-sets of a graph.
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Corollary 2.14 Let G = (V,E) be a graph. A sd-set D of G is minimal
if and only if for every u € D one of the following conditions holds.

(i) Ny(u) N D is empty and

(ii) There is a vertezv € V — D such that N,(u)N D = {u}.

Minimal wd-sets of a graph can be similarly characterised.
Remark. In [4] only the necessary part of corollary 2.14 has been proved.

3 Lower bound for strong domination num-
ber of a graph

In [7] Walikar et al have given a lower bound for domination number of
a graph in the following form: For a graph,of order =, 1G) 2 52y
where A(G) is the maximum degree of a vertex in G and [z] denotes the
smallest integer not less than z. A y-set is a minimum dominating set
of cardinality 4. In proposition 3.2, we give an improved lower bound for
domination number of a graph.
Let G be a non-regular graph of order n with degree sequence

0= (d7,d3?,---,d;*), where dy > da--- > d.

Lemma 3.1 Let D be a y-set ofG and mi(1 < i < k) be the number
of vertices of degree d; in D. Let ny = [35%] pr = min {n1,n,}. For

l:‘-zm(dj-i-l)

, i-1
2< i<k letn} = |—r—/| ifn— 3 pj(dj +1) > 0 and zero
i=1

otherwise, and p; = min {n;,n}}. If m; > p;, then p; = n} and p;41 =0
(1 € i < k—1). Also there ezists a positive integer r < k such that

,
n— zlpj(d,-+1)50.

Proof. If m; < n then as m; < n;, we get m; < min {n;,n}} = p;.

=1
"-pr(di+1)
Since m; > p; we get m; > n!. Therefore p; = n{ = —"’"';,,T— >
=1
n-_Pi(di+1) ;
—&—7— . Hence J;pj(dj +1) > n. That is n},; = 0. Therefore
pi+1=0.

k
Now n— 3" nj(d; +1) < 0. Hence there exists a least positive integer r
i=1

r i
such that n— Y nj(d;+1) < Oforsomer < k. Thatisn—3_ n;j(d;+1) >0
j=1 i=1
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for ¢ = 1 to »r — 1. From this we get thatp, =n; for j = 1to r—1.
r—1
n— E n;i(dj +1) < <0 implies that n — 37 n;(d; +1) < n.(d- + 1).
J=1 i=1
-1 ,
Hence n, < n, which means p, = n,. Since n-—rz nj(d;+1) <n.(d-+1),
r
n— Y pi(di+1)=n— Z nj(d; + 1) + (n, — n,)(d, + 1) < 0. Hence the
Jj=1

ji=1
lemma. 0o

k
Proposition 3.2 ¥(G) > 3 pi, where p;’s are defined in lemma 3.1.
i=1

Proof Let 7 be the minimum suffix 7 — 1(> 1) such that

n— Ep,(d,+l)<0

Case(x) r=1. Then n — p1(dy + 1) < 0. Therefore p, =0 for i > 2. Now
Em.(dl-l-l) > Zm,(d +1) > n. Then ¥(G) = Zm, 2[&5ql=m=

Pl
Case(ii) 2 < r < k. Then py,ps,---,pr are >0 and n — Z pi(di +1) <0.
i=1

r—-1 r
Hence pr4 - - - are zero. Now ) pi(di +1) < n < Y pi(d; +1).
i=1 i=1
k r—1
This implies Z mi(di+1) >n> E pi(d; +1).

Then rz-:l(m, —-pi)(di+1) + Z mi(d; +1) > n— 2 pi(di +1) > 0.

i—r

But E(m.-—p.)(d,+l)+(d,-+l) 2 m; > E(m,—p.)(d,+1)+2 m;(di+1).

i=r i=r

Therefore 2 (m; — pi)(d; + 1) +(dr +1) z m; >n— Z pi(di +1).
i=1 i=r =1

r—1

n—Y pi(di+1)

Then E -L"—)-(——lm‘ ) ditl) Z m; > —S——.
=1
Smcem;<p,forl<z<r 1(by lemma 3.1) and d; > d,. for 1 < i < r—1,
r—l
n-3" pi(di+1)
we have Z(m P+ m > z i) 4§y o
i=r i=r

-1 n—Ep.(d.«H.
That is Em,— Zp, 2| =S| =n2p

i=1
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k r k

Therefore y(G) = > m; > Y pi= 3 pi. o
i=1 i=1 =1

Remark Since p; = [m], the result that y(G) > [ﬁ'a‘j] in [7] can

be written as 4(G) > p;. The proposition 3.2 shows that this lower bound

can be improved. For a regular graph, the proposition 3.2 gives the same

result proved by Walikar et al [7]. Since v(G) < 7,(G), we have

k
Corollary 3.3 v,(G) > Y_ p;, where p;’ s are as in lemma 3.1.

i=1
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