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Abstract

Let 5, denote the minimum degree of the k*" iterated line graph
L*(G). For any connected graph G that is not a path, the inequality
k41 > 26, — 2 holds. Niepel, Knor, and Soltés [5] have conjectured
that there exists an integer K such that, for all k¥ > K, equality holds;
that is, the minimum degree J; attains the least possible growth. We
prove this conjecture by extending the methods we used in [2] for a
similar conjecture about the maximum degree.

Mathematics Subject Classification: Primary 05C75, Secondary 05C12.

1 Introduction

The line graph L(G) of a graph G is defined as the graph whose vertices
are the edges of G and where two vertices in L(G) are adjacent if and only
if the corresponding edges in G are incident to a common vertex. Define
the iterated line graph L*(G) recursively as L°(G) = G, and L¥(G) =
L(L*=Y(@)) for k > 1. Though line graphs themselves are well studied,
iterated line graphs have received comparatively little attention. See (3]
for a survey of results on line graphs, and [4], [5], and [2] for some recent
results on iterated line graphs.
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If v is a vertex in L(G) and v and w are the endpoints of the edge in
G that corresponds to v, then degyg)(v) = degg(u) + degg(w) — 2. Thus,
the maximum degree A(L(G)) of L(G) satisfies

A(L(G)) < 2A(G) - 2,
and the minimum degree §(L(G)) satisfies
8(L(G)) > 26(G) — 2.

The maximum degree Ay and minimum degree 6;. of the iterated line graph
L¥(G) are bounded by the inequalities ([4], [5])

2%(8p —2) +2< 8 < Ap < 2F(Ap—2) +2.

In (5], Niepel, Knor, and Soltés conjectured that, for any graph except a
path, the minimum degree of the iterated line graph eventually attains the
minimum growth rate of dx+; = 26y, —2. Following the use of the Maximum
Degree Growth Property (MDGP) in [2], we say that a graph G has the
Minimum Degree Growth Property (mDGP) if §(L(G)) = 26(G) —2. In this
paper, we prove that there exists an integer K such that, for all ¥ > K,
L*¥(G) possesses the mDGP, and thus establish the conjecture.

The corresponding conjecture for the growth of the maximum degree
was proved by Hartke and Higgins in [2]. Section 2 of this paper lists def-
initions and results that mirror those in [2] when the obvious changes in
notation and inequalities are made from “maximum degree” to “minimum
degree.” Section 2 also contains the proof of the minimum degree con-
jecture. Although the proof from [2] cannot be directly extended to the
minimum degree case, the proof in this paper, while explicitly written for
the minimum degree case, can be extended to prove the maximum degree
conjecture. We conclude this paper with some questions of interest about
iterated line graphs in Section 3.

For the remainder of the paper, we consider only finite simple connected
graphs with no loops. Note that the iterated line graph of a path eventu-
ally becomes the empty graph and that the iterated line graphs of cycles
and K3 (whose line graph is a triangle) trivially satisfy the conjecture.
Therefore, we consider only those graphs which are not contained in these
classes.

2 The Minimum Degree of the Iterated Line
Graph

For each statement in [2], there exists a dual statement about minimum
or locally minimum degrees. To parallel the development of the maximum
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degree case, we shall number our statements correspondingly, but with
primes. Except for Lemmas 20, 21, 22, and 23 of [2], the dual statements
can be obtained by reversing all inequalities involving degrees. We shall
present here Lemmas 22’ and 23’ using different methods of proof; however,
the lemmas fulfill the same function in the overall proof. Lemma 20’ is an
extension of Lemma 20 which encapsulates a technique used in Lemmas 22
and 24 of [2] for use in Lemmas 22’ and 23', and Lemma 21’ is a rewording
of Lemma 21.

Definition 1'. Let A(G) be the maximum degree among the vertices of G,
and 8(G) be the minimum degree. Let A denote A(L*(G)) and d; denote
8(L*(G)).

Definition 2’. A graph G has the Minimum Degree Growth Property
(mDGP) if §(L(G)) = 26(G) — 2.

The minimum degree conjecture of Niepel, Knor, and Soltés can now
be stated as follows.

Conjecture 3'. [5] Let G be a connected graph that is not a path. Then
there exists an integer K such that, for all k > K, the mDGP holds; that
is,

6k+1 = 26[¢ - 2.

We introduce the minimum degree induced subgraph to characterize
those graphs which possess the mDGP.

Definition 4'. Let the minimum degree induced subgraph m(G) be the
subgraph of G induced by the vertices of G that have minimum degree
5(G). Let m; denote m(L*(G)).

The following lemmas have corresponding statements for maximum de-
gree, and the proofs are analogous to those presented in [2].

Lemma 5. The mDGP holds for a graph G if and only if m(G) contains
an edge.

Lemma 6'. If H is a subgraph of G, then L(H) is an induced subgraph of
L(G).

Lemma 7'. The mDGP holds for a graph G if and only if L(m(G)) =
m(L(G)).

Corollary 8'. If L*(m(G)) contains an edge for all k > 0, then the mDGP
will hold for all L*(G), k > 0.

Although Corollary 8 proves the conjecture for many graphs, it does not
help in cases where m(G) is a path or a union of paths. The local minimum
induced subgraph provides the key concept in finishing our proof.
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Definition 9'. Let the neighborhood Ng(v) of a vertex v in G be the set
of vertices in G adjacent to v. Note that v ¢ Ng(v).

Let the neighborhood Ng(S) of a subgraph S of G be the set of ver-
tices adjacent to vertices in S but not contained in S. Thus, Ng(S) =

(Uses No(®)) \ 8.

Definition 10'. A vertex v in G is a local minimum if degg(v) < degg(w)
for all w € Ng(v).

Definition 11'. A vertex v € L(G) is generated by a vertez u € G if the
edge e in G that corresponds to v is incident to u. A subgraph J of L(G)
is generated by a subgraph H of G if, for each vertex v € J, v is generated
by a vertex in H.

We extend this concept to several iterations: Let 0 < ¢ < s be given
integers. A vertex v € L*(G) is generated by a vertez u € L*(G) if there
exists a sequence of vertices ¥ = vy, Vs41,...,Vs-1,¥3 = v, where vy €
L*(G) and vy is generated by vx_; for t < k < s. A subgraph J of L*(G) is
generated by a subgraph H of L*(G) if, for each vertex v € J, v is generated
by a vertex in H.

Lemma 12'. Every local minimum v in L(G) is generated by a local min-
imum w in G. Moreover, v is generated by w end a vertez in G that is
minimum in Ng(w).

Definition 13'. Let the local minimum induced subgraph £m(G) be the
subgraph of G induced by local minimum vertices. Let £m;, denote £m(L*(G)).

Lemma 14'. Let C be a component of £m(G). Then all vertices in C have
the same degree in G.

In [2], Lemmas 15, 16, and 17 were used solely to prove Corollary 18.
The lemmas are technical and the corresponding changes for minimum de-
gree are straightforward, and left to the interested reader. We state the
result corresponding to Corollary 18.

Corollary 18'. There ezists an integer Jy such that every component of
£my, generates a component of Lmyyy for k > Jy, and every component of
£myy) is generated by ezactly one component of Lmy.

Definition 19'. Let J; be as in Corollary 18'. For k > J;, let {Ci} be a
sequence, where Cj. is a component of £m; and Ci4, is generated by Ci.
Let rx = degp(g)(v) for all v € Ci.

Lemma 20'. Let J; be as in Corollary 18'. Assume also that R > J, and
that there does not exist an integer Q > R such that Ci contains an edge
forallk > Q. If {v1,va,...,v,} is a set of distinct vertices in Nyrc)(CR)
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with the same degree in L?(G), then there exists an integer T > R such
that Ct contains a complete subgraph of n vertices generated by the induced
subgraph of {v1,va,...,vn}.

Proof. Let J) be as in Corollary 18’'. Assume also that R > J;, and assume
that there does not exist an integer @) > R such that Cj contains an edge for
all k > Q. Let {v},v%,...,v})} be a set of distinct vertices in Nyr(g)(Cr)
with degpr(g)(vk) = ... = degpr(g)(vk) = ar. For k > R, inductively
define a sequence of vertices as follows: let v;, be the vertex generated
by vi € Ni«()(Ck) and by a vertex in Ci. Since vj # vl for i # j,
vi,, # vl Also,

degpr+i(g)(Vher) = degrr()(Wh) + 74 — 2
= degu(g)(v]) + 15 — 2 for all j

= deth+1(G) ('Ui_l_l).

Thus, all of the vertices v}, have the same degree in L**!(G). Let axt1
denote degx+1(g)(Vi4,)- Now, if ax is not the minimum degree of a vertex
in Npx()(Ck), or if Ci contains an edge, then vir1 € Npwt16)(Cria)
for every ¢. If a; is minimum and Cp does not contain an edge, then
'U;c +1 € Ck+1 .

Note that if Ci has an edge, then

Oty — T4+l = (ak + T — 2) - (21‘k - 2)
=ar — Tk-

If Ci. does not have an edge, then a shrinking separation of degrees occurs:

Q1 — Tet1 < (ak + 7y — 2) - (27'k - 2)
=ak —Tk-

Since we assume there are an infinite number of k’s where Cy does not
contain an edge, there exists an integer T — 1 such that Cr_; does not
contain an edge and where ar—; is the minimum degree of vertices in
Npr-1G)(Cr-1). Thus, Cr contains the n vertices {vf,...,v$}. Since
Cr_; does not contain an edge, it consists of a single vertex u. The vertex
u generates vi. for all 4, and so all the v} are adjacent. Thus, Ct contains
a complete subgraph of n vertices. O

Lemma 21'. Let G be a connected graph that is not a path, cycle, or K 3.
Then for all integers s there exists an integer Q such that 6, > s for all
q > Q. In particular, there exists an integer Jo > Jy such that 6, > 4 for
allk > Jo.
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We now proceed with our characterization of the components of £m;.

Lemma 22'. There ezists an integer J; > Jo such that C, contains an
edge.

Proof. Assume that there does not exist an integer J3 > J2 such that Cj,
contains an edge. Let v be a vertex in L’2(G) of maximum degree Aj,.
Let P, be a path of minimum length from v to w € Cj,. The expression
A, —8;,+1 represents the maximum number of distinct degrees of vertices
in Nps;(gy(v). Now, there are Ay, — 1 vertices in Nyug)(v) \ Py,. Since
Aj,—1> A, =4, +1, then by the Pigeonhole Principle and the fact that
04, > 4, there exist two vertices 21 and z; in NpJ,(g)(v) \ Py, such that
degps;()(21) = degps.()(22). Thus there exists a path Py, from w € Cj,
to a vertex v, where two vertices in Ny, (g)(v) \ P, have the same degree.

Suppose that P = (p},p?,..., pfc“, wg) is a path of length i in L*(G),
k > J;, where wy € Ci and where there exist two vertices z; and 2z,
in Npw(g)(Pi) \ P of the same degree. By Lemma 6, L(P;) is a path in

L*1(G). I pwi € Ciy1, then set Piyy = L(Py) = (phyy = PLpd,- -, Pt =

pi’:,_'ll = pf: wy). Otherwise, set Pi4y equal to L(Py) extended to w4y €

Ck+1. Since wy generates wg41, the extension involves adding only one
edge. Note that z)p; and zpp}, are vertices in Npui1(gy(Ph,,) \ P41 with

deg s () (21P}) = degreg)(21) + dega(g)(ph) — 2
= degps(g)(22) + degpu(g)(pi) — 2
= degu+1(g)(22P2)-

Thus, Pr+1 is a path (Df4y, - - -, Ppys» Wea1) in L¥+1(G) where wiy1 € Cria
and where there exist two vertices in Nyu+1(G)(phy;) \ P41 of the same
degree. If py*wy, ¢ Ci41, then the length of Py, is (Pr1) = UL(Py)) +
1 = (P) = i. If pwy € Ck41, then £(Pry,) =lf(L('Pk)) =lPy)-1=
iy —1. By Lemma 20’ applied to the single vertex Py, there exists an integer
T > k such that p7~}wr_, € Cr. Thus, &(P1) =i — 1 < iz = £{(Pr_1).
By iteratively applying the above observations to Pj,, we notice that
the length of P decreases as k increases, k > J;. Specifically, for any
given length 1 <t < {(Py,) there exists an integer T; where p'T'f‘_"wT,_l =
ph,_ywr,-1 € Cr,, and so &(Pr,) =t ~ 1 < t = &(Pr,_;). Hence there
exists an integer T7 > J2 where £(Pr,) = 0, and so there exist two vertices
in N7, (CT,) generated by z; and z; that have the same degree. Applying
Lemma 20’ again to these two vertices, there exists an integer J; where C},
contains two adjacent vertices, and thus has an edge. a

Lemma 23'. If there does not exist an integer Q such that Ci contains an
edge for all k > Q, then there exists an integer Jy such that there are three
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Figure 1: Cj, contains an edge.

vertices in Ny, ()(C,) where all three vertices have the same degree and
are adjacent to the same verter in Cj,.

Proof. By Lemma 22, there exists an integer J3 such that Cj, contains
an edge. So that we may apply Lemma 21’ to L73~1(G), we assume that
J3 > J,. This assumption is valid since we may prove Lemma 22’ with
J2 replaced by J, + 1. Let uw and vw be the adjacent vertices in Cj,,
where w € Cj,_; and u and v have minimum degree in Nps;-1(g)(w).
Note that © and v may be in Cjs-1. By Lemma 21/, 0j5-1 > 4, and
so there exist two vertices z and ¥ in Npss-ygy(w) \ {u,v}. Assume
that degpus-1(z) < degrss-1(G)(y). The vertices zw and yw are in
Npss(g)(uw), and 2w and yw arein Npss(6y(vw). Then (uw)(vw) € Cryya,
and (zw)(uw), (zw)(vw), (yw) (uw), (yw)(vw) € Npse41(g) ((uw)(vw)). Fig-
ure 1 shows these vertices and the relevant edges for k = J3 — 1,J3,J5 + 1.

If degus-x(G) (3) = degLJa-l(G)(y), then NL"3+‘(G') ((’UW)(’U‘U))) alrea.dy
contains four vertices of the same degree. Otherwise, since there does not
exist an integer Q such that Cj contains an edge for all k > @, we can apply
Lemma 20', and so there exists an integer T > J; + 1 where (zw)(uw) and
(zw)(vw) generate two vertices in Cr. Following the proof of Lemma 20,
there are two vertices of the same degree in Nir(g)((zw)(uw)) generated
by (yw)(uw) and (yw)(vw), and similarly in Npr(6)((zw)(vw)). Thus, in
Npr+1(6)(Cr41) there are actually four vertices with the same degree. [

A similar approach would be to construct a path from Cj to a maximum
degree component that always contains an edge. Such a component exists
by Theorem 25 of [2]. Three vertices of the same degree can then be found
“dangling” off the end of the path. Applying the same shrinking path
technique of Lemma 22’ would then prove Lemma 23’ ; however, this method
relies on the proof of the maximum degree conjecture given in [2], and so
cannot be extended to prove that conjecture. As given, the first part of
Lemma 22’ is, in fact, Lemma 22. The proof of Lemma, 23’ can be extended
to a dual proof for the maximum degree case, thus providing an alternate
proof of the original Lemma 23.
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Lemma 24'. There ezists an integer Jy such that C) contains an edge for
all k Z J4.

Proof. If there does not exist such an integer Js, then a contradiction results
by applying Lemma 20’ to the three vertices in Nys5(g)(Cy,;) obtained by
Lemma 23'. ]

Theorem 25’'. For all connected graphs G that are not paths, there exists
an integer K such that the mDGP will hold for L¥(G) for allk > K.

Proof. By Lemma 24' and since £m; has a finite number of components,
there exists a K such that every component of £m; contains an edge for all
k > K. By Lemma 14', m; is a subset of the components in £m. Thus,
mg contains an edge for all k > K, and, by Lemma 5, the mDGP will hold
forallk > K. O

3 Open Questions

As noted in the introduction, line graphs are a well-studied area in graph
theory, but few properties of iterated line graphs have been investigated.
In [5], Niepel, Knor, and Soltés presented three conjectures about iterated
line graphs. Buckley and Ojeda used a construction in [1] to address the
subject of the first two conjectures, and in [2], Hartke and Higgins proved
the maximum degree case of the third conjecture. In this paper, we prove
the minimum degree case. Our investigations into the iterated line graph
when proving these conjectures have suggested the following open questions.

The primary concepts used in the proof of the growth rates of the max-
imum and minimum degrees are the local maximum induced subgraph and
the local minimum induced subgraph. These subgraphs are useful because
they are local structures that persist under the iterated line graph operator.
Indeed, any subgraph induced by vertices of the same degree that is not a
path is persistent. The question of how prevalent such persistent “regular”
subgraphs are naturally arises: What proportion of vertices in L¥(G) are in
such subgraphs as k — co? Does there exist an integer K such that every
vertex in LK (G) is generated by a vertex in L¥~!(G) in such a subgraph?

Theorem 25’ proves the existence of an integer K such that the mDGP
holds for all £ > K. However, the proof provides no useful method of
determining the least integer K such that the mDGP holds for all iterations
past K. The calculation of this tight bound for a given graph remains an
open question. Similarly, the calculation of the least integer K such that
the Maximum Degree Growth Property holds for all k > K is likewise open.
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From the results of this paper and (2], we know that there exists an
integer K' where

=K' (e = 2) + 2= < Ag = 25K (Ags —2) + 2

forall k > K'. Thus, at each iteration, we know how big or small the degree
of any given vertex can be. How are the vertices distributed among the
degrees between the maximum and minimum degree? One formulation of
this question can be obtained by defining the degree set Dy (G) of L*(G) as
Di(G) = {degr(g)(v) :v € L*(G)}, and letting Doo(G) = U2y D- For a
given graph G, we can ask what the density in N of Do, (G) is. Is the density
of D (G) always defined? Clearly, for a regular graph G, the density of
D (G) is zero. What are the conditions on G such that the density is
1?7 Other constructive questions about D, (G) are also interesting. For
instance, let S be a set of positive integers. Does there exist a graph G
with A(G) < min S such that SN D (G) =
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