# A Note on multicolor bipartite Ramsey numbers for $K_{2,n}$

E.S. Laber PUC-Rio, Brasil.

E. L. Monte Carmelo

Departamento de Matemática, Universidade Estadual de Maringá,

#### Abstract

In this note we prove that the bipartite Ramsey number for  $K_{2,n}$  with q colors does not exceed  $(n-1)q^2+q+1-\left\lceil\sqrt{q}\right\rceil$ , improving the previous upper bound by  $\left\lceil\sqrt{q}\right\rceil-2$ .

1991 MSC: 05C55

#### 1 Introduction

The q-colors bipartite Ramsey number for  $K_{m,n}$ , denoted by  $b_q(m,n)$ , is the smallest integer b such that in any q-coloring of the edges of  $K_{b,b}$  there is a monochromatic subgraph isomorphic to  $K_{m,n}$ . In other words,  $b_q(m,n)$  is the minimum b such that every  $b \times b$  matrix with entries in  $\{0,\ldots,q-1\}$  always contains a submatrix  $m \times n$  or  $n \times m$  all of whose entries are i, where  $i \in \{0,\ldots,q-1\}$ .

The bipartite Ramsey numbers for two colors were introduced by Beineke and Schwenk [1]. Afterwards, several authors [8, 10, 11, 12] have considered distinct approaches to generate these numbers, either studying related problems, generalizations, or investigating connections to other combinatorial structures (Hadamard matrices, Steiner systems, etc). See [8] for an overview and [11] for recent results. In particular, some classes of optimal values were established for the case where q=2 and  $1 \le m \le 3$ , according to [1, 4, 12].

However, our knowledge on exact values of  $b_q(m,n)$  is rather poor when q=2 and  $m\geq 4$  or when  $q\geq 3$  and  $m\geq 2$ . Even the case where q=3 seems to be a difficult problem. Indeed, the topic is so short of construction that until now, the only exact value known for this range is  $b_3(2,2)=11$ , due to Exoo [6].

For m = 2, the following upper bounds are known:  $b_2(2, n) \le 4n - 3$  [1];  $b_q(2, 2) \le q^2 + q - 1$  [11], which slightly sharpens  $b_q(2, 2) \le q^2 + q + 1$  [5]; and  $b_q(2, n) \le (n - 1)q^2 + q - 1$  [3].

Here, we improve all these results by proving that:

#### Theorem 1 For every a

$$b_q(2,n) \le (n-1)q^2 + q + 1 - \lceil \sqrt{q} \rceil$$
 (1)

As far as we know, equality holds in (1) for all known optimal values. In fact, the bound in (1) is tight in the following cases: (i) q=2 and if there exists

a Hadamard matrix of order 2n-2, odd n (see [1]); (ii) q=2 and if there exists a strongly regular graph with parameters (4n-3, 2n-2, n-2, n-1) (see [4]); (iii)  $b_2(2,2) = 5$  (see [1]) and  $b_3(2,2) = 11$  (see [6]). Until now, an example is not known that yields a better bound than that given in (1).

The paper is organized as follows. In section 2, we consider the connection between Zarankiewicz numbers [8] and the q-color bipartite Ramsey problem. This connection is essential in the proof of Theorem 1. In section 3, we prove the Theorem 1. The section 4 is regarded to our final comments

### 2 Preliminaries

Let i, j, a and b be positive integers such that  $i \leq a$  and  $j \leq b$ . The Zarankiewicz number  $Z_{i,j}(a,b)$  denotes the smallest integer z such that every 0-1 matrix of order  $a \times b$  containing z 0's must have a  $i \times j$  submatrix whose all entries are 0.

Since 1951 these numbers have been investigated by many authors, as an example, [7, 8, 9, 12]. Surveys can be found in [2, 8].

We first recall an useful sufficient condition to obtain an upper bound on  $Z_{i,j}(a,b)$  (see proof in [2, VI.2, Lemma 2.1] or in [8, section 12].

Lemma 2 If

$$x\binom{v+1}{j} + (a-x)\binom{v}{j} - (i-1)\binom{b}{j} > 0 \tag{2}$$

then  $Z_{i,j}(a,b) \leq av + x$ 

The next result establishes a connection between the q-color bipartite Ramsey numbers and the Zarankiewicz numbers (see [8] or [12]).

Proposition 3 If  $Z_{i,j}(a,a) \leq \lceil a^2/q \rceil$ , then  $b_q(i,j) \leq a$ .

By applying Lemma 2 and Proposition 3, it is proved in [3] that  $b_q(2,n) \le (n-1)q^2 + q - 1$  [4]. In order to show that  $b_q(2,n) \le (n-1)q^2 + q + 1 - \lceil \sqrt{q} \rceil$ , we need the following refinement of Proposition 3:

Proposition 4 Let  $\lceil a^2/q \rceil = au + b$ , where  $b \le a$ . If  $Z_{i,j}(a,b) \le b(u+1)$ , then  $b_a(i,j) \le a$ .

**Proof.** Given a q-coloring of an order a square matrix M, there exists a color, say color 0, that appears in at least  $\left[a^2/q\right] = au + b$  entries of M.

Now, we prove that there is an  $i \times j$  submatrix of M, all of whose entries are 0. Since the number of 0's in M is at least au + b, it follows from the pigeonhole principle that there is an  $a \times b$  submatrix M' of M with at least b(u + 1) 0's. Since  $Z_{i,j}(a,b) \leq b(u+1)$ , then there exists an  $i \times j$  submatrix of M' whose entries are all 0, which completes the proof.

# 3 A Better Upper Bound on $b_q(2, n)$

In this section, we consider i=n and j=m=2. Moreover, let k be a positive integer such that  $k^2 < q$ . We set  $a=(n-1)q^2+q-k$  and  $b=(n-1)q^2+(1-(n-1)k)q+(1-2k)$ . Our aim is to prove that

$$b_{\sigma}(2,n)\leq a.$$

Before proving it, we need an additional proposition.

#### Proposition 5

$$Z_{n,2}(a, b) \leq b((n-1)q+1)$$

*Proof.* We use Lemma 2. Observe that b((n-1)q+1) = av + x, when v = (n-1)(q-k) and  $x = (n-1)q^2 + (n-(n-1)k)q + (1-2k-(n-1)k^2)$ . Observe also that x is positive, since  $k^2 < q$ . Now, let d be left hand side of (2) for v and x fixed above. By performing some simple, but rather tedious algebraic manipulation, we obtain that

$$2d = (n-1)(q-k^2)\left\{(n-1)(q-k) + 1\right\} \tag{3}$$

In order to establish the result, it remains to prove that 2d > 0. Nevertheless, this is true since  $q > k^2$ .

Now, we deduce Theorem 1.

Proof of Theorem 1. Since  $1 \le k^2 < q$ , then

$$\lceil a^2/q \rceil = (n-1)^2 q^3 + 2(n-1)q^2 + (1-2(n-1)k)q - 2k + 1 = a(n-1)q + b.$$

By setting u=(n-1)q in Proposition 4, we can conclude that  $b_q(2,n) \leq a$  under the condition that  $Z_{n,2}(a,b) \leq b((n-1)q+1)$ . Nevertheless, this condition is assured by Proposition 5. In particular, for  $k=\lceil \sqrt{q}\rceil-1$ , we obtain the desired bound.

An improvement, if possible, on (1) is related to design theory. Let us illustrate this claim focusing on the boundary case  $k^2 = q$ .

Corollary 6  $b_{k^2}(2,n) \leq (n-1)k^4 + k^2 - k$  provided there is no system  $S_{n-1}(b, \{v, v+1\}, a)$ , i.e, a collection of a blocks of b-set, each block with size v or v+1, such that every 2-tuples of b-set is contained in exactly n-1 blocks.

*Proof:* By examining the proofs of Theorem 1 and Proposition 5 one sees that d=0 for the boundary  $k^2=q$ . A simple analysis of Lemma 2 shows that  $Z_{n,2}(a,b)>av+x$  if and only if there is a system  $S_{n-1}(b,\{v,v+1\},a)$ .

Acknowlegments: The second author was supported by a scholarship from CAPES, Brazil.

## References

- [1] L.W. Beineke and A.J. Schwenk, On a bipartite form of the Ramsey problem, in: Proc. Fifth British Combin. Conf., 1975, Congressus Numer. XV, (1975), 17-22.
- [2] B. Bollobás, Extremal Graph Theory, Academic Press, San Diego, C.A., 1978.
- [3] W.A. Carnielli and E.L. Monte Carmelo, On the Ramsey problem for multicolor bipartite graphs, Adv. in Appl. Math., 22 (1999), 48-59.
- [4] W.A. Carnielli and E.L. Monte Carmelo,  $K_{2,2}$ - $K_{1,n}$  and  $K_{2,n}$ - $K_{2,n}$  bipartite Ramsey numbers, Discrete Math., to appear
- [5] V. Chvátal, On finite polarized partition relation, Canad. Math. Bull. 12 (1969), 321-326.
- [6] G. Exoo, A bipartite Ramsey number, Graphs Combin. 7 (1991), 395-396.
- [7] Z. Füredi, An Upper Bound on Zarankiewicz's Problem, Combin. Probab. Comput. 5 (1996), 29-33.
- [8] R.K. Guy, A many-faceted problem of Zarankiewicz, in: Chartrand and Kappor ed., Lecture Notes in Math. vol. 110, Springer-Verlag, Berlin/New York, 1968, pp. 129-148.
- [9] R.K. Guy, A problem of Zarankiewicz, in: P. Erdös and G. Katona ed, Theory of Graphs, (1966), 119-150.
- [10] A.W. Hales and R.I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229.
- [11] J.H. Hattingh and M.A. Henning, Bipartite Ramsey theory, Utilitas Math. **53** (1998), 217-230.
- [12] R.W. Irving, A bipartite Ramsey problem and the Zarankiewicz numbers, Glasgow Math. J. 19 (1978), 13-26.

Complete authors postal addresses:

| Departamento de Informática            | Departamento de Matemática       |
|----------------------------------------|----------------------------------|
| PUC-Rio                                | Universidade Estadual de Maringá |
| Rua Marques de So Vicente 225, RDC 518 | Av. Colombo, 5790                |
| 22453-900 Rio de Janeiro, RJ, Brasil   | 87020-900, Maringá, PR, Brazil   |
| laber@inf.puc-rio.br                   | carmelo@gauss.dma.uem.br         |