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Abstract

It has been shown that if G = (V, E) is a simple graph with n
vertices, m edges, an average (per edge) of ¢ triangles occurring on
the edges, and J = maxuvee|N(u)UN(v)|, then 4m < n(J+¢). The
extremal graphs for this inequality for J = n and J = n — 1 have
been determined. For J = n, the extremal graphs are the Turan
graphs with parts of equal size; notice that these are the complements
of the strongly regular graphs with 4 = 0. For J = n — 1, the
extremal graphs are the complements of the strongly regular graphs
with 4 = 1. (The only such graphs known to exist are the Moore
graphs of diameter 2).

For J = n—2 and t = 0, it has recently been shown that the
only extremal graph (except when n = 8,10) is K3 2 — (1-factor).
Here, we use a well-known theorem of Andrasfai, Erd6s, and Sés to
characterize the extremal graphs for ¢ = 0, any given value of n — J,
and n sufficiently large (they are the regular bipartite graphs). Then
we give some examples of extremal non-bipartite graphs for smaller
values of n.

1 Introduction

Suppose that G = (V, E) is a simple graph with |V| = n and |E| = m.
For each u € V, let N(u) = {v € V | uv € E}; for each e = uv € E, let
t(e) = |N(u)NN(v)|, and let J(e) = |N(u) UN(v)|. Finally,let t = ¢(G) =
LY ecetl(e), and let J = J(G) = maxeeeJ(e).

It is known that 4m < n(J +t) with equality if and only if G is regular
and e — t(e) is a constant function [3]. This also holds if J and ¢ are
redefined so that J is an average and ¢ is a2 maximum.
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If e = uv € E, t(e) + J(e) = dg(u) + dg(v), with dg denoting degree in
G. 1t follows that if G is regular, then e — t(e) is constant if and only if
e — J(e) is constant. It also follows that the degree of G in this case (that
is, G is regular and e > t(e) is constant) is .

We say that G € ET(n, J,t) if and only if J = J(G), t = t(G), n=
IV(G)], m = |E(G)|, and 4m = n(J +1); that is, ET(n,J,t) is the set
of extremal graphs for the above inequality, with parameters n, J, and ¢.
Henceforth, we refer to these graphs as extremal graphs.

For J = n and J = n — 1, the extremal graphs for the above inequality
have been characterized. For J = n, the extremal graphs are the Turan
graphs with parts of equal sizes [2]. It is worth noting that these are
the complements of the strongly regular graphs with u = 0. (A strongly
regular graph is a regular graph such that any pair of adjacent vertices
have A common neighbors and any pair of non-adjacent vertices have p
common neighbors, for some non-negative integers A and p. It is easy to
see that the complement of a strongly regular graph is strongly regular, and
also that the complement of a strongly regular graph on n vertices, with
parameters A and g, is in ET(n,n — p,t), for some t.) For J = n — 1, the
extremal graphs are the complements of the strongly regular graphs with
p = 1[3]. Only three of these strongly regular graphs with x4 =1 are known
for sure to exist: Cs, the Petersen graph, and the Hoffman-Singleton graph
(n = 50,t = 35). See 3] for further discussion.

Recently, the extremal graphs with parameters J =n—2and ¢t =0
have been characterized. Except for the cases n = 8,10, these graphs are
precisely Kz 2 — (1-factor) [4]. These graphs are not strongly regular when
n> 6.

2 A Characterization of Graphs in ET(n,J,0)
For Fixed n — J and n Sufficiently Large

The following is a well-known corollary of a theorem of Andrésfai, Erdds,
and Sés [1].

Theorem AES If G is a triangle-free graph of order n with 6(G) > 2n/5,
then G is bipartite.

Theorem For J =n — (2k + 1), wherek > 1,1 =0, and n > 10k + 5, we
have ET(n,J,t) = @. For J = n — 2k, where k > 1, n even, t = 0, and
n > 10k, we have that if G € ET(n,J,t), then G is a graph of the form
2,2 — (k-factor).

2

Proof. Observe that if G € ET(n, J,0), then G is J/2-regular, and n > 10k,
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J=n-—2k and n > 10k + 5, J = n — (2k + 1), both imply J > 4n/5.
Thus the degree d of every vertex is greater than 2n/5, in either case, and
t = 0 implies that G is triangle-free, so G is bipartite. Since G is regular of
positive degree, n must be even. If J = n — (2k + 1) then J is odd, which
is impossible, since G is J/2-regular. If J = n — 2k and n > 10k then G is
bipartite and regular of degree 3 — k, which implies that G is of the form
described.

O

The inequality in the theorem is sharp. The following graph is the
standard example for this: Replace every vertex in the 5-cycle with a stable
set of size 2k + 1 (respectively 2k for the second case) and make vertices
adjacent if their template vertices were adjacent. It is easy to see this graph
is non-bipartite, regular, and triangle-free. In fact, it is an easy consequence
of various proofs of Theorem AES that this is the only non-bipartite graph
in ET(10k + 5,8k + 4,0), respectively, ET(10k, 8k, 0).

The Theorem and the remarks in the preceeding paragraph, applied
in the special case J = n — 2, k = 1, imply most of the main result in
[4]. The one claim of that main result which is not implied by results
here is that there is a unique non-bipartite graph in U:=2 ET(n,n -2,0),
in ET(8,6,0), which is described there. It is worth noting that the non-
bipartite triangle-free graph with eight vertices, of degree 3, is not among
the graphs described in the next section.

3 Non-Bipartite Extremal Graphs of Smaller
Order

In this section we present three constructions of non-bipartite graphs in
ET(n, J,0) with either J = n—2k, n < 10k or J = n—(2k+1), n < 10k+5.
Whether or not these graphs are unique is an open problem.

In each construction we start with two adjacent vertices u, v; A will be
the set of vertices of the graph being constructed which are to be adjacent
to u, other than v, and similarly B will be the neighbor set of v, excluding
u. Letting d = J/2 denote the degree of the graph, we will have, in each
case, |A| = |B| = d—1, and there will be no edges among the vertices of A,
nor among those of B. Let X = V\(AU BU {u, v}); note that |V\X|=J.

Construction for n=4k +4, keven, J=n—-2k=2k+4. Let A =
{a1,as3,...,ax41} and B = {b1,d2,...,bk41} be as above. Let one vertex
z € X be adjacent to the first ’i‘z'ﬁ vertices in A and in B; let another
vertex y € X be adjacent to the last "—’.A',ﬁ vertices in A and in B. Next join
a; with vertex b, where m =i+ %42, for all i < £ (similarly for the b;’s).
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Then make a perfect matching with the remaining 2k — 2 vertices in X; for
each edge in this matching, join one endpoint to each vertex in A and the
other to each vertex in B. It is left to the reader to see that this graph
is triangle-free and regular. It is also seen to be non-bipartite by noticing
that u,a,z,b,v,u, where a € A and b € B are both adjacent to z, form a
5-cycle. We exhibit such a graph in the figure below.

u v

2

e

A B
Figure 1: A graph in ET(n = 20,n — 2k = 12,0)

Construction for n=4k+6, k>1 odd, J=n—-2k=2k +6. Let
A = {ay,...,ar42} and B = {by,...,bx42}. Form a perfect matching
with 2k — 4 of the vertices in X, and for each edge in this matching, let
one endpoint be adjacent to everything in A and the other be adjacent to
everything in B. Let the remaining vertices in X be z1,...,z4. Let z; and
z2 be adjacent to the first % vertices in A and in B; let 3 and x4 be
adjacent to the last -"—12'3 vertices in A and in B. Finally, we form 2 disjoint
perfect matchings between the first "—'izi vertices of A and the last "—'12‘—1 ver-
tices of B (similarly for the first 31 vertices of B and the last &3 vertices
of A). Again, the reader can verify this graph is regular, triangle-free, and
non-bipartite.

Construction for n =6k + 5, J =n— (2k+ 1) = 4k + 4. Again, form
a perfect matching with 2k vertices in X. For each edge in this matching, let
one endpoint be adjacent to everything in A, and let the other be adjacent
to everything in B. Now let the leftover vertex z € X have half its neighbors
in A (call the set of these vertices A;) and the other half in B (call the set
of these vertices B;). Let everything in A, be adjacent to everything in
B— B, (similarly for B,). Once more, it is left to the pleasure of the reader
to verify the graph is triangle-free, regular, and non-bipartite.

Problem: Do there exist regular non-bipartite, triangle-free graphs Gj,
i = 1,2,... of order n; and degree d;, such that 2/5 > di/n; — 2/5 as
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