A Note on multicolor bipartite Ramsey numbers
for Ky

E.S. Laber
PUC-Rio, Brasil.

E. L. Monte Carmelo
Departamento de Matemdtica, Universidade Estadual de Maringd,

Abstract

In this note we prove that the bipartite Ramsey number for Kz,, with
g colors does not exceed (n—1)¢> +q+1— [\/cﬂ , improving the previous
upper bound by [,/g] - 2.
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1 Introduction

The g-colors bipartite Ramsey number for K, », denoted by by(m,n), is the
smallest integer b such that in any g-coloring of the edges of Ky there is a
monochromatic subgraph isomorphic to K . In other words, by(m,n) is the
minimum b such that every b x b matrix with entries in {0,...,¢ — 1} always
contains a submatrix m x n or n x m all of whose entries are ¢, where ¢ €
{0,...,g -1}

The bipartite Ramsey numbers for two colors were introduced by Beineke
and Schwenk [1]. Afterwards, several authors [8, 10, 11, 12] have considered
distinct approaches to generate these numbers, either studying related problems,
generalizations, or investigating connections to other combinatorial structures
(Hadamard matrices, Steiner systems, etc). See [8] for an overview and [11] for
recent results. In particular, some classes of optimal values were established for
the case where ¢ = 2 and 1 < m < 3, according to [1, 4, 12].

However, our knowledge on exact values of b,(m,n) is rather poor when
g =2 and m > 4 or when ¢ > 3 and m > 2. Even the case where ¢ = 3 seems
to be a difficult problem. Indeed, the topic is so short of construction that until
now, the only exact value known for this range is b3(2,2) = 11, due to Exoo [6].

For m = 2, the following upper bounds are known: by(2,n) < 4n — 3 [1];
be(2,2) < % + g — 1 [11}, which slightly sharpens b4(2,2) < ¢*> + ¢ + 1 [5]; and
by(2,m) < (n—1)¢® +¢ -1 [3].

Here, we improve all these results by proving that:

Theorem 1 For every q
be(2,n) < (n—1)¢° +q+1-[V7 ] 1)

As far as we know, equality holds in (1) for all known optimal values. In
fact, the bound in (1) is tight in the following cases: (i) ¢ = 2 and if there exists
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a Hadamard matrix of order 2n — 2, odd n (see [1]); (ii) ¢ = 2 and if there exists
a strongly regular graph with parameters (4n — 3,2n — 2,n — 2,n — 1) (see [4]);
(iii) b2(2,2) = 5 (see [1]) and b3(2,2) = 11 (see [6]). Until now, an example is
not known that yields a better bound than that given in (1).

The paper is organized as follows. In section 2, we consider the connection
between Zarankiewicz numbers [8] and the g-color bipartite Ramsey problem.
This connection is essential in the proof of Theorem 1. In section 3, we prove
the Theorem 1. The section 4 is regarded to our final comments

2 Preliminaries

Let i, j, a and b be positive integers such that ¢ < a and j < b. The Zarenkiewicz
number Z; j(a, b) denotes the smallest integer z such that every 0 — 1 matrix of
order a x b containing z 0’s must have a ¢ x j submatrix whose all entries are 0.
Since 1951 these numbers have been investigated by many authors, as an
example, [7, 8, 9, 12]. Surveys can be found in [2, 8].
We first recall an useful sufficient condition to obtain an upper bound on
Z;,j(a,b) (see proof in [2, V1.2, Lemma 2.1] or in [8, section 12].

()reaf)-ea)se o

then Z; j(a,b) <av+z

Lemma 2 If

The next result establishes a connection between the g-color bipartite Ram-
sey numbers and the Zarankiewicz numbers (see [8] or [12}).

Proposition 3 If Z; j(a,a) < [a%/q), then b,(i,5) < a.

By applying Lemma 2 and Proposition 3, it is proved in [3] that b,(2,7n) <
(n—1)g? +¢—1 [4]. In order to show that by(2,n) < (n - 1)¢* + g+ 1 [,/q],
we need the following refinement of Proposition 3:

Proposition 4 Let [a?/q] = au + b, where b < a. If Z; j(a,b) < b(u + 1), then
bq(iaj) S a.

Proof. Given a g-coloring of an order a square matrix M, there exists a color,
say color 0, that appears in at least [a?/q] = au + b entries of M.

Now, we prove that there is an 1 x j submatrix of M, all of whose entries are
0. Since the number of 0’s in M is at least au -+ b, it follows from the pigeonhole
principle that there is an a x b submatrix M’ of M with at least b(u + 1) 0’s.
Since Z; j(a,b) < b(u + 1), then there exists an i x j submatrix of M’ whose
entries are all 0, which completes the proof. &
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3 A Better Upper Bound on b,(2,n)

In this section, we consider ¢ = n and j = m = 2. Moreover, let k be a
positive integer such that k* < q. Weseta = (n - 1)¢?+g—k and b =
(n—1)¢® + (1 = (n — 1)k)q + (1 — 2k). Our aim is to prove that

by(2,n) < a.
Before proving it, we need an additional proposition.
Proposition 5
Zn2(a, b) <b((n—1)g+1)

Proof We use Lemma 2. Observe that b((n — 1)g + 1) = av + z, when
v=(n-1)(g—k)andz=(n-1)¢* + (n — (n — 1)k)g + (1 — 2k — (n — 1)k2).
Observe also that z is positive, since k2 < q. Now, let d be left hand side of
(2) for v and z fixed above. By performing some simple, but rather tedious
algebraic manipulation, we obtain that

2d=(n-1)(g-k){(n-1)(g- k) +1} @)

In order to establish the result, it remains to prove that 2d > 0. Nevertheless,
this is true since ¢ > k2. R

Now, we deduce Theorem 1.
Proof of Theorem 1. Since 1 < k2 < g, then
[@®/q] = (n —1)%¢* +2(n—1)¢* + (1 —2(n — 1)k)g — 2k + 1 = a(n — 1)g + b.

By setting u = (n — 1)g in Proposition 4, we can conclude that b,(2,n) < a
under the condition that Z, 2(a,b) < b((n — 1)g + 1). Nevertheless, this condi-
tion is assured by Proposition 5. In particular, for k = [\/(ﬂ — 1, we obtain the
desired bound.m

An improvement, if possible, on (1) is related to design theory. Let us
illustrate this claim focusing on the boundary case k? = gq.

Corollary 6 b;2(2,n) < (n—1)k*+k?—k provided there is no system Sp—, (b, {v, v+
1}, a), i.e, a collection of a blocks of b-set, each block with size v or v+ 1, such
that every 2-tuples of b-set is contained in ezactly n — 1 blocks.

Proof: By examining the proofs of Theorem 1 and Proposition 5 one sees that
d = 0 for the boundary k? = q. A simple analysis of Lemma 2 shows that
Zn2(a,b) > av + z if and only if there is a system S,_; (b, {v,v + 1},a). B
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