Φ-Strong(weak) domination in a graph

V. Swaminathan

Department of Mathematics, Saraswathi Narayanan College Madurai 625022, Tamil Nadu, India

P. Thangaraju *

School of Mathematics, Madurai Kamaraj University Madurai 625021, Tamil Nadu, India

Abstract

Let G = (V, E) be a graph. Let $\Phi : V \to \mathbb{R}$, where \mathbb{R} is the set of all reals (\mathbb{R} can be replaced by any chain). We say that u Φ -strongly dominates v and v Φ -weakly dominates u if $uv \in E$ and $\Phi(u) \geq \Phi(v)$. When Φ is a constant function, we have the usual domination and when Φ is the degree function of the graph, we have the strong(weak) domination studied by Sampathkumar et al. In this paper, we extend the results of O.Ore regarding minimal dominating sets of a graph. We also extend the concept of fully domination balance introduced by Sampathkumar et al and obtain a lower bound for strong domination number of a graph.

1 Introduction

All graphs will be finite undirected graphs without loops and multiple edges. For general terminology we refer to Harary [2].

Let G=(V,E) be a graph. Let $\Phi:V\to \mathbf{R}$, where \mathbf{R} is the set of all reals(\mathbf{R} can be replaced by any chain). If $uv\in E$ and $\Phi(u)\geq \Phi(v)$, we say that u Φ -strongly(Φs) dominates v and v Φ -weakly(Φw) dominates u. If $uv\in E$ and $\Phi(u)>\Phi(v)$, we say that u strictly Φ -strong dominates v and v strictly Φ -weak dominates u. If $\Phi(v)=c$ (a constant) for every $v\in V$, we have the usual domination. If $\Phi(v)=deg\ v$ for every $v\in V$, we have strong(weak) domination studied by Sampathkumar et al [4].

A subset D of V is a Φ -strong(weak) dominating set of G if every vertex $v \in V - D$ is $\Phi s(\Phi w)$ -dominated by some $u \in D$. We use the abbreviations

^{*}Research supported by UGC(No.F.1-075 MINOR/SRO)

 Φsd -set $(\Phi wd$ -set) for Φ -strong(weak) dominating sets. The Φ -strong(weak) domination number $\Phi_s(G)$ ($\Phi_w(G)$) of G is the size of its smallest Φsd -set (Φwd -set). The domination, strong(weak) domination numbers of a graph G are denoted by $\gamma(G)$, $\gamma_s(G)$ ($\gamma_w(G)$). When no ambiguity exists as to the graph in question the reference to G as (G) will be omitted. We observe that for a regular graph G, $\gamma_s = \gamma_w$ but Φ_s need not be equal to Φ_w .

A $\Phi sd\operatorname{-set}(\Phi wd\operatorname{-set})$ D of G is minimal if $D-\{u\}$ is not a $\Phi sd\operatorname{-set}(\Phi wd\operatorname{-set})$ for any $u\in D$. A $\Phi sd\operatorname{-set}(\Phi wd\operatorname{-set})$ D of G is minimum if $|D|=\Phi_s$ ($|D|=\Phi_w$). Every minimum $\Phi sd\operatorname{-set}(\Phi wd\operatorname{-set})$ is a minimal $\Phi sd\operatorname{-set}(\Phi wd\operatorname{-set})$. The converse of this result is not true.

The Φ -strong neighbourhood of a vertex $u \in V$ denoted by $N_{\Phi_s}(u)$ is defined by $N_{\Phi_s}(u) = \{v \in V : uv \in E \text{ and } \Phi(u) \leq \Phi(v)\}$. Similarly we define the Φ -weak neighbourhood $N_{\Phi w}(u)$ of $u \in V$. The open neighbourhood, strong neighbourhood and weak neighbourhood of u are respectively denoted by N(u), $N_s(u)$ and $N_w(u)$.

A graph G is fully Φ domination balanced if there exists a partition of the vertex set $V = S_1 \cup S_2$ of G such that S_1 is a Φsd -set with $|S_1| = \Phi_s$ and S_2 is a Φwd -set with $|S_2| = \Phi_w$.

In Section 2 of this paper, we extend some of the results in [3] regarding the relation between minimal dominating sets, its complement and neighbourhoods of vertices in it, and characterise fully Φ domination balanced graphs. In Section 3, a lower bound for strong domination number of a graph is obtained.

2 Ore's theorems in Φ -strong(weak) domination

Proposition 2.1 (O.Ore [3]) Let G = (V, E) be a graph without isolated vertices. If D is a minimal dominating set of G, then V - D is a dominating set of G.

We find that if D is a minimal Φsd -set(Φwd -set) of a graph without isolated vertices, then V-D need not be a Φwd -set(Φsd -set). For, in graph G_1 , $D=\{v_1,v_3,v_5,v_6\}$ is a minimal Φsd -set. But $V-D=\{v_2,v_4\}$ is not a Φwd -set.

In the following proposition we identify the vertices of a Φsd -set D which have to be included in V-D to get a Φwd -set.

Proposition 2.2 Let G = (V, E) be a graph without isolated vertices. If D is a minimal Φsd -set, then $(V - D) \cup D_1 \cup D_2$ is a Φwd -set, where $D_1 = \{u \in D : u \text{ is strictly } \Phi s$ -dominated by some vertex v of D and v does not Φs -dominate any vertex of $V - D\}$ and $D_2 = \{u \in D : u \text{ is not adjacent to any vertex of } D$ and u does not Φs -dominate any vertex of $V - D\}$.

Proof. By definition of D_2 , no vertex of V Φw -dominates any vertex of D_2 . So it is enough to prove that every vertex $u \in D - (D_1 \cup D_2)$ is Φw -dominated by some vertex $v \in (V-D) \cup D_1$. Assume the contrary. Then either u is not adjacent to any $v \in (V-D) \cup D_1$ or whenever u is adjacent to some $v \in (V-D) \cup D_1$ then $\Phi(u) < \Phi(v)$. Since D is a Φsd -set and since u does not Φs -dominate any vertex of V-D, every vertex of V-D is Φs -dominated by some vertex of $D-\{u\}$. Now we have the following three cases.

Case(i) u is not adjacent to any vertex of $(V - D) \cup D_1$.

Since no vertex of D_2 is adjacent to any vertex of D and since u is not an isolated vertex, there is a vertex $v \in D - (D_1 \cup D_2)$ adjacent to u. Since $v \notin D_1, \Phi(u) \leq \Phi(v)$. Hence $D - \{u\}$ is a Φsd -set.

Case(ii) u is adjacent to some $v \in V - D$ such that $\Phi(u) < \Phi(v)$ and u is not adjacent to any $v \in D_1$.

Since $u \notin D_2$, there is a vertex $w \in D - (D_1 \cup D_2)$ which is adjacent to u. As $w \notin D_1$, $\Phi(u) \leq \Phi(w)$. Hence $D - \{u\}$ is a Φsd -set.

Case(iii) u is adjacent to some $v \in D_1$ such that $\Phi(u) < \Phi(v)$. Then $D - \{u\}$ is a Φsd -set.

Thus we get a contradiction to the minimality of D, which proves the proposition. \Box

Remark.1 If Φ is a constant function, then D_1 and D_2 are empty, and Ore's theorem follows.

Remark.2 The identification of the sets D_1 and D_2 is very important in Φ -strong(weak) domination. In the case of ordinary domination, D_1 and D_2 are empty. But in the case of strong(weak) domination they need not be empty. For, consider the graph G_2 . A minimal sd-set of G_2 is $D = \{v_1, v_3, v_6, v_7, v_8, v_9, v_{10}\}$. $D_1 = \{v_6\}$ and $D_2 = \{v_1\}$. $V - D = \{v_2, v_4, v_5, v_{11}, v_{12}, v_{13}\}$ is not a wd-set. But $(V - D) \cup D_1 \cup D_2$ is a wd-set. Sampathkumar et al [4] pointed out that the complement of a sd-set need not be a wd-set but did not probe further. In the above proposition this task has been successfully completed in a more general set up than that

considered by Sampathkumar et al.

The weak version of proposition 2.2 is given in the following:

Proposition 2.3 Let G = (V, E) be a graph without isolated vertices. If D is a minimal Φwd -set, then $(V - D) \cup D_3 \cup D_4$ is a Φsd -set, where $D_3 = \{u \in D : u \text{ is strictly } \Phi w$ -dominated by some v of D and v does not Φw -dominate any vertex of V - D and $D_4 = \{u \in D : u \text{ is not adjacent to any vertex of } D \text{ and } u \text{ does not } \Phi w$ -dominate any vertex of V - D.

Proposition 2.4 Let G be a graph of order n without isolated vertices. Then $\Phi_s + \Phi_w \leq n + \min\{|D_1| + |D_2|, |D_3| + |D_4|\}$ where D_1, D_2, D_3 and D_4 are defined in propositions 2.2 and 2.3.

Let G = (V, E) be a graph and $D \subset V$. We say that D is full if every $u \in D$ is adjacent to some $v \in V - D$. Similarly we define strong full(s-full), weak full(w-full), Φ -strong full(Φs -full) and Φ -weak full(Φw -full) sets of a graph.

The following proposition is obvious.

Proposition 2.5 For any subset D of V (i) D is Φs -full if and only if D_1 and D_2 are empty (ii) D is Φw -full if and only if D_3 and D_4 are empty.

The full number f(G) of a graph G is the maximum number of vertices in the full set of G. Similarly we define the strong full number $(f_s(G))$, the weak full number $(f_{\Phi s}(G))$, the Φ -strong full number $(f_{\Phi s}(G))$ and Φ -weak full number $(f_{\Phi w}(G))$ of G.

Proposition 2.6 (Sampahkumar et al [4]) If G is a graph of order n, then (i) $f(G) + \gamma(G) = n$ (ii) $f_s(G) + \gamma_w(G) = n$ and (iii) $f_w(G) + \gamma_s(G) = n$.

Proposition 2.7 If G is a graph of order n, then (i) $f_{\Phi s}(G) + \Phi_w(G) = n$ and (ii) $f_{\Phi w}(G) + \Phi_s(G) = n$.

Proof. (i) Let S be a Φwd -set with $|S| = \Phi_w$. Then V - S is Φs -full. Hence $f_{\Phi s}(G) \geq n - \Phi_w(G)$. Let T be a Φs -full set of maximum cardinality. Then V - T is a Φwd -set. Hence $\Phi_w(G) \leq n - f_{\Phi s}(G)$. Proof of (ii) is similar to proof of (i).

Let $\Delta_{\Phi}(\delta_{\Phi})$ be the maximum(minimum) of the degrees of the vertices having maximum(minimum) Φ -value. Then $\Delta_{\Phi} \leq \Delta$ and $\delta_{\Phi} \geq \delta$. If Φ is a constant function or the degree function of the graph, then $\delta_{\Phi} = \delta$ and $\Delta_{\Phi} = \Delta$.

The following proposition is obvious.

Proposition 2.8 If G is a graph of order n, then $\gamma \leq \Phi_s \leq n - \Delta_{\Phi}$ and $\gamma \leq \Phi_w \leq n - \delta_{\Phi}$.

Proposition 2.9 If G is a graph of order n, then $\delta_{\Phi} \leq f_{\Phi s}(G) \leq f(G)$ and $\Delta_{\Phi} \leq f_{\Phi w}(G) \leq f(G)$.

Proof. Proof follows from the following equations:

$$\begin{array}{lll} \gamma(G) & \leq \Phi_s(G) & \leq n - \Delta_{\Phi} \\ \gamma(G) & \leq \Phi_w(G) & \leq n - \delta_{\Phi} \\ f(G) & + \gamma(G) & = n \\ f_{\Phi_s}(G) & + \Phi_w(G) & = n \\ f_{\Phi_w}(G) & + \Phi_s(G) & = n. \end{array}$$

A graph G is fully domination balanced(fd-balanced) if there exists a partition of the vertex set G into S_1 and S_2 such that S_1 is a sd-set with $|S_1| = \gamma_s$ and S_2 is a wd-set with $|S_2| = \gamma_w$. Similarly fully Φ domination balanced($f\Phi d$ -balanced) graphs are defined.

Proposition 2.10 (Sampathkumar et al [4]) A graph of order n is fd-balanced if and only if (i) $f_s + f_w = n$ and (ii) there exists a sd-set(wd-set) with cardinality $\gamma_s(\gamma_w)$ which is s-full(w-full).

Proposition 2.11 A graph of order n is $f\Phi d$ -balanced if and only if (i) $f_{\Phi s} + f_{\Phi w} = n$ and (ii) there exists a Φsd -set (Φwd -set) with cardinality Φ_s (Φ_w) which is Φs -full(Φw -full).

Proof. Suppose that G is $f\Phi d$ -balanced. Then by definition, (i) holds. Also there exists a partition of V into S_1 and S_2 such that S_1 is a Φsd -set with cardinality Φ_s and S_2 is a Φwd -set with cardinality Φ_w . Then S_1 is Φs -full and S_2 is Φw -full. Conversely, suppose (i) and (ii) hold. Let S_1 be a Φsd -set with cardinality Φ_s which is Φs -full. Then $S_2 = V - S_1$ is Φwd -set. Since $f_{\Phi s} + f_{\Phi w} = n$ and $\Phi_w + f_{\Phi s} = n$, we get $|S_2| = \Phi_w$. This proves that G is $f\Phi d$ -balanced.

Proposition 2.12 (O.Ore [3]) Let G = (V, E) be a graph. A dominating set D of G is minimal if and only if for every $u \in D$ one of the following conditions holds. (i) $N(u) \cap D$ is empty and

(ii) There is a vertex $v \in V - D$ such that $N(u) \cap D = \{u\}$.

The following result can be proved by considering Φ -strong neighbourhoods of vertices of G.

Proposition 2.13 Let G = (V, E) be a graph. A Φ sd-set D of G is minimal if and only if for each $u \in D$ one of the following conditions holds.

- (i) $N_{\Phi_s}(u) \cap D$ is empty and
- (ii) There is a vertex $v \in V D$ such that $N_{\Phi s}(v) \cap D = \{u\}$.

In a similar way, we can characterize minimal Φwd -sets of a graph.

Corollary 2.14 Let G = (V, E) be a graph. A sd-set D of G is minimal if and only if for every $u \in D$ one of the following conditions holds.

(i) $N_s(u) \cap D$ is empty and

(ii) There is a vertex $v \in V - D$ such that $N_s(u) \cap D = \{u\}$.

Minimal wd-sets of a graph can be similarly characterised.

Remark. In [4] only the necessary part of corollary 2.14 has been proved.

3 Lower bound for strong domination number of a graph

In [7] Walikar et al have given a lower bound for domination number of a graph in the following form: For a graph of order n, $\gamma(G) \ge \lceil \frac{n}{1+\Delta(G)} \rceil$, where $\Delta(G)$ is the maximum degree of a vertex in G and $\lceil x \rceil$ denotes the smallest integer not less than x. A γ -set is a minimum dominating set of cardinality γ . In proposition 3.2, we give an improved lower bound for domination number of a graph.

Let G be a non-regular graph of order n with degree sequence $\Pi = (d_1^{n_1}, d_2^{n_2}, \dots, d_k^{n_k})$, where $d_1 > d_2 \dots > d_k$.

Lemma 3.1 Let D be a γ -set of G and $m_i(1 \le i \le k)$ be the number of vertices of degree d_i in D. Let $n'_1 = \lceil \frac{n}{d_1+1} \rceil$, $p_1 = \min \{n_1, n'_1\}$. For

$$2 \leq i \leq k, \text{ let } n'_i = \begin{bmatrix} n - \sum\limits_{j=1}^{i-1} p_j(d_j+1) \\ \hline d_i+1 \end{bmatrix} \text{ if } n - \sum\limits_{j=1}^{i-1} p_j(d_j+1) > 0 \text{ and zero}$$
 otherwise, and $p_i = \min\{n_i, n'_i\}$. If $m_i > p_i$, then $p_i = n'_i$ and $p_{i+1} = 0$ $(1 \leq i \leq k-1)$. Also there exists a positive integer $r \leq k$ such that $n - \sum\limits_{j=1}^{i} p_j(d_j+1) \leq 0$.

Proof. If $m_i \leq n_i'$ then as $m_i \leq n_i$, we get $m_i \leq \min \{n_i, n_i'\} = p_i$. Since $m_i > p_i$ we get $m_i > n_i'$. Therefore $p_i = n_i' = \frac{\left[n - \sum_{j=1}^{i-1} p_j(d_j+1)\right]}{d_i+1} \geq \frac{n - \sum_{j=1}^{i-1} p_j(d_j+1)}{d_i+1}$. Hence $\sum_{j=1}^{i} p_j(d_j+1) \geq n$. That is $n_{i+1}' = 0$. Therefore $p_{i+1} = 0$.

Now $n - \sum_{j=1}^{k} n_j(d_j + 1) \le 0$. Hence there exists a least positive integer r such that $n - \sum_{j=1}^{r} n_j(d_j + 1) \le 0$ for some $r \le k$. That is $n - \sum_{j=1}^{i} n_j(d_j + 1) > 0$

for i=1 to r-1. From this we get that $p_j=n_j$ for j=1 to r-1. $n-\sum_{j=1}^r n_j(d_j+1) \leq 0$ implies that $n-\sum_{j=1}^{r-1} n_j(d_j+1) \leq n_r(d_r+1)$.

Hence $n'_r \leq n_r$ which means $p_r = n'_r$. Since $n - \sum_{j=1}^{r-1} n_j (d_j + 1) \leq n'_r (d_r + 1)$, $n - \sum_{j=1}^{r} p_j (d_j + 1) = n - \sum_{j=1}^{r} n_j (d_j + 1) + (n_r - n'_r) (d_r + 1) \leq 0$. Hence the

Proposition 3.2 $\gamma(G) \geq \sum_{i=1}^{k} p_i$, where p_i 's are defined in lemma 3.1.

Proof. Let r be the minimum suffix $i-1 (\geq 1)$ such that $n-\sum_{j=1}^{i-1} p_j(d_j+1) \leq 0$.

Case(i) r = 1. Then $n - p_1(d_1 + 1) \le 0$. Therefore $p_i = 0$ for $i \ge 2$. Now $\sum_{i=1}^k m_i(d_1 + 1) \ge \sum_{i=1}^k m_i(d_i + 1) \ge n$. Then $\gamma(G) = \sum_{i=1}^k m_i \ge \lceil \frac{n}{d_1 + 1} \rceil = n_1' = p_1'$

Case(ii) $2 \le r \le k$. Then p_1, p_2, \dots, p_r are > 0 and $n - \sum_{i=1}^r p_i(d_i + 1) \le 0$.

Hence $p_{r+1} \cdots$ are zero. Now $\sum_{i=1}^{r-1} p_i(d_i+1) < n \le \sum_{i=1}^r p_i(d_i+1)$.

This implies $\sum_{i=1}^{k} m_i(d_i+1) \ge n > \sum_{i=1}^{r-1} p_i(d_i+1)$.

Then $\sum_{i=1}^{r-1} (m_i - p_i)(d_i + 1) + \sum_{i=r}^k m_i(d_i + 1) \ge n - \sum_{i=1}^{r-1} p_i(d_i + 1) > 0$.

But $\sum_{i=1}^{r-1} (m_i - p_i)(d_i + 1) + (d_r + 1) \sum_{i=r}^k m_i \ge \sum_{i=1}^{r-1} (m_i - p_i)(d_i + 1) + \sum_{i=r}^k m_i(d_i + 1)$.

Therefore $\sum_{i=1}^{r-1} (m_i - p_i)(d_i + 1) + (d_r + 1) \sum_{i=r}^k m_i \ge n - \sum_{i=1}^{r-1} p_i(d_i + 1)$.

Then
$$\sum_{i=1}^{r-1} \frac{(m_i - p_i)(d_i + 1)}{d_r + 1} + \sum_{i=r}^k m_i \ge \frac{n - \sum_{i=1}^r p_i(d_i + 1)}{d_r + 1}$$
.

Since $m_i \leq p_i$ for $1 \leq i \leq r-1$ (by lemma 3.1) and $d_i > d_r$ for $1 \leq i \leq r-1$,

we have $\sum_{i=1}^{r-1} (m_i - p_i) + \sum_{i=r}^k m_i \ge \sum_{i=1}^{r-1} \frac{(m_i - p_i)(d_i + 1)}{d_r + 1} + \sum_{i=r}^k m_i > \frac{n - \sum_{i=1}^r p_i(d_i + 1)}{d_r + 1}$.

That is $\sum_{i=1}^{k} m_i - \sum_{i=1}^{r-1} p_i \ge \left[\frac{n - \sum_{i=1}^{r-1} p_i (d_i + 1)}{\frac{d_r + 1}{d_r + 1}} \right] = n'_r \ge p_r$.

Therefore $\gamma(G) = \sum_{i=1}^k m_i \ge \sum_{i=1}^r p_i = \sum_{i=1}^k p_i$.

Remark Since $p_1 = \lceil \frac{n}{1+\Delta(G)} \rceil$, the result that $\gamma(G) \geq \lceil \frac{n}{1+\Delta(G)} \rceil$ in [7] can be written as $\gamma(G) \geq p_1$. The proposition 3.2 shows that this lower bound can be improved. For a regular graph, the proposition 3.2 gives the same result proved by Walikar et al [7]. Since $\gamma(G) \leq \gamma_s(G)$, we have

Corollary 3.3 $\gamma_s(G) \geq \sum_{i=1}^k p_i$, where p_i 's are as in lemma 3.1.

Acknowledgement

The authors would like to thank the referee for his careful reading of the paper and an excellent suggestions.

References

- [1] Johannes H. Hattingh and Renu C. Laskar, On weak domination in graphs, Ars Combinatoria 49 (1998) 205-216.
- [2] F.Harary, Graph Theory, Addison-Wesley, Reading, Mass (1972).
- [3] O.Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 Providence (1962).
- [4] E. Sampathkumar and L. Pushpalatha, Strong weak domination and domination balance in a graph, Discrete Math. 161 (1996) 235-242.
- [5] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc. (1998).
- [6] Terèsa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker Inc. (1998).
- [7] H.B. Walikar, B.D. Acharya and E. Sampathkumar, Recent developments in the theory of domination in graphs, MRI Lecture Notes in Math. 1 (1976).